Achieving sustainable cultivation of apples

Edited by Dr Kate Evans, Washington State University, USA
Contents

Series list xii
Acknowledgements xvi
Introduction xvii

Part 1 Plant physiology and breeding

1 Ensuring the genetic diversity of apples 3
 Gayle M. Volk, USDA-ARS-CARR National Laboratory for Genetic Resources Preservation, USA
 1 Introduction: the importance of apples 3
 2 Threats to production and the need for new varieties 4
 3 Sources of genetic diversity 4
 4 Understanding Malus diversity 9
 5 Capturing, maintaining and accessing genetic diversity 10
 6 Future trends: new technologies to facilitate enhanced and sustainable crop production 13
 7 Where to look for further information 14
 8 References 15

2 The apple genome – harbinger of innovation for sustainable apple production 23
 Amit Dhingra, Washington State University, USA
 1 Introduction 23
 2 Brief overview of genome sequencing technology development 24
 3 Sequencing of the apple genome and lessons learned 25
 4 Harvesting the genome for improvement of apple 27
 5 Utility of the apple genome in resolving issues in the apple industry 29
 6 The future of genomics research in apple 30
 7 Conclusion 30
 8 Where to look for further information 30
 9 References 31

3 Advances in understanding apple tree growth: rootstocks and planting systems 35
 Dugald C. Close and Sally A. Bound, University of Tasmania, Australia
 1 Introduction 35
 2 Tree growth and the development and propagation of apple 36
 3 Dwarfing rootstocks: history of selection and key morphological effects 37
 4 Dwarfing rootstocks: mechanisms and example application 41
 5 An introduction to manipulating tree growth and development 44
 6 Planting systems 46
 7 Summary 47
 8 Future trends in research 48
 9 Where to look for further information 48
 10 Acknowledgements 49
 11 References 49
4 Advances in understanding apple tree growth: the manipulation of tree growth and development

Dugald C. Close and Sally A. Bound, University of Tasmania, Australia

1 Introduction
2 Canopy development
3 Dormancy release and bud break
4 Managing vegetative growth
5 Training and pruning
6 Case study 1: intensive growing systems in Tasmania, Australia
7 Case study 2: comparison of artificial spur extinction and chemical thinning for crop load control
8 Summary
9 Future trends in research
10 Where to look for further information
11 Acknowledgements
12 References

5 Advances in understanding flowering and pollination in apple trees

Peter M. Hirst, Purdue University, USA

1 Introduction
2 Flowering: introduction and biology
3 Horticultural aspects of flowering
4 Pollination: introduction and biology
5 Horticultural aspects of pollination
6 Conclusion
7 Where to look for further information
8 Acknowledgements
9 Dedication
10 References

6 Advances in understanding apple fruit development

A.N. Lakso and M. C. Goffinet, Cornell University, USA

1 Introduction
2 Developmental sequence of apple growth
3 Seasonal growth pattern of an apple
4 Chemical composition and seasonal changes in apples
5 Fruit abscission and growth rate
6 Fruit ‘set’
7 Role of hormones in fruit development and abscission
8 Competition within the flower/fruit cluster
9 Seasonal patterns of respiration and ripening
10 Factors influencing fruit growth
11 Regulation of cropping for sustainability
12 Modelling to integrate factors in thinning
13 Molecular biology and apple cultivation
14 Future trends and conclusion
15 Where to look for further information
16 References
Contents

7 Evaluating and improving rootstocks for apple cultivation
 G. Fazio, USDA-ARS/Cornell University, USA
 1 Introduction
 2 Apple breeding methods
 3 Scion traits affected by rootstocks
 4 Disease and pest resistance
 5 Future trends and conclusions
 6 Where to look for further information
 7 References
 135

8 Advances in marker-assisted breeding of apples
 K. Evans and C. Peace, Washington State University, USA
 1 Introduction
 2 Advances in apple MAB
 3 History of apple MAB
 4 Current tools in MAB for apple
 5 Impacts of MAB on apple breeding
 6 Case study: MAB in the Washington State University apple
 breeding program
 7 Future trends and conclusion
 8 Where to look for further information
 9 Acknowledgements
 10 References
 165

Part 2 Cultivation techniques

9 Innovations in apple tree cultivation to manage crop load and ripening
 Stefano Musacchi, Washington State University, USA; and
 Duane Greene, University of Massachusetts, USA
 1 Introduction
 2 Training system
 3 Pruning techniques related to the cultivar habit
 4 Mechanical pruning and ‘Mur Fruitier’
 5 Crop load determination and effect on fruit quality
 6 Tree production in the nursery
 7 Control of vegetative growth using plant growth regulators (PGRs)
 8 The physiological basis of chemical thinning: current situation and
 new perspectives
 9 Improving fruit appearance
 10 Preharvest application of plant growth regulators
 11 Future trends in research
 12 Where to look for further information
 13 References
 195

10 Advances in soil and nutrient management in apple cultivation
 G. H. Neilsen, D. Neilsen and T. Forge, Summerland Research and
 Development Centre Agriculture and Agri-Food Canada; and
 K. Hannam, Natural Resources Canada
 1 Introduction
 195
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Emerging issues affecting soil and nutrient management</td>
<td>240</td>
</tr>
<tr>
<td>3 Precision nutrient management: fertigation and targeted foliar application</td>
<td>246</td>
</tr>
<tr>
<td>4 Precision nutrient management: improved fertilizer forms and sensing of nutrient limitations</td>
<td>251</td>
</tr>
<tr>
<td>5 Precision water management</td>
<td>254</td>
</tr>
<tr>
<td>6 Altered production systems and altered production areas</td>
<td>259</td>
</tr>
<tr>
<td>7 Conclusions</td>
<td>269</td>
</tr>
<tr>
<td>8 Where to look for further information</td>
<td>269</td>
</tr>
<tr>
<td>9 References</td>
<td>270</td>
</tr>
<tr>
<td>11 Mechanization and automation for apple production</td>
<td>279</td>
</tr>
<tr>
<td>Q. Zhang, M. Karkee and L. R. Khot, Washington State University, USA</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>279</td>
</tr>
<tr>
<td>2 Levels of mechanization</td>
<td>280</td>
</tr>
<tr>
<td>3 Training and pruning</td>
<td>281</td>
</tr>
<tr>
<td>4 Thinning</td>
<td>286</td>
</tr>
<tr>
<td>5 Pest and disease control</td>
<td>289</td>
</tr>
<tr>
<td>6 Technologically-assisted apple harvesting</td>
<td>293</td>
</tr>
<tr>
<td>7 Robotic apple harvesting</td>
<td>298</td>
</tr>
<tr>
<td>8 Future trends and conclusion</td>
<td>301</td>
</tr>
<tr>
<td>9 Where to look for further information</td>
<td>303</td>
</tr>
<tr>
<td>10 References</td>
<td>303</td>
</tr>
<tr>
<td>12 Sustainable approaches to control postharvest diseases of apples</td>
<td>307</td>
</tr>
<tr>
<td>W. J. Janisiewicz and W. M. Jurick II, USDA-ARS, USA</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>307</td>
</tr>
<tr>
<td>2 Natural plant-derived products</td>
<td>309</td>
</tr>
<tr>
<td>3 GRAS substances and sanitizers</td>
<td>312</td>
</tr>
<tr>
<td>4 Heat treatment</td>
<td>315</td>
</tr>
<tr>
<td>5 Controlled atmosphere</td>
<td>317</td>
</tr>
<tr>
<td>6 Irradiation with UV-C</td>
<td>318</td>
</tr>
<tr>
<td>7 Natural sources of resistance</td>
<td>319</td>
</tr>
<tr>
<td>8 Biological control</td>
<td>321</td>
</tr>
<tr>
<td>9 Integrated control</td>
<td>324</td>
</tr>
<tr>
<td>10 Future trends and conclusions</td>
<td>325</td>
</tr>
<tr>
<td>11 Where to look for further information</td>
<td>325</td>
</tr>
<tr>
<td>12 References</td>
<td>326</td>
</tr>
<tr>
<td>13 Advances in postharvest handling and storage of apples</td>
<td>337</td>
</tr>
<tr>
<td>Christopher B. Watkins, Cornell University, USA</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>337</td>
</tr>
<tr>
<td>2 Fruit quality assessment</td>
<td>339</td>
</tr>
<tr>
<td>3 Harvest maturity and harvest indices</td>
<td>340</td>
</tr>
<tr>
<td>4 Plant growth regulators</td>
<td>342</td>
</tr>
<tr>
<td>5 Harvest, handling and grading operations</td>
<td>343</td>
</tr>
<tr>
<td>6 Postharvest storage technologies</td>
<td>345</td>
</tr>
<tr>
<td>7 Comparing and assessing storage technologies</td>
<td>349</td>
</tr>
<tr>
<td>8 Postharvest treatments</td>
<td>351</td>
</tr>
</tbody>
</table>

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
Part 3 Diseases and pests

14 Pre- and postharvest fungal apple diseases
Wayne M. Jurick II, USDA-ARS, USA; and Kerik D. Cox, Cornell University, USA
1 Introduction: apple cultivation, production and storage and the impact of fungal apple diseases 371
2 Pre- and postharvest apple diseases 374
3 Chemical, biological and cultural forms of disease management during apple production and storage 376
4 Emerging pathogens affecting apple production in the United States 378
5 Conclusion 379
6 Where to look for further information 380
7 References 380

15 Management of viruses and virus-like agents affecting apple production
Kenneth C. Eastwell, Washington State University, USA
1 Introduction 383
2 Reducing the economic impact of virus-like agents 384
3 Viruses and virus-like agents of apple 386
4 Advancing diagnostic technology 392
5 Remaining challenges 394
6 Where to look for further information 397
7 References 398

16 Bacterial diseases affecting apples
John Norelli, USDA-ARS, USA
1 Introduction 403
2 Bacterial diseases: the example of fire blight 404
3 Development of fire blight tolerant apple scion cultivars 410
4 Other diseases caused by bacteria 413
5 Diseases caused by phytoplasmas 415
6 Outlook and summary 416
7 Future research trends 417
8 Where to look for further information 418
9 References 420

17 Sustainable arthropod management for apples
Elizabeth H. Beers, Washington State University, USA
1 Introduction 425
2 Key arthropod pests 426
3 Other key arthropod pests 430
4 Secondary arthropod pests: introduction, leaf and bud damage 433
5 Secondary arthropod pests: shoot, branch, trunk, root and fruit damage 436
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Models, decision aids and monitoring</td>
<td>440</td>
</tr>
<tr>
<td>7</td>
<td>Tools and tactics: pesticides, biological control, mating disruption and host plant resistance</td>
<td>443</td>
</tr>
<tr>
<td>8</td>
<td>Challenges to the sustainability of integrated pest management (IPM)</td>
<td>447</td>
</tr>
<tr>
<td>9</td>
<td>Where to look for further information</td>
<td>451</td>
</tr>
<tr>
<td>10</td>
<td>Acknowledgements</td>
<td>451</td>
</tr>
<tr>
<td>11</td>
<td>References</td>
<td>452</td>
</tr>
<tr>
<td>18</td>
<td>Advances in pest-resistant and disease-resistant apple varieties</td>
<td>461</td>
</tr>
<tr>
<td></td>
<td>Markus Kellerhals, Agroscope, Switzerland</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction: the development of disease-resistant apple varieties</td>
<td>461</td>
</tr>
<tr>
<td>2</td>
<td>Resistance to apple scab, powdery mildew and fire blight</td>
<td>462</td>
</tr>
<tr>
<td>3</td>
<td>Resistance to nectria canker, Marssonina apple blotch and other diseases</td>
<td>467</td>
</tr>
<tr>
<td>4</td>
<td>Resistance to pests</td>
<td>469</td>
</tr>
<tr>
<td>5</td>
<td>Selection techniques and resistance mechanisms</td>
<td>470</td>
</tr>
<tr>
<td>6</td>
<td>Current disease-resistant apple varieties</td>
<td>472</td>
</tr>
<tr>
<td>7</td>
<td>Summary</td>
<td>472</td>
</tr>
<tr>
<td>8</td>
<td>Where to look for further information</td>
<td>475</td>
</tr>
<tr>
<td>9</td>
<td>References</td>
<td>475</td>
</tr>
<tr>
<td>19</td>
<td>The economics of apple production</td>
<td>485</td>
</tr>
<tr>
<td></td>
<td>R. Karina Gallardo, Washington State University, USA; and Hildegard Garming, Thünen Institute of Farm Economics, Germany</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>485</td>
</tr>
<tr>
<td>2</td>
<td>Cost analysis of apple production</td>
<td>486</td>
</tr>
<tr>
<td>3</td>
<td>Apple production costs around the world</td>
<td>492</td>
</tr>
<tr>
<td>4</td>
<td>Outlook and challenges for the global apple industry</td>
<td>501</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
<td>507</td>
</tr>
<tr>
<td>6</td>
<td>Where to look for further information</td>
<td>507</td>
</tr>
<tr>
<td>7</td>
<td>References</td>
<td>508</td>
</tr>
<tr>
<td>20</td>
<td>Consumer trends in apple sales</td>
<td>511</td>
</tr>
<tr>
<td></td>
<td>Desmond O’Rourke, Washington State University and Belrose Inc., USA</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>511</td>
</tr>
<tr>
<td>2</td>
<td>The influence of suppliers and retailers on apple sales</td>
<td>512</td>
</tr>
<tr>
<td>3</td>
<td>Global forces affecting apple demand</td>
<td>514</td>
</tr>
<tr>
<td>4</td>
<td>Recent trends in apple consumption</td>
<td>516</td>
</tr>
<tr>
<td>5</td>
<td>Factors affecting consumer demand for apples</td>
<td>518</td>
</tr>
<tr>
<td>6</td>
<td>Challenges in marketing apples</td>
<td>520</td>
</tr>
<tr>
<td>7</td>
<td>Where to look for further information</td>
<td>521</td>
</tr>
<tr>
<td>8</td>
<td>References</td>
<td>521</td>
</tr>
<tr>
<td>21</td>
<td>Assessing the environmental impact and sustainability of apple cultivation</td>
<td>523</td>
</tr>
<tr>
<td></td>
<td>D. Granatstein, Washington State University, USA; and G. Peck, Cornell University, USA</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>523</td>
</tr>
<tr>
<td>2</td>
<td>Sustainability: definitions and trends</td>
<td>524</td>
</tr>
</tbody>
</table>
Introduction

The apple is an iconic fruit recognized in most countries of the world and is produced in many. China is the biggest producer by far, producing around 40% of the world’s 63 million tons of apples, almost ten times that of the second largest producer, the United States. Production levels and advances in storage technologies have resulted in the availability of apples year round in many markets. As a fruit with a high content of flavonoids and dietary fibre, apple has been linked to many health benefits. Indeed, apple has achieved what most other fruits have not in that it has successfully made its way into the fast food industry and can be frequently found, typically sliced, accompanying a considerably less healthy burger.

We have been cultivating apples for thousands of years, but the last century has seen the biggest changes in our production systems. Like other crops, we have moved into intensive agriculture. Dwarfing rootstocks for apple have enabled intensive, more efficient plantings of almost-two-dimensional trees before most other tree fruits. Such high-density plantings are moving apple production towards precision horticulture and provide orchard structure that fits mechanization and automation, rapidly becoming a requirement as labour shortage is the principal challenge currently facing sustainability of apple in many areas of the world. Our ability to optimize cultural practices through integrated pest management, biocontrol, and measured irrigation and nutrition, increases the sustainability of the orchard systems. Growers and pack-houses worldwide are striving to achieve Global GAP certification of farm assurance leading to Good Agricultural Practice status; apple precision horticulture is perfectly aligned.

Apple cultivation can be challenging in many ways; growers need the orchard to remain in the ground often for decades to recoup their very high initial investments. In addition, they must develop and execute careful management plans. However, while complex, working with a composite tree brings a level of flexibility and purposefully intensive management that is not present in some other production systems. As opposed to most annual crop producers, skilled apple growers can literally ‘build’ the tree to their requirements by carefully choosing a rootstock to suit their soil conditions and fitness for their preferred production system, and a scion to suit their climate and the available market. Once the tree is planted, the growers can train it into a structure that is desired by them and manipulate the leaf canopy and crop load to achieve the optimum balance of fruit quality and yield. Of course, none of this is easy, so perhaps the key skill for a grower is the ability to forecast 10–20 years ahead and prepare for change. Will it be hotter and drier, or will our precipitation patterns change dramatically? What will new technology bring and will it fit the current orchard training system? Will the variety still be profitable? And of course, there is the constant threat of new exotic pests. While apple growers using conventional farming practices confront these challenges, those utilizing organic systems must follow appropriate, and often quite different, practices. Nonetheless many are doing so successfully.

More growers are moving towards the physical protection of their crop using netting, initially for mitigation of hail but now also to filter potentially damaging levels of light that can damage fruit and stress vegetative growth, and in some areas, are also being considered for pest protection. Such investments in infrastructure add to the already expensive establishment costs, so obviously the grower has to take into account the
market price and typical grade-out of the variety to recover their initial costs and generate a revenue stream.

Ultimately, in my view, it is consumer demand that will sustain apple production as long as we can produce and deliver quality pieces of fruit consistently throughout the year. One thing that sets apple apart from most other fruit crops is the range of fruit types that are in demand, in terms of both internal eating quality and, of course, appearance. Another advantage for apple is that new varieties are clearly named and can easily be distinguished, providing the retailer with a marketing incentive and ensuring consumers can be confident that the ones they chose to purchase again have the characteristics that they prefer. We can offer the consumer more than simply fresh fruit by extending the sliced apple market, developing high-quality juices, sauces, dried apple and other lightly processed products.

Worldwide, consumers prefer different fruit flavour and texture attributes. Breeders are challenged to combine those diverse consumer-preferred attributes with varieties that also enable producer- and environmentally-friendly production practices. Continued breeding and selection to feed the demand for new improved eating experiences as well as to develop varieties that will face the challenges of a changing climate is essential for long-term sustainability. Cultivated Malus are only a few generations removed from wild progenitors compared to many other crop species, so we have plenty of opportunities for genetic gain to develop superior new cultivars. Further, we have widely diverse genetic resources available to us and, with new DNA-based tools, breeders are becoming better enabled to access this diversity and attempt the introgression of new traits.

The authors and topics in the book have been carefully chosen to provide the reader with an introduction to apple as a crop species plus present updates from leading international scientists on multiple aspects of apple production. Each chapter contributes to the ultimate aim of achieving sustainable cultivation, whether the word sustainable is interpreted as meaning economically viable, environmentally sound and/or socially acceptable, or the more general definition to endure or last indefinitely. Specific chapters on environmental impact assessment, economics of production and consumer trends in apple sales add to the bigger picture of the current position of global apple sustainability. Our goal was not just to provide a current review, but also to provide a useful resource for further information in terms of publications, research groups and conference series. Apple cultivation is certainly heading in a more sustainable direction. Advances over recent years have been dramatic. This book is a unique, timely and comprehensive review of these scientific advances and their potential implementation by apple producers worldwide.

Part 1 Plant physiology and breeding

The first group of chapters looks at advances in understanding apple physiology and breeding. Chapter 1 highlights the critical importance of genetic diversity. Widely used apple cultivars exhibit low resistance to pathogens and low tolerance to climatic threats. Apple breeding programmes therefore need to develop new cultivars which are more resilient in the face of key threats, while also selecting for other important qualities. Previously, it was difficult to use wild apple species for breeding because typically they have undesirable fruit, non-uniform ripening times, and other traits that are not amenable to commercial apple production. Apple progenitor species, M. sieversii, M. orientalis,
M. sylvestris, M. prunifolia, and M. baccata offer desirable variation, and are more amenable to use in breeding programmes because they are diploid and often have fruit traits more similar to M. × domestica than many of the more distant wild Malus species. The chapter explores the opportunities and challenges of using progenitor species of Malus × domestica in traditional breeding programmes.

Key challenges include understanding Malus diversity, capturing and maintaining this diversity, and ensuring that researchers and breeders have access to living apple accessions. The chapter highlights the role of genebanks, such as the USDA-ARS National Plant Germplasm System. Genebanks provide breeders access to Malus wild species and local cultivars (which may also have desirable traits). The USDA-ARS National Plant Germplasm System, for example, maintains an apple collection with 3070 unique grafted trees representing M. × domestica cultivars and 33 Malus species, and 15 hybrid species that are available to breeding programmes.

It is important to note that many wild Malus species are, however, poorly represented in genebank collections, and phytosanitary restrictions and treaty agreements may limit access to wild materials, particularly at the international level. Ongoing coordinated efforts among genebanks to compare collections at the phenotypic and genetic levels as well as confirm cultivar identities will facilitate use of genebank collections in the future. These efforts will enable future researchers specializing in apple improvement to provide consumers with higher quality fruit that can be produced more sustainably. Finally, new technologies that make use of marker-assisted selection, genomic selection, genetic engineering, genome-wide association mapping, high-throughput genotyping and/or rapid-cycling plants are paving the way toward the increased use of wild Malus species in apple breeding.

Chapter 2 provides an overview of the development of genome sequencing technology, reviews the process of sequencing the apple genome and then considers how this information can be employed, both to develop new and better varieties of apple and, in the shorter term, to improve current horticultural practices. In the future, knowledge of specific genes can be used to improve vegetative growth and development, biotic and abiotic disease tolerance or resistance, pre-harvest stages of fruit development, postharvest fruit storage, shelf-life and organoleptic traits.

The next group of chapters reviews the latest research in understanding apple tree growth and its implications for cultivation practice, starting with rootstocks and planting systems. Chapter 3 discusses the importance of rootstocks, with an emphasis on the mechanisms and morphological effects of dwarfing. This chapter outlines the key attributes of widely used dwarfing and semi-dwarfing rootstocks including relatively recent releases that confer resistance to economically important pests and diseases and tolerance to abiotic conditions of drought, low temperature and waterlogging. These traits significantly widen the potential sites and regions that can potentially support modern apple systems.

Understanding how rootstocks and scions interact to manifest in various growth attributes of size, architecture and precocity (earliness of flowering and bearing) has been a major focus of research. Understanding of growth attributes also enables managers to design growing systems that allow the tree to fill the allocated canopy space to optimise light capture early in the life of the orchard (and prevent excessive shading after establishment) in order to produce better yields. The chapter summarises recent research on the manipulation of tree growth and development, with an emphasis on the use of plant growth regulators, followed by a discussion of the effects of different planting systems.
Chapter 4 provides a detailed discussion of the practices which affect canopy development, dormancy release, bud break and vegetative growth. As an example, the chapter explores how application of branching agents has become standard nursery practice while notching has gained acceptance for branch induction in older trees, particularly in combination with cytokinin. Under conditions of inadequate winter chilling, bud break can be manipulated by cultural practices or application of chemical rest-breaking agents. Understanding how scion cultivars interact with rootstocks has driven studies on training and pruning, underpinned by knowledge of architectural traits and tree physiology. The chapter ends by presenting two case studies which show the importance of post-planting apple tree management, and illustrate how it can interact with choice of rootstock and planting system to determine yield, including artificial spur extinction and chemical thinning for crop load control.

Chapter 5 looks at recent research on the biology and horticultural aspects of flowering with a particular focus on pollination. Fruit production begins with the transition of a bud from vegetative to floral state. The bud differentiates, overwinters, and emerges as a flower the following spring. Flowers are then pollinated, fertilized, and the fruit grows firstly by cell division and later by cell enlargement. All of these processes are vital to the development of high-quality fruit. Sub-optimal environmental, biological or cultural conditions during any of these stages can reduce both productivity and fruit quality. The chapter discusses the biological processes and genetic controls of these developmental stages. It also highlights some of the key environmental effects and how these processes can be manipulated by cultural management.

As with earlier processes, understanding the ways in which apple fruit grow and develop is crucial for achieving sustainable apple cultivation. Chapter 6 examines how apples grow and ripen, what we know about the factors that support or limit growth, why fruit abscise and how growers can manipulate fruit growth and abscission to optimize cropping. Amongst other topics, the chapter explores in detail seasonal growth patterns, the chemical composition of apples in different seasons, the role of hormones in abscission, and seasonal ripening patterns as well as competition within the flower/fruit cluster. The chapter suggests ways to model optimal crop load and suggests future trends for research in this area.

The foundations of a productive and healthy orchard are the rootstocks that provide anchorage, water and nutrients essential to the above-ground portions of the trees. Utilization of composite trees has increased the efficiency of breeding productive apple trees by dividing the selection of scion traits and rootstock traits into two genetically (and functionally) different specimens which are then brought together through grafting. As part of the tree, the rootstock influences many factors in addition to tree size, particularly productivity, fruit quality, pest resistance and stress tolerance. Understanding how scion properties are modulated by rootstocks allows targeting of traits that may be selected to improve whole tree performance by improving rootstock performance. Chapter 7 examines apple breeding methods and explores how rootstocks affect scion traits, before addressing the impact of rootstocks on disease and pest resistance.

Breeding and selecting new, improved cultivars by exploiting natural genetic diversity is an essential route forward in ensuring sustained and sustainable apple production. There can be no doubt that breeders have an expanding set of tools at their disposal to achieve these goals with the advent of marker-assisted (and DNA-informed) breeding. Chapter 8 discusses the promise of marker-assisted breeding in apple and reviews the advances that have been made, particularly over the last two decades, in practical application of genetic
markers to breeding programmes, current tools, and the impacts of this technology. A case study of genetic marker application in the Washington State University apple breeding programme is also described. The chapter suggests what the near future may hold for marker-assisted breeding in apple. The rapid increase in genomic data will present its own challenges in terms of managing decision-making although the result will be enhanced efficiency, accuracy and pace of new apple cultivar development.

Part 2 Cultivation techniques

The next group of chapters reviews improvements in cultivation techniques. Chapter 9 provides a summary of recent innovations in orchard training system design, pruning techniques, thinning, plant growth regulators and fruit finishing with the aim of identifying more sustainable practices. New training systems like the ‘bi-axis’ are described to achieve planar, vertical or angle canopies, as well as mechanical and other pruning and thinning techniques to minimize labour requirements. It is now possible to purchase specific typologies of tree that are more compatible with training techniques which will further improve production. New uses of plant growth regulators to manipulate tree growth and fruit finish are also analysed.

Chapter 10 explores the emerging issues that will influence future approaches to soil and nutrient management in apple orchards. These include climate change and variability, the degradation of soil and water resources, and the future availability and cost of fertilizers. The chapter then reviews strategies for precision nutrient and water management. These include fertigation and targeted foliar application as well as improved types of fertilizer and technologies for sensing nutrient limitations. Improved irrigation scheduling and conservation irrigation techniques, including partial and deficit irrigation, are also discussed. Finally, the chapter considers the prospects for alternative production systems and production areas given the changing climate.

As Chapter 11 points out, sustaining large-scale commercial apple production depends on the availability of a large, seasonal and suitably skilled workforce. Costs and overall productivity could be improved by mechanization of apple production operations. Chapter 11 begins by reviewing the levels of mechanization that may be introduced into apple production and then considers a variety of mechanization solutions for each of the four key operations in apple production: training and pruning, thinning, pest and disease control, and harvesting. In each case, the chapter first considers those solutions which employ lower levels of mechanization, and then moves up to solutions which involve a higher level of mechanization, including automation and robotics. The advantages and disadvantages of each solution and directions for further development are also discussed.

Use of fungicides to control disease in postharvest apples is becoming less acceptable to many consumers, and the search for alternative approaches that are more sustainable in controlling postharvest diseases of fruits has intensified during the last three decades. Chapter 12 describes various alternative approaches to synthetic fungicides for controlling postharvest diseases of apples that are potentially safer for human health and the environment. The main focus has been on exploring natural products and substances generally regarded as safe (GRAS) which have anti-fungal properties. The chapter also reviews physical treatments (such as heat treatment, irradiation or the use of controlled atmospheres), biological control and natural fruit resistance, either by induction in
harvested fruit or through breeding programmes. When used in combination, these techniques can now rival fungicide treatments in effectiveness.

Postharvest handling of apples, as for most horticultural products, is largely concerned with the maintenance of product quality after harvest. Chapter 13 outlines recent advances in understanding the various factors affecting fruit maturation and ripening. It reviews harvest, handling and grading operations, and discusses postharvest storage technologies including refrigeration, controlled atmosphere (CA) storage and the use of 1-Methylcyclopropene (1-MCP). It also considers a range of postharvest treatments of apples and the physiological disorders to which apples are subject.

Part 3 Diseases and pests

Fungal plant pathogens cause significant economic losses in the field and during storage which decreases fruit quality. Several pathogens also produce mycotoxins that are harmful to human health. Pathogens include *Alternaria mali* (*Alternaria* leaf spot), *Colletotrichum* species (bitter rot), *Glomerella cingulata* (*Glomerella* leaf spot), *Gymnosporangium juniperi-virginianae* (cedar apple rust), *Podosphaera leucotricha* (powdery mildew), *Botryosphaeria dothidea* (white rot), *Schizothyrium pomi* (flyspeck) and, in particular, *Venturia inequalis* (apple scab). There have been a number of advances in biological, chemical and cultural methods of control which help to combat these diseases. Chapter 14 reviews these developments together with a discussion of the main pre- and postharvest apple pathogens and methods of integrated disease management.

Like fungal diseases, viruses and virus-like agents are a recurring problem in apple production. Viruses include so-called ‘latent viruses’, apple mosaic virus, flat apple disease and viroids. They are graft-transmissible, and are readily disseminated through the use of infected budwood. Since many of these agents do not have arthropod or nematode vectors, the most effective control strategy is to develop orchards with clean, virus-tested planting stock. As Chapter 15 states, the implementation of quarantine and certification programmes globally is essential to safeguard apple production and minimize the risk of spreading disease by removing virus-infected plants from the supply chain. Procedures for virus testing and elimination are constantly being revised to incorporate the best and most appropriate technologies, including developments in high-throughput sequencing techniques.

As Chapter 16 indicates, bacterial diseases remain an ongoing challenge to the sustainability of apple production. Fire blight, for example, is a serious economic threat to apple production. Chapter 16 uses it as an example to present the key issues and challenges which bacterial diseases raise for apple production. The chapter reviews the history of fire blight and its spread around the globe, economic impact, symptoms, disease biology and management. The chapter also includes a case study on current efforts to develop apple cultivars which are resistant to fire blight disease. Other apple diseases caused by bacteria, including blister spot, crown gall and hairy root, bacterial blister bark and apple proliferation are also considered.

Management of apple pests is a necessary and challenging part of crop production. Chapter 17 begins by covering key pests of apple such as the codling moth. The chapter then considers indirect pests, which may be tolerated in moderate densities, and are therefore more amenable to other control tactics, especially biological control. The chapter
suggests that integrated pest management (IPM) tactics which control key pests without disrupting biological control of secondary pests are the best way forward for sustainable IPM in apple production. After considering the tools and tactics available as part of a sustainable IPM programme, the chapter considers the challenges facing IPM, such as pesticide resistance and invasive species, which require innovative solutions for future IPM systems.

Disease- and pest-resistant cultivars can significantly contribute to sustainable and resilient cultivation of apples. Chapter 18 reviews the development of apple varieties resistant to a number of important diseases, including apple scab, powdery mildew, fire blight, nectria canker and Marssonina apple blotch. The chapter also consider the development of pest-resistant apple varieties, before discussing DNA-based selection techniques for developing resistance and the mechanisms on which resistance depends.

Part 4 Sustainability

A viable business is a key element of sustainability. Chapter 19 reviews and compares costs in apple production worldwide. The chapter analyses the economics of apple production around the world, including in countries such as Germany, Italy, South Africa, Switzerland and Chile. A detailed case study of apple production in Washington State, USA, is also provided. The chapter includes a comparison of apple production costs by variety across the United States, Germany, Italy, and South Africa. Given the importance of international markets for major apple producing countries in the world, the chapter considers apple production in relation to global trends in production and international trade. It discusses structural changes in the apple industry around the world, as well as trends in production systems and technologies.

As Chapter 20 indicates, the world of apple marketing presents many complex challenges. Consumers have become increasingly disparate and selective in what they expect from the products they buy. They remain concerned about the intrinsic qualities of apples, such as colour, taste and texture, but continue to add new concerns such as social responsibility and environmental sustainability. The chapter reviews topics such as the influence of suppliers and retailers on apple sales, global forces affecting apple demand, recent trends in apple consumption, factors affecting consumer demand for apples and the challenges this creates in marketing apples.

As Chapter 21 suggests, the environmental impact of apple production can be managed through cultivation practices and inputs. Pesticides typically have the greatest environmental impact, but energy use from cultivation techniques (including the costs of nutrient, irrigation and pesticide inputs) is also substantial. This chapter shows that apple production sustainability has improved in the area of pest management and decreased for resource use. It demonstrates that high-density apple orchards require higher levels of infrastructure and resource inputs than older systems, and argues that enhancing biocontrol of pests and lengthening the usable life of equipment and infrastructure are important strategies for reducing the environmental impact of modern production systems.

The final chapter in the book, Chapter 22, reviews key research areas for those involved in organic apple production. It covers the development of suitable varieties and rootstocks, soil fertility management, and strategies for maintaining apple tree health.
The latter include weed and disease control as well as methods for regulating crop set and tree growth. A number of case studies are used to show how research can have real practical impacts, for example by adding to the organic farmer’s toolbox of disease control strategies.
Index

1-aminocyclopropane-1-carboxylic acid (ACC) 343
1-MCP. see 1-methylcyclopropene (1-MCP)
1-methylcyclopropene (1-MCP) 231, 343, 347–349, 355
DCA vs., 349–350
1-N-naphthylphthalamic acid (NPA) 42
6-benzyladenine 54, 55
9-chromosome ancestor 27
Aa. see Acetaldehyde (Aa)
ABA. see Abascisic acid (ABA)
Abascisic acid (ABA) 44
Abbott Laboratories 229, 230
Abscission, fruit 222
ACC. see 1-aminocyclopropane-1-carboxylic acid (ACC)
Acetaldehyde (Aa) 309
Acetic acid vapour, and peracetic acid 314
ACLSV. see Apple chlorotic leafspot virus (ACLSV)
ACP. see Anaerobic compensation point (ACP)
Acylcyclohexanediones 62, 63
ADFVd. see Apple dimple fruit viroid (ADFVd)
Advancing diagnostic technology 392–394
AFCVd. see Apple fruit crinkle viroid (AFCVd)
AFPM. see Autonomous Fruit Picking Machine (AFPM)
Agribot project 298
Agricultural mechanization 280
Agricultural Resource Management Survey (ARMS) 489
AgroFresh Inc., 347
Air temperatures 240–241
AITC. see Allyl isothiocyanates (AITC),
Alkylresorcinols (AR) 310
Allyl isothiocyanates (AITC) 310
AMF. see Arbuscular mycorrhizal fungi (AMF)
Aminoethoxyvinylglycine (AVG) 229–231, 343
Anaerobic compensation point (ACP) 347
Angled canopy 204–205
V-systems 204
Y System 204–205
Anilinopyrimidines (APs) 377
Anthesis 92
API gene 88
Apical dominance 37, 114
Apical meristems 36
ApMV. see Apple mosaic virus (ApMV)
Apogee®, 220
Apomixis 143–144
Apple breeding 265
MAB impacts on 173–176
methods 137–138
Apple carbon balance model 226–227
Apple chlorotic leafspot virus (ACLSV) 384, 386–387
Apple consumption, consumer trends in 516–518
Apple Crop Outlook and Marketing Conference 521
Apple cultivation 135–153, 195–233
apple breeding methods 137–138
chemical thinning 221–228
categories 223–224
description 221–223
precision 225–228
crop load determination and effect on fruit quality 212–213
disease and pest resistance 147–151
fire blight 147–149
replant disease complex 149–150
tolerance of phytoplasmas and viruses 151
woolly apple aphids (WAA) 150–151
improving fruit appearance 228–229
russet control 228
shape 229
mechanical pruning 211–212
molecular biology and 127–129
Mur Fruitier 211–212
in nursery 213–219
bi-axis tree 217
knip tree 215–217
one year short cycles 215
plant growth regulators (PGRs) application 218
potted plants 217–218
two-year 214
two-year cycle with side graft 214–215
overview 135–137, 195–197
pre-harvest application of PGRs 229–232
delay preharvest drop 229–232
pruning techniques 205–210
scion traits affected by rootstocks 138–147
architectural changes 140–142
cold tolerance 144–145
drought tolerance 144
early bearing inducement 140
nutrient uptake 146–147
propagation traits 142–144
root morphology and architecture 145–146
tree vigour 139–140
soil and nutrient management in 239–270
altered production areas 268–269
altered production systems 259–268
fertilizer forms and limitations 246–254
issues affecting 240–246
overview 239–240

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
water management 254–258
training systems 197–205
angled canopy 204–205
planar canopy 197–199
vertical canopy 199–204
vegetative growth control using PGRs 219–221
ethephon 220–221
flowering promotion on bearing trees 221
prohexadione-calcium 219–220

Apple decline 391
union necrosis 388
Apple dimple fruit viroid (ADFVd) 388
Apple flat limb disease 391–392
Apple flavor 340
Apple fruit crinkle viroid (AFCVd) 388
Apple fruit development 103–129
abscission and growth rate 110–111
chemical composition and seasonal changes 109–110
competition within flower/fruit cluster 113–115
cropping regulation for sustainability 124–126
factors influencing 117–124
carbohydrate reserves 117
mineral nutrition 123–124
post-bloom carbohydrate support 117–121
temperature 122
water 121–122
fruit set 111–112
hormones role 112–113
modelling to integrate factors in thinning 126–127
thinning response assay 127
molecular biology and apple cultivation 127–129
overview 103–104
seasonal growth pattern 108–109
seasonal patterns of respiration and ripening 115–116
sequence 104–108

Apple fruit growth model 227
Apple genome 23–31
harvesting for improvement 27–29
overview 23–24
research 30
resolving issues in apple industry 29
Sanger sequencing methodology 24–25
sequencing 25–27
Apple genome 2.0, 26
Apple green crinkle disease 389–391
Apple habit 205–206
Apple harvesting robotic 298–301

fruit detachment 300
fruit detection and localization 299–300
fruit placement 300–301
historical perspective 298–299
technologically assisted 293–298
bin management 295
bulk harvesting 295–298
harvest-assist machines 294–295

Apple maggot (Rhagoletis pomonella) 432
Apple mosaic virus (ApMV) 387

Apple production cost analysis of
analysis of financial statement and accounts 489
categories 490–492
classification 487–488
engineering approach 489–490
overview 486–487
Washington State 492–495
environmental impacts of
biodiversity 528–529
crop nutrients 528
pesticides 526
resource use 526–527
water availability and quality 527–528
global comparison
by typical farm 495–499
by variety 499–501
global trends in 501–504
labour use in 505–506
regulatory and marketing schemes for
evaluation protocols 540–543
integrated fruit production 538
organic farming 539–540
overview 537–538
structural change 504

sustainability
apple systems study 534–535
biodiversity effects 536–537
definitions and trends 524–525
economic 486
environmental 485–486
and LCA 532–534
nutrient loss 535–536
pesticide impacts 529–532
social 486
water consumption 536
trends in systems and technologies 504–505

Apple proliferation 389, 415–416
Apple rubbery wood disease 391–392, 416
Apple scab (Venturia inaequalis) 462–463
pathogen 4
‘resistant’ varieties 567
Apple scar skin viroid (ASSVd) 388
Apple stem grooving virus (ASGV) 384, 386–387
Apple stem pitting virus (ASPV) 384, 386–387
Apple systems study 534–535
Apple tree growth 35–49
 manipulation and development 53–79
 artificial spur extinction and chemical thinning 73–76
 canopy development 54–56
 dormancy release and bud break 56–59
 intensive growing systems in Tasmania 70–72
 managing vegetative growth 59–63
 overview 53–54
 training and pruning 63–69
 rootstocks
 development and propagation 36–37
 dwarfing 37–44
 manipulating 44–46
 overview 35–36
 and planting systems 46–47
APs. see Anilinopyrimidines (APs)
AR. see Alkylresorcinols (AR)
Arabidopsis thaliana 24, 88, 319
Arbuscular mycorrhizal fungi (AMF) 252
Armobreak 58
ARMS. see Agricultural Resource Management Survey (ARMS)
Artificial spur extinction (ASE) 66
 and chemical thinning 73–76
ASE. see Artificial spur extinction (ASE)
ASGV. see Apple stem grooving virus (ASGV)
Aspire™ 322
ASPV. see Apple stem pitting virus (ASPV)
ASSVd. see Apple scar skin viroid (ASSVd)
Attracticides 432
Aurora Golden Gala™ 411
Autonomous Fruit Picking Machine (AFPM) 299
Auto-steered system 282
Auxin 112
AVG. see Aminoethoxyvinylglycine (AVG)
Axial fan air-blast sprayer 290
BA. see Benzyladenine (BA)
Baby Boomers 519
BAC. see Bacterial artificial chromosome (BAC)
Bacterial artificial chromosome (BAC) 24
Bacterial diseases in apple
 blister bark 414–415
 blister spot 413
 breeding efficiency
 DNA-informed and marker-assisted selection 411–412
 and shortening the juvenile phase of apple 412–413
 caused by phytoplasmas
 apple proliferation 415–416
 features of 415
 other diseases 416
 crown gall and hairy root 414
 and E. amylovora 418
 fire blight
disease biology 408–409
 disease management 409–410
 economic impact 405–406
 history and spread 404–405
 symptomatology 406–407
 tolerant apple scion cultivars 410–411, 417
general features of 403
 management 403–404
 overview 404
 role of biofilm formation 418
 Beating tray/beating sheet 442
 Bench grafts 215
 Bending, and long pruning 207–209
 Benzyladenine (BA) 224–225
 B fertigation 248–249
 Bi-axis system 198–199
 Bi-axis tree 217
 Bibaum®, 78, 198, 213, 217
 Bicarbonate salt 312
 Biennial bearing 89, 90
 Billing Integrated/Revised System 409
 Bin management 295
 Biodiversity 528–529, 536–537
 Biofilm formation, and bacterial plant diseases 418
 Biological control 443–444
 Biological control, of postharvest diseases 321–324
 BioSave™, 322, 377–378
 Bitter pit 354
 Blister bark 414–415
 Blister spot 413
 Blossom thinning 223, 227–228, 287–288
 ‘Boom-and-bust’ cycles 471
 Boron applications 96
 Bourse 37
 BpMADS4 gene 412–413
 Bracero Program 506
 Braeburn 206
 Branch/trunk damage 438–439
 Breeding efficiency, of apple
 DNA-informed and marker-assisted selection 411–412
 and shortening the juvenile phase of apple 412–413
 Budagovsky 9 (B.9) rootstock 38, 147
 Bud damage 436–437
 Bud differentiation 87
 Bulk harvesting 295–298
 description 296–297
 targeted shake-and-catch 297–298
 CA. see Controlled atmosphere (CA)
 Ca concentrations 123
 Calcium chloride (CaCl₂), apple treatment with 312–313
 Calcium concentration, fruit 123, 256
Index

Candidatus Phytoplasma mali 389, 415–417. see also Apple proliferation

Canopy development 54–56
notching and branching 55–56
plant bioregulator (PBR) application 54–55
Carbaryl 224
Carbohydrate
post-bloom support 117–121
reserves 117
supply-demand 126–127
Cash costs 487–488
Cation exchange capacities (CEC) 261–262
Caustic thinners 223
CEC. see Cation exchange capacities (CEC)
Cell division 65
Central leader system 65
Chat fruit 416
Chemical application 57–59
Chemical composition, and seasonal changes 109–110
Chemical thinning 90, 125, 221–228, 287 and ASE 73–76
categories 223–224
benzyladenine (BA) 224–225
carbaryl 224
ethephon 225
naphthalenacetamide (NAD) 224
naphthaleneacetic acid (NAA) 224
description 221–223
modelling to integrate factors in carbohydrate supply-demand 126–127
response assay 127
precision 225–228
apple carbon balance model 226–227
apple fruit growth model 227
dormant pruning 225–226
pollen tube growth model 227–228
of young fruit 288–289
Chemogenomics approach 29
Cherry rasp leaf virus (CRLV) 388
Chewing insects 434
Chill portions 56
Chip-budding 214, 215
Chitosan 313
Chlorine, and ozone 314–315
Chloromequat chloride 62
Chloroplast-based sequence analyses 5–6
Classical biological control 445–446
CLC Genomics workbench 6.0.1, 26
Clean Plant Center Northwest 177
Click pruning 69, 209–210
Dutch cut 210
scoring and girdling 210
Climate change
and arthropod management 444–445
and variability 240–242
Clustered regularly interspaced short palindromic repeats (CRISPRs) 405
Codling moth (Cydia pomonella) 427–429
CO₂ injuries 354–355
Colletotrichum acutatum 320
Computer vision-based automated sorting apparatus 295
Conservation biological control 444
Conservative irrigation 256
Consumer demand, and apple sales 518–520
Consumer trends, in apple sales factors affecting consumer demand 518–520
global forces affecting apple demand 514–516
influence of suppliers and retailers on 512–514
marketing challenges 520
overview 511–512
trends in apple consumption 516–518
Controlled atmosphere (CA) storage 346–349
treatment 317–318
Conveying belts, and bin-filling mechanisms 294
Cortex tissue 107
Cortland 206
Cosmic Crisp 206
Cost analysis, of apple production analysis of financial statement and accounts 489
categories 490–492
classification 487–488
engineering approach 489–490
overview 486–487
Washington State 492–495
Cougar Blight model 409
Cox's Orange Pippin 316
CpGV, and organic farming 568–569
Cripps Pink 206
CRISPRs. see Clustered regularly interspaced short palindromic repeats (CRISPRs)
CRLV. see Cherry rasp leaf virus (CRLV)
Crop load 117
impacts on fruit quality 212–213
management method 73–76
Crop nutrients 528
Crop set and tree growth regulations 564–565
Crown gall, of apple 414
Cultivation, and fungal apple diseases 371
Cyclanilide 55
Cycocel. see Chloromequat chloride
Daminozide 61–62
DAS. see Decision Aid System (DAS)
DCA. see Dynamic CA (DCA) storage
DDT. see Dichlorodiphenyltrichloroethane (DDT)
Decision Aid System (DAS) 441
Deficit, and partial irrigation strategies 256–257
Depth of coverage 25
Environmental impacts, of apple production
- biodiversity 528–529
- crop nutrients 528
- pesticides 526
- resource use 526–527
- water availability and quality 527–528

Environmental sustainability, and apple production 485–486

EO. see Essential oils (EO)
EPP. see Effective pollination period (EPP)
Erger®, 59
ERS. see Economic Research Service (ERS)
Erwinia amylovora 147, 149
Essential oils (EO) 310–312
Ethephon 62, 220–221, 225
Ethylene 112, 116, 128, 229, 341
ETI. see Effector-triggered immunity (ETI)
ETS. see Effector-triggered susceptibility (ETS)
European Free Trade Agreements 70
Expolinear 109

FACE. see Free air CO2-enrichment (FACE) technology
FADN. see Farm Accounting Data Network (FADN)
Farm Accounting Data Network (FADN) 489
Farm Level Income and Policy Simulation Model (FLIPSIM) 490
Farm Service Agency (FSA) 489
FDA. see Food and Drug Administration (FDA)
Fertigation 246–250
Fertilization 92
Fertilizer availability and management 245–246
formulations 251–253
FGC. see Flavour Group Concept’ (FGC)
Financial statement and accounts analysis 489
Fire blight (Erwinia amylovora) 147–149
disease biology 408–409
disease management 409–410
economic impact 405–406
history and spread 404–405
pest and disease-resistant apple varieties 461–462
symptomatology 406–407
tolerant apple scion cultivars 410–411
Firm flesh browning 355
Flat apple disease 388
Flavour Group Concept’ (FGC) 554
FLIPSIM. see Farm Level Income and Policy Simulation Model (FLIPSIM)
Flower induction 87
Flowering 85–91
FLOWERING LOCUS T (FT) 88
Foliar nutrient application 251
Fondazione Edmund Mach–Istituto Agrario di San Michele all’Adige 26
The Food Alliance 540
Food and Drug Administration (FDA) 376
Food and Drug Administration Food Safety Modernization Act 339
Free air CO₂-enrichment (FACE) technology 242
French National Institute for Agricultural Research 26
French Vertical Axis System 201
Fruit abscission and growth rate 110–111
 hormones role in development and 112–113
FruitBreedomics project 171
Fruit damage 439
Fruit detachment 300
Fruit detection, and localization 299–300
Fruit placement 300–301
Fruit quality assessment 339–340
Fruit set 111–112
Fruit shape 229
FSAs, see Farm Service Agency (FSA)
FT, see FLOWERING LOCUS T (FT)
Fumigation treatments 149
Fungal apple diseases
 biological form of 377–378
 chemical form of 376–377
 and cultivation 371
 cultural form of 378
 impact of 373–374
 postharvest diseases 375–376
 preharvest diseases 374–375
 and production 371–372
 and storage 372–373
 in United States 378–379
Gala 206
GAs, see Gibberellins (GAs)
GBS, see Genotyping-by-sequencing (GBS)
GDR, see Genome Database for Rosaceae (GDR)
Genebanks 11, 13
Gene expression 128
Generation X 519
Generation Y 519
Genetically modified organisms (GMOs) 551
Genetic complexity 265–268
Genetic diversity, of apples 3–15
 access to 13
 capturing and maintaining 10–13
 importance 3–4
 Malus species 9–10
 sources 4–9
 progenitor species of
 Malus × domestica 8–9
 wild apple species 4–8
 technologies to facilitate enhanced and
 sustainable crop production 13–14
 threats and new varieties 4
Geneva (G) apple rootstock breeding program 37
Genome Database for Rosaceae (GDR) 26, 169, 182
Genome-wide associate studies (GWAS) 28
Genotyping-by-sequencing (GBS) 27–28
Gibberellins (GAs) 54, 55, 62
Global forces, and apple demand 514–516
Global Soil Partnership 243
Gloeosporium spp., 316
Gloster 206
Glycol chitosan 313
GMOs, see Genetically modified organisms (GMOs)
Golden Delicious 25, 206
Graft compatibility 142
Granny Smith 206
GRAS substances, and sanitizers 312–315
 acetic acid vapour and peracetic acid 314
 bicarbonate salt 312
 calcium 312–313
 chitosan 313
 chlorine and ozone 314–315
 other chemicals 313–314
GRIN-Global database 13
G.213 rootstock 142
G.935 rootstock 140–141
GWAS, see Genome-wide associate studies (GWAS)
Hairy root, of apple 414
Hand pruning 283
Harvest-assist machines 294–295
Harvest Index 117
Harvest maturity, and harvest indices 340–342
HarvistaTM 231, 343
HCN, see Hydrogen cyanamide (HCN)
HDP, see High-Density Plantings (HDP)
Heat treatment, of apples 315–316, 353
 hot air 315–316
 hot water and steam vapour 316
Hexanal 309–310
High-Density Plantings (HDP) 196
Hormone thinners 223
Host defence mechanisms 319–320
Host plant resistance 443
Hot air treatment 315–316
Hot water dip treatment 316
Human-operated machines 281
Hydrogen cyanamide (HCN) 58
HYR transcription factor 28
IAA, see Indole-3-acetic acid (IAA)
IEC, see Internal ethylene concentration (IEC)
IFP, see Integrated Fruit Production (IFP)
Illumina HiSeq data 26
ILOS, see Initial low O₂ stress (ILOS)
Indole-3-acetic acid (IÄA) 42

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
Index

Initial low O₂ stress (ILOS) 346
Innoculative/augmentative/inundative biological control 442
Integrated fruit production 538
Integrated Fruit Production (IFP) 529
Integrated pest management (IPM). see Sustainable arthropod management
Intergovernmental Panel on Climate Change (IPCC) 240, 535
Intermittent warming 353
Internal ethylene concentration (IEC) 341
International Dwarf Fruit Tree Association 152
International Fruit Tree Association. see International Dwarf Fruit Tree Association
International Plant Nutrition Institute 245
International trade, and apple production 501–504
International Union for the Protection of New Varieties of Plants 172
Invasive species, and arthropod management 449–450
In vitro dual culture plate method 323
IPCC. see Intergovernmental Panel on Climate Change (IPCC)
Irrigation scheduling 254–256
KASP™ assays 173
Kazak wild apple germplasm collection 320
Knip tree 215–217
KNO₃. see Potassium nitrate (KNO₃)
Kudos®, 220
Labour-assist platforms 281–283
Labour use, in apple production 505–506
Lakso, Alan 226
Latent viruses 386
LCA. see Life cycle assessment (LCA)
Leaf damage 434–435
Leafrollers 431–432
L’Equili-fruit® 207
Lespinasse, Jean Marie 207, 209
Lespinasse’s Typology 64
LFY gene 88
LiDAR. see Light detection and ranging (LiDAR) sensors
Life cycle assessment (LCA) 529, 532–534
Light detection and ranging (LiDAR) sensors 292
Lorette, L., 211
MAB. see Marker-assisted breeding (MAB)
MADS Box II 27
Mafcot research group 207
MAGALI prototype 298
Malling-Merton (MM) apple 150
Malus × domestica genome v2.0, 26
progenitor species of 8–9
Malus floribunda 821, 4
MaluSim 126
Malus orientalis 9
Malus sieversii 8–9, 145, 320
Malus species 5, 9–10
Malus sylvestris 9–10
Manchurian crab 96
Manual thinning 286–287
MAPS. see Marker-assisted parent selection (MAPS)
Marker-assisted breeding (MAB) 137, 165–183, 175, 176
advances 167
history 167–171
DNA-based diagnostics services 170–171
fundamental genomics resources 167–169
practical apple 169–170
impacts on apple breeding 173–176
overview 165–167
tools 171–173
characterization 172
evaluation 172–173
Washington State University apple breeding program 176–180
characterization 177
evaluation 178–180
Marker-assisted parent selection (MAPS) 172, 175
Marker-assisted selection (MAS) 167
Marssonina apple blotch (Diplocarpon mali) 468–469
Maryblyt™ 409
MAS. see Marker-assisted selection
Mass harvesting systems 296
Mass pruning machines 284
Mating disruption, and arthropod management 430, 442–443
Maximum residue levels (MRL) 351, 541
MBCs. see Methyl benzimidazole carbamates (MBCs)
Md-ACO1, 178, 179
Md-ACS1, 178, 179
MDP. see Medium-Density Planning (MDP)
Mechanical pruning 211–212
Mechanization, and automation 279–303
levels 280–281
overview 279–280
adoption 280
manual labour use 279
pest and disease control 289–293
application technologies 290–291
variable rate spraying 291–293
robotic apple harvesting 298–301
fruit detachment 300
fruit detection and localization 299–300
fruit placement 300–301

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
historical perspective 298–299
technologically assisted apple harvesting 293–298
bin management 295
bulk harvesting 295–298
harvest-assist machines 294–295
thinning 286–289
labour-assist tools for manual and mechanical 287–289
robotics for selective/targeted thinning and pruning 281–286
labour-assist platforms 281–283
non-selective mechanical 283–285
powered hand tools 283
robotics for 285–286
Medium-Density Planning (MDP) 196
Membrane method 323
Mendelian trait loci (MTLs) 168, 169
Metamitron 86
Methyl benzimidazole carbamates (MBCs) 376–377
Mildew immune selection (MIS) 465
Mingyu Han 97
Minimal pruning 71–72
MIS, see Mildew immune selection (MIS)
MM, see Malling–Merton (MM) apple
Mobile platform technology 282
Molecular biology, and apple cultivation 127–129
Monitoring/thresholds 441
MRL, see Maximum residue levels (MRL)
MTLs, see Mendelian trait loci (MTLs)
Mulching 257–258
Mur Fruitier 211–212
Mycoplasmas 415
NAA, see Naphthaleneacetic acid (NAA)
NAD, see Naphthalenacetamide (NAD)
Naphthaleneacetic acid (NAD) 224, 223, 343
NAPPO, see North American Plant Protection Organization (NAPPO)
NASS, see National Agricultural Statistics Service (NASS)
National Agricultural Statistics Service (NASS) 489
National Laboratory for Genetic Resources Preservation 13
National Plant Germplasm System (NPGS) 11, 12
Natural plant-derived products 309–312
alkylresorcinols 310
essential oils (EO) 310–312
volatile compounds 309–310
acetaldehyde (Aa) 309
allyl isothiocyanates (AITC) 310
hexanal 309–310
trans-2-hexanal 309–310
Natural spur extinction 66
Nectria canker (Neonectria ditissima) 467
Nitrogen-containing heterocycle 62
Nitrogen fertilizer 247
N leaching loss 254, 256
NO₃-N concentrations 244
‘Non-plastic’ cultivars 69
Non-selective chemical, and mechanical thinning 287–289
blossom thinning 287–288
young fruit thinning 288–289
Non-selective mechanical training, and pruning 283–285
North American Plant Protection Organization (NAPPO) 384
‘Northern Spy,’ 150
Northwest Agricultural and Forestry University 97
Notching, and branching 55–56
NPA, see 1-N-naphthylphthalamic acid (NPA)
NPGS, see National Plant Germplasm System (NPGS)
Nursery, tree production in 213–219
bi-axis tree 217
knip tree 215–217
one year short cycles 215
bench grafts 215
chip-budding in spring 215
plant growth regulators (PGRs) application 218
potted plants 217–218
two-year 214
two-year cycle with side graft 214–215
Nutrient limitations 253–254
Nutrient loss, and apple production 535–536
Nyborg, Nils 166
OECD, see Organization for Economic Cooperation and Development (OECD)
Onium compounds 62
Opportunity costs 488
OPs, see Organophosphates (OPs)
Orchard production system 46
Organic, and integrated systems 259–265
Organic farming apple scab-‘resistant’ varieties 567
and CpGV 568–569
crop set and tree growth regulations 564–565
developing varieties and rootstocks 553–556
disease control 560–562
and ecosystem services 565–567
general aspects 558–560
lime sulphur and carbonates in scab management strategy 568

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
neem extract for the control of rosy apple aphid 567–568
organic fruit production 551–552
participatory and holistic approach 552–553
pest control 562–564
regulatory and marketing schemes 539–540
soil fertility management 557–558
weed control 560
Organic fruit production 551–552
Organization for Economic Cooperation and Development (OECD) 515
Organophosphates (OPs) 428
Oriental fruit moth (Grapholita molesta) 430–431
Organic fruit production 551–552
Organization for Economic Cooperation and Development (OECD) 515
Organophosphates (OPs) 428
Oriental fruit moth (Grapholita molesta) 430–431

PacBio data 26
Pacific Rose™ 411
Packinghouse sector 504
Paclorbutrazol 62
Palmette 197–198
Particulate soil C 261
Pathogen-associated molecular patterns (PAMPs) 471
Pattern-recognition receptors (PRRs) 471
PBA. see Pedigree-Based Analysis (PBA)
PBRs. see Plant bioregulators (PBRs)
PCR. see Polymerase chain reaction (PCR); Polymerase chain reaction (PCR)
Pedigree-Based Analysis (PBA) 170
Penicillium expansum 316, 320, 375–376
Pest, and disease control 289–293
application technologies 290–291
and organic farming 562–564
variable rate spraying 291–293
Pest and disease-resistant apple varieties
apple scab (Venturia inaequalis) 462–463
DNA-based selection techniques 470
fire blight (Erwinia amylovora) 460–461
Marssonina apple blotch (Diplocarpon mal) 468
mechanisms 471
nectria canker (Neonectria ditissima) 467
overview 457–458, 463–464
powdery mildew (Podosphaera leucotricha) 465
storage diseases 469
Pesticides and arthropod management 440
resistance 443–444
impacts, and apple production 529–532
PFGE. see Pulsed field gel electrophoresis (PFGE)
PGRs. see Plant growth regulators (PGRs)
Phacidiopycnis washingtonensis 96
Phenology models/decision aids 441–442
Pheromone mating disruption (PMD) 525, 531
Physiological disorders 353–356
Physiological resistance 112
Phytophthora cactorum 147
Phytopermas
apple proliferation 415–416
features of 415
other diseases 416
and viruses 151
Planar canopy 197–199
bi-axis system 198–199
palmette 197–198
Plant bioregulators (PBRs) 36, 44–45
application 54–55
biology 87–89
description 86–87
horticultural aspects 89–91
overview 85–86
use 61–63
Plant growth regulators (PGRs) 197, 342–343
nursery application of 218
pre-harvest application of 229–232
delay preharvest drop 229–232
vegetative growth control using 219–221
ethephon 220–221
flowering promotion on bearing trees 221
prohexadione-calcium 219–220
Planting systems 46–47
Plant volatile compounds 309–310
acetaldehyde (Aa) 309
allyl isothiocyanates (AITC) 310
hexanal 309–310
trans-2-hexanal 309–310
‘Plastic’ cultivars 69
Plastid-targeted genes 26
Plum curculio (Conotrachelus nenuphar) 433
PMD. see Pheromone mating disruption (PMD)
Pollination 92–96
biology 92–95
description 92
horticultural aspects 95–96
Pollinators 92
Pollinizer 92, 96
Polymerase chain reaction (PCR) 172–173, 379
Polyvinyl chloride (PVC) 178
Postharvest apple diseases 375–376
Postharvest diseases control 307–326
biological 321–324
controlled atmosphere 317–318
irradiation with UV-C 318
natural sources of resistance 319–321
 genetic sources and their application 320–321
GRAS substances and sanitizers 312–315
acetic acid vapour and peracetic acid 314
bicarbonate salt 312
calcium 312–313
chitosan 313
chlorine and ozone 314–315
other chemicals 313–314
heat treatment 315–316
hot air 315–316
hot water and steam vapour 316
host defence mechanisms 319–320
integrated 324–325
natural plant-derived products 309–312
alkylresorcinols 310
essential oils (EO) 310–312
volatile compounds 309–310
overview 307–309
Postharvest handling, and storage 337–357
comparing and assessing 349–351
DCA vs. 1-MCP 349–350
sustainability 351
fruit quality assessment 339–340
and grading operations 343–345
harvest maturity and harvest indices 340–342
overview 337–339
physiological disorders 353–356
plant growth regulators 342–343
technologies 345–349
controlled atmosphere (CA) storage 346–349
1-methylcyclopropene (1-MCP) 347–349
refrigeration 346
treatments 351–353
diphenylamine (DPA) 351–352
edible coatings 352–353
heat 353
Potassium nitrate (KNO₃) 58
Potted plants 217–218
Powdery mildew (Podoesphaera leucotricha) 465
Powered hand tools 283
Pratylenchus penetrans 263
Precision and Automated Agricultural Systems 286
Precision Crop Load Management 225
Precocity 38, 89
and dwarfing 41–43
rootstock effects on 39
Preharvest apple diseases 374–375
Pro-Ca. see Prohexadione-calcium (Pro-Ca)
Production, and fungal apple diseases 371–372
Progenitor species, of Malus × domestica 8–9
Prognosfruit 521
Prohexadione-calcium (Pro-Ca) 63, 219–220
Promalin®, 54, 55, 229
Provincia Autonoma di Trento 26
PRRs. see Pattern-recognition receptors (PRRs)
Pruning
 click 209–210
 Dutch cut 210
 scoring and girdling 210
mechanical 211–212
related to cultivar habit 205–210
apple habit 205–206
types 206–210
and training 63–69
labour-assist platforms 281–283
non-selective mechanical 283–285
powered hand tools 283
robotics for 285–286
to rootstocks and cultivars 69
types 64–69
Pulsed field gel electrophoresis (PFGE) 405
Pulse width modulation (PWM) solenoid valve 292
PVC. see Polyvinyl chloride (PVC)
PWM. see Pulse width modulation (PWM) solenoid valve
Qols. see Quinone-outside inhibitors (Qols)
QRLs. see Quantitative resistance loci (QRLs)
QTL. see Quantitative trait loci (QTL)
Quantitative resistance loci (QRLs) 464
Quantitative trait loci (QTL) 41, 146, 168,
169–170, 265, 321, 411, 464
Quinone-outside inhibitors (Qols) 377
Rapid deployment actuator (RDA) 296
RDA. see Rapid deployment actuator (RDA)
Recycling sprayers. see Tunnel-shaped sprayers
Red Delicious 205–206
Refrigeration technology 346
Regalis®, 220
Regulatory and marketing schemes
 evaluation protocols 540–543
 integrated fruit production 538
 organic farming 539–540
 overview 537–538
Reine des Reinettes 206
Replant disease complex 149–150, 244
Resource use, in apple production 526–527
ReTain®, 230, 231, 232, 343
Risk Management Agency (RMA) 489
RMA. see Risk Management Agency (RMA)
Robotic apple harvesting 298–301
 fruit detachment 300
 fruit detection and localization 299–300
 fruit placement 300–301
 historical perspective 298–299
Robotic end-effectors 300
‘Robusta 5,’ 147
Rome Beauty 206
Root damage 439
Root morphology, and architecture 145–146
Root pruning 60–61
Rootstocks 90–91
 for apple cultivation 135–153
 apple breeding methods 137–138
disease and pest resistance 147–151
overview 135–137
scion traits affected by rootstocks 138–147
development and propagation 36–37
dwarfing 37–44
mechanisms of precocity and morphological effects and interstems 38–41
selection programmes and releases 37–38
tolerance to soil water limitation 44
manipulating 44–46
overview 35–36
and planting systems 46–47
training and pruning to 69
RosBREED project 168, 169, 171, 411
Royal Gala 39, 40
Rubbery wood, of apple 391–392, 416
Russet control, fruit 228
Rvi6 (Vf) 4
Sanger sequencing methodology 24–25
Sansavini, S. 211
SBIs. see Sterol biosynthesis inhibitors (SBIs)
Scarf skin 228
SCAR markers 173
Scion, and rootstock effects 39, 138–147
Scoring, and girdling 210
SDHI. see Succinate dehydrogenase inhibitor (SDHI)
Seasonal growth pattern 108–109
of apple 108–109
of respiration and ripening 115–116
Secondary pests, and arthropod management
branch/trunk damage 438–439
bud damage 436–437
fruit damage 439–440
leaf damage 434–435
overview 431–432
root damage 439
shoot damage 436–437
Selective pruning operations 285
Self-incompatibility (SI) systems 92
Self-propelled platforms 282
Self-steered system 282
Self-thinning apples 129
Senescent breakdown 354
S-genotype 92–93
Shade effects 128
Shoot damage 434–435
Shoots 118
SI. see Self-incompatibility (SI) systems
Simple, narrow, accessible and productive (SNAP) systems 280, 284
Simple sequence repeat (SSR) 172–173
Single nucleotide polymorphisms (SNPs) 173, 396
arrays 27, 28
SIT. see Sterile insect technique (SIT)
SKU. see Stock-keeping units (SKUs)
Slender Pyramid 66
Slender spindle 201–202
SLF. see S-locus F-box (SLF)
Slipstream Automation 171
S-locus F-box (SLF) 92
S-locus ribonuclease (S-RNase) 92
SmartFresh™ 347, 349
SNAP. see Simple, narrow, accessible and productive (SNAP) systems
SNPs. see Single nucleotide polymorphisms (SNPs)
Social sustainability, and apple production 486
Societal factors, and arthropod management 450
Sodium bicarbonate 312
Soggy breakdown 355
Soil carbon sequestration 242
Soil degradation 243–244
Soil fertility management 557–558
Soil K availability 250
Soil N testing 245
Soil organic matter 262–263
Soil P availability 249–250
Soil pH 146
Solsale 66, 202–203
Solid State Canopy Delivery System 293
Soluble solids concentration (SSC) 339, 342
SPAD-507, 253
SPI. see Starch pattern index (SPI)
Spindle 199–201
Spur structure 104
S-RNase. see S-locus ribonuclease (S-RNase)
SSC. see Soluble solids concentration (SSC)
SSR. see Simple sequence repeat (SSR)
Starch pattern index (SPI) 341
Stayman 206
Sterile insect technique (SIT) 429, 446
Sterol biosynthesis inhibitors (SBIs) 377
Stock-keeping units (SKUs) 512
Storage diseases 469
fungal apple 372–373
String thinning machines 287–288
Succinate dehydrogenase inhibitor (SDHI) 377
Sucking pests 434
Superficial scald 354
Super spindle 204
Suppliers and retailers, in apple sales 512–514
Suppression subtractive hybridization 469
Sustainability, and apple production
apple systems study 534–535
biodiversity effects 536–537
definitions and trends 524–525
economic 486
environmental 485–486
and LCA 532–534
nutrient loss 535–536
pesticide impacts 529–532
social 486
water consumption 536

Sustainable arthropod management challenges
climate change 448
invasive species 449
pesticide resistance 447
societal factors 450

key pests
apple maggot (Rhagoletis pomonella) 432
codling moth (Cydia pomonella) 427–429
leafrollers 431
oriental fruit moth (Grapholita molesta) 430
plum curculio (Conotrachelus nenuphar) 433

monitoring/thresholds 438–440
overview 425–426
phenology models/decision aids 437–438

secondary pests
branch/trunk damage 438–439
bud damage 436–437
fruit damage 439–440
leaf damage 434–435
overview 431–432
root damage 439
shoot damage 436–437

tools and tactics
biological control 444
host plant resistance 447
mating disruption 446
pesticides 447
sterile insect technique (SIT) 446

TA. see Titratable acidity (TA)

Tall spindle 203–204
Targeted bulk harvesting systems. see Targeted shake-and-catch harvesting
Targeted shake-and-catch harvesting 297–298
Tatura Trellis. see V/Geneva Y trellis systems
T-budding 214
TCSA/Y. see Trunk cross-sectional area/yield (TCSA/Y)

T3SS. see Type three secretion systems (T3SS)

Tunnel-shaped sprayers 290

Type II ‘Galaxy Gala,’ 69
Type IV ‘Granny Smith,’ 69

UC, see Under C)

UV-C irradiation 318, 319

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
Index

Vacuum-conveying systems 295
Variable rate spraying 291–293
Vegetative growth 59–63
control 219–221
with ethephon 220–221
flowering promotion on bearing trees 221
using prohexadione-calcium 219–220
cultural practices 60–61
root pruning 60–61
trunk scoring and girdling 60
use of plant bioregulators 61–63
Vertical axis system 66
Vertical canopy 199–204
slender spindle 201–202
solaxe 202–203
spindle 199–201
super spindle 204
tall spindle 203–204
V/Geneva Y trellis systems 66
Viroids 388–389
Viruses/virus-like agents
ACLSV, ASPV and ASGV 386–387
advancing diagnostic technology 392–394
apple decline 391
apple flat limb disease 391–392
apple green crinkle disease 389–391
apple mosaic virus (ApMV) 387
apple proliferation 389
apple rubbery wood disease 391–392
apple union necrosis and decline 388
challenges 394–397
economic impact of 384–385
flat apple disease 388
overview 383–384
viroids 388–389
Visible, and infrared radiation sensors 253
V-systems 204
WAA. see Woolly apple aphids (WAA)
WABP. see WSU apple breeding program (WABP)
Waiken®, 58–59
Washington Apple Commission 378
Washington State University apple breeding program 176–180
Water consumption, and apple production 536
Watercore 353–354
Water management 254–258
deficit and partial irrigation strategies 256–257
irrigation scheduling 254–256
mulching 257–258
Water quality, in apple production 527–528
Water resources degradation 244–245
Weed control, and organic farming 560
Wild apple species 4–8
Wild Malus species 5, 14
Winter chill 57
Woolly apple aphids (WAA) 150–151
World Apple and Pear Association 371
WSU apple breeding program (WABP) 176, 177
WSU Tree Fruit Genotyping Laboratory (WTFGL) 176
WTFGL. see WSU Tree Fruit Genotyping Laboratory (WTFGL)
Young fruit thinning 288–289
Y System 204–205
‘Zigzag’ model 471