Ensuring safety and quality in the production of beef

Volume 1: Safety

Edited by Professor Gary Acuff, Texas A&M University, USA
Professor James Dickson, Iowa State University, USA
Contents

Series list vii
Acknowledgements xiii
Introduction xiv

Part 1 Ensuring safety on the farm

1 Pathogens affecting beef 3
James E. Wells and *Elaine D. Berry*, *US Meat Animal Research Center, USDA-ARS, USA*

1 Introduction 3
2 Zoonotic diseases related to cattle: anthrax, bovine spongiform encephalopathy (BSE), brucellosis and tuberculosis 6
3 Zoonotic parasites and viruses related to cattle: *Cryptosporidium*, *Giardia* and haemorrhagic fevers 9
4 Major zoonotic pathogens related to cattle: *Escherichia coli*, *Salmonella* and *Campylobacter* 11
5 Additional pathogens related to cattle: *Leptospira*, *Listeria* and other pathogens 16
6 Pathogen control: good animal management and biosecurity practices 18
7 Pathogen control: use of vaccines 20
8 Pathogen control: non-traditional interventions 23
9 Summary and future trends 24
10 Where to look for further information 25
11 References 25

2 Methods for detecting pathogens in the beef food chain: an overview 35
Pina M. Fratamico, *Joseph M. Bosilevac* and *John W. Schmidt*, *United States Department of Agriculture, USA*

1 Introduction 35
2 Rapid methods for detecting pathogens in beef 37
3 Advantages and limitations of rapid methods 39
4 Detecting antibiotic resistance in pathogens 40
5 Summary and future trends 48
6 Where to look for further information 50
7 References 51

3 Methods for detecting pathogens in the beef food chain: detecting particular pathogens 59
Pina M. Fratamico, *Joseph M. Bosilevac* and *John W. Schmidt*, *United States Department of Agriculture, USA*

1 Introduction 59
2 Methods used to detect *E. coli* O157:H7 and non-O157 STEC 60
3 Culture isolation of *E. coli* O157:H7 and non-O157 STEC 63
4 Methods used to detect *Salmonella* 64

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
Contents

5 Methods used to detect *Listeria* and *Campylobacter* 65
6 Methods used to detect *Clostridium*, *Bacillus cereus* and MAP 67
7 Developing standardised methods for pathogen detection: the case of the FSIS Microbiology Laboratory Guidebook method for testing for non-O157 STEC 69
8 Where to look for further information 70
9 References 72

4 Food safety management on farms producing beef 79

Peter Paulsen, Frans J. M. Smulders and Friederike Hilbert,

University of Veterinary Medicine, Austria

1 Introduction 79
2 Good farming practices and biosecurity for beef cattle farms 80
3 Animal handling and animal welfare 85
4 Clean cattle policy 86
5 From GFP to pre-harvest food safety management: the case of *E. coli* O157 87
6 Quality assurance programmes for beef production 90
7 Summary 90
8 Future trends in research 90
9 Where to look for further information 90
10 References 91

5 Ensuring the safety of feed for beef cattle 95

Grant Dewell, Iowa State University, USA

1 Introduction 95
2 Food safety risks in purchased or raised feeds 96
3 Chemical food safety risks 97
4 Storage, mixing and delivery of feed 98
5 Summary 100
6 Where to look for further information 101
7 References 101

6 Detecting antibiotic residues in animal feed: the case of distiller’s grains 105

Lynn Post, Food and Drug Administration, USA

1 Introduction 105
2 Distiller’s grains as animal feed 106
3 Multiresidue methods for analysing veterinary and other residues in food and feed 107
4 Multiresidue analysis in practice: ion-trap tandem mass spectrometry 108
5 Multiresidue analysis in practice: orbitrap high-resolution mass spectrometry 111
6 Testing samples of distiller’s grains 113
7 The survival of antibiotic residues in distiller’s grains 116
8 Assessing the risk of antimicrobial resistance 118
9 Summary and future trends 118
10 Where to look for further information 120
11 References 126

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
Part 2 Ensuring safety at slaughter

<table>
<thead>
<tr>
<th>7</th>
<th>Beef carcass inspection systems</th>
<th>133</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>William James, formerly Food Safety and Inspection Service (FSIS)-USDA, USA</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>133</td>
</tr>
<tr>
<td>2</td>
<td>Successful meat inspection programmes: an overview</td>
<td>134</td>
</tr>
<tr>
<td>3</td>
<td>Ante-mortem inspection</td>
<td>136</td>
</tr>
<tr>
<td>4</td>
<td>Post-mortem inspection</td>
<td>139</td>
</tr>
<tr>
<td>5</td>
<td>Important inspection procedures</td>
<td>142</td>
</tr>
<tr>
<td>6</td>
<td>Summary</td>
<td>143</td>
</tr>
<tr>
<td>7</td>
<td>Where to look for further information</td>
<td>144</td>
</tr>
<tr>
<td>8</td>
<td>References</td>
<td>144</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Maintaining the safety and quality of beef carcass meat</th>
<th>145</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>James S. Dickson, Iowa State University, USA and Gary R. Acuff, Texas A&M University, USA</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>145</td>
</tr>
<tr>
<td>2</td>
<td>Process flow description</td>
<td>146</td>
</tr>
<tr>
<td>3</td>
<td>Bacterial attachment to meat surfaces</td>
<td>147</td>
</tr>
<tr>
<td>4</td>
<td>Decontamination methods</td>
<td>148</td>
</tr>
<tr>
<td>5</td>
<td>Decontamination treatments: hot water and organic acids</td>
<td>151</td>
</tr>
<tr>
<td>6</td>
<td>Decontamination treatments: other interventions</td>
<td>156</td>
</tr>
<tr>
<td>7</td>
<td>Processing operations: fabrication</td>
<td>158</td>
</tr>
<tr>
<td>8</td>
<td>Packaging, storage and shelf life</td>
<td>160</td>
</tr>
<tr>
<td>9</td>
<td>Conclusions</td>
<td>162</td>
</tr>
<tr>
<td>10</td>
<td>References</td>
<td>162</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Optimizing the microbial shelf life of fresh beef</th>
<th>169</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Declan J. Bolton, Teagasc Food Research Centre (Ashtown), Ireland</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>169</td>
</tr>
<tr>
<td>2</td>
<td>The factors affecting beef spoilage and microbial shelf life</td>
<td>170</td>
</tr>
<tr>
<td>3</td>
<td>Microbial spoilage of fresh beef</td>
<td>171</td>
</tr>
<tr>
<td>4</td>
<td>Prerequisite actions for increased shelf life of beef</td>
<td>172</td>
</tr>
<tr>
<td>5</td>
<td>Chilling: ensuring palatability while reducing microbial spoilage of beef</td>
<td>173</td>
</tr>
<tr>
<td>6</td>
<td>Packaging for beef products</td>
<td>174</td>
</tr>
<tr>
<td>7</td>
<td>Active and intelligent packaging for beef products</td>
<td>177</td>
</tr>
<tr>
<td>8</td>
<td>Conclusions</td>
<td>180</td>
</tr>
<tr>
<td>9</td>
<td>Where to look for further information</td>
<td>180</td>
</tr>
<tr>
<td>10</td>
<td>References</td>
<td>180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Ensuring beef safety through consumer education</th>
<th>187</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Janet M. Riley, North American Meat Institute, USA</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>187</td>
</tr>
<tr>
<td>2</td>
<td>Beef preparation and food safety advice: before 1993</td>
<td>187</td>
</tr>
<tr>
<td>3</td>
<td>Responses to the 1993 E. coli outbreak: 1993–2000</td>
<td>189</td>
</tr>
<tr>
<td>4</td>
<td>Determining reliable indicators of beef safety: 2000–present</td>
<td>190</td>
</tr>
<tr>
<td>5</td>
<td>Global food safety education</td>
<td>192</td>
</tr>
<tr>
<td>6</td>
<td>Awareness and behaviour changes in the United States</td>
<td>193</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>7 Global changes in awareness and behaviour</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>8 Conclusion</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>9 References</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>11 Traceability in the beef supply chain</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>Daniel D. Buskirk and Tristan P. Foster, Michigan State University, USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>2 Traceability defined</td>
<td>202</td>
<td></td>
</tr>
<tr>
<td>3 Methods of unique cattle identification</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>4 Beef identification by barcoding</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>5 Traceability information systems</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>6 Case study: using the EPCglobal Network for cattle and beef traceability</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>7 Future trends</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>8 Conclusion</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>9 Where to look for further information</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>10 References</td>
<td>220</td>
<td></td>
</tr>
</tbody>
</table>

Index | 229 |
Introduction

Beef production faces a range of challenges. There is an ongoing need to ensure safety in the face of threats from zoonoses and other contaminants, particularly in more intensive beef production systems and with more complex supply chains (allowing potentially broader transmission). At the same time, consumers have ever higher expectations of sensory quality. There has been a wealth of research to address these challenges, for example in developing more rapid and sensitive methods for detecting pathogens. These challenges are addressed in the two volumes of Ensuring safety and quality in the production of beef production. Volume 2 reviews developments related to quality. This first volume reviews current research on identifying and managing key hazards in the supply chain for fresh beef, from the farm through to slaughter, packaging, retail display and consumer handling.

Part 1 Ensuring safety on the farm

The first group of chapters review current research on zoonoses related to cattle. Chapter 1 summarises what we currently know about zoonotic parasites, viruses and pathogens. Pathogenic organisms are highly variable and adapt well to a changing environment. Surveillance and eradication programmes have worked well to control some zoonotic diseases, particularly where the illnesses are acute and symptoms in animals are easily recognisable. However, some zoonotic remain less easy to recognise. More research is still needed to reduce pathogens in the cattle production environment and minimise transmission to humans.

In the case of each pathogen, the chapter provides a concise review of current knowledge on growth conditions, mechanisms of transmission and causes of recent outbreaks. The chapter begins with zoonotic diseases related to cattle: anthrax, bovine spongiform encephalopathy (BSE), brucellosis and tuberculosis. It then covers zoonotic parasites and viruses: Cryptosporidium, Giardia and haemorrhagic fevers. Finally, it reviews the major zoonotic pathogens related to cattle: Escherichia coli, Salmonella, Campylobacter, Leptospira, Listeria and other pathogens.

Good animal husbandry has significantly improved the safety of beef supply. The chapter discusses pathogen control using animal management and biosecurity practices. These aim to prevent the introduction of infection, the survival and spread of infection within the herd or flock and, where necessary, reduce or eliminate an established infection. After a detailed review of the effectiveness of the use of vaccines, the chapter discusses non-traditional interventions such as probiotics, direct-fed microbials (DFM), competitive exclusion (CE) cultures and prebiotics to reduce pathogens in livestock animals. As the chapter points out, the bacterial microbiota in the gastrointestinal tract is highly complex and the scientific community is just only starting to understand the beneficial and antagonistic interactions between microorganisms in the gut and opportunistic pathogens.

As discussed in Chapter 1, the main food-borne pathogens of concern in the beef chain are Shiga toxin-producing Escherichia coli (STEC) and Salmonella. Other pathogens, including Listeria monocytogenes and Campylobacter spp. are also important. The occurrence and development of antimicrobial resistant (AMR) pathogens in the beef chain
is also a concern. Though both accurate and reliable, traditional culture-based methods are laborious and time consuming. Rapid methods, including nucleic acid-, immunologic-, and biosensor-based techniques can be very sensitive and specific and provide more timely information regarding the presence of pathogens in the beef chain. Chapters 2 and 3 review these methods as well as recent advances in next generation sequencing technologies.

As the chapter describes, many types of rapid methods, including nucleic acid- and immunologic-based methods, have been developed and are commercially available for detection of pathogens, including STEC and *Salmonella*. Nucleic-acid-based methods rely on detection of specific DNA or RNA sequences of the target organism. The most commonly used DNA-based methods utilise the polymerase chain reaction (PCR) that involves amplification of specific sequences of the pathogen and detection of the ethidium bromide (or other stain)-stained PCR products by agarose gel electrophoresis. Nucleic acid-based methods, particularly PCR methods, are commonly used since they have high sensitivity and specificity, can be automated, allow detection of multiple pathogens, and provide reliable results. However, sample processing is necessary to remove inhibitors of the PCR assay or other nucleic acid-based method.

Immunological methods involve the use of monoclonal or polyclonal antibodies that bind to an antigen of the bacterium or to a toxin. Types of immunoassays include enzyme-linked immunosorbent assays (ELISA) or enzyme immunoassays, fluoroimmunoassays, radioimmunoassays, chemiluminescence immunoassays and lateral flow immunoassays. Immunologic-based assays can also be designed to be specific, can be automated, are easy to perform, and allow detection of bacterial toxins. However, sensitivity may be lower than that of nucleic acid-based assays, and cross-reactivity of the antibodies with closely related antigens can occur. Improvements in these rapid methods will continue to be made, with the goal of being able to obtain real-time or near real-time results.

Biosensor-based methods consist of devices that have a bioreceptor that can be an antibody, enzyme, nucleic acid, or cells and a transducer that converts the interactions into a measureable signal. Examples are optical, electrochemical, or mass-based biosensors, surface plasmon resonance, multianalyte array/evanescent wave, quartz crystal microbalance or surface-enhanced Raman scattering biosensors. As noted, rapid methods are very useful as screening methods targeting specific pathogens in large numbers of samples. However, positive results are still often regarded as presumptive and need to be confirmed by traditional culture methods which remain the gold standard. More still needs to be done to refine sensitivity, specificity and reliability.

Chapter 2 also reviews methods for detecting AMR in pathogens. As the chapter points out, the scientific study of the factors influencing AMR occurrence in cattle production and processing environments is in its infancy. No single method, culture or culture-independent, can fully illuminate these factors. There is a need for well-designed studies of cattle production and processing environments, using a combination of culture-dependent and culture-independent methods, if we are to understand and identify the factors responsible for the occurrence of AMR.

Building on Chapter 2, Chapter 3 provides a detailed review of the best methods for detecting particular pathogens, including *E. coli* O157:H7 and non-O157 STEC, *Salmonella*, *Listeria*, *Campylobacter*, *Clostridium*, *Bacillus cereus* and *Mycobacterium avium subsp. paratuberculosis* (MAP). It discusses sampling regimes, best practice and ways of improving sensitivity and specificity. The chapter looks in particular detail at methods for detecting *E. coli* O157:H7. Methods for detection of *E. coli* O157:H7 are...
used throughout the beef chain, from monitoring the pre-harvest colonisation of cattle and their environment to harvest and post-harvest processing of meat as well as final beef cuts and products. The chapter describes sampling methods, sample enrichment and screening using rapid methods based on immunoassays or molecular detection (DNA or RNA amplification), often followed by culture isolation.

As Chapter 3 points out, to monitor *E. coli* O157:H7 in the farm environment, only the most robust rapid methods are useful. In addition to having a high interfering background, samples collected on farms (pastures or feedlots) contain a number of complex molecules that inhibit many PCR reactions. However, properly performed, *E. coli* O157:H7 detection assays can both determine if the organism is present and provide quantitative results. This aids, for example, in identifying ‘super-shedder’ cattle that harbour and shed high levels of *E. coli* O157:H7 and can spread contamination across a whole herd. The chapter concludes by looking at developments in standardised methods for pathogen detection, looking at the example of the US Food Safety and Inspection Service (FSIS) Microbiology Laboratory Guidebook for testing for non-O157 STEC.

As well as effective methods of detection, the production of safe, high-quality beef requires both good farming practices and additional measures targeted against specific hazards to human or animal health. Building on Chapter 1, Chapter 4 provides an overview of current best practice for managing safety on beef cattle farms. Good farming practices (GFPs) need to control infectious and parasitic agents (biological hazards), chemical contaminants and residues (chemical hazards) as well as physical hazards such as foreign bodies. GFP guidelines typically cover such areas as: general farm management, animal health, using veterinary medicines, and management of animal feed as well as animal and product handling.

The chapter puts particular emphasis on biosecurity, animal welfare and the importance of clean cattle policies. In the latter case, the chapter reviews programmes targeted on preventing contamination of hides and grading of cattle sent to slaughter. Based on this assessment, additional measures are taken such as washing, clipping and separation of cattle for slaughter. There is also a detailed review of the effectiveness of using vaccines. The chapter then discusses hazard-specific control measures for one important hazard: *E. Coli* O157. Finally, it reviews key components of quality assurance programmes for beef production.

Because of their ruminant digestive system, beef cattle are able to eat and digest a wide range of feed products, including by-product or alternative feeds not utilised in other livestock production systems. It is important to ensure that the various feed products provided to cattle do not pose a food safety risk to the people who consume beef products. Chapter 5 provides an overview of the three major areas where food safety risks can be introduced via feed material: purchase of contaminated feed products, contamination during storage and contamination of feed due to mixing or delivery errors. In each case, measures to prevent unacceptable risk are reviewed. Echoing Chapter 4, it highlights the importance of hazard analysis and critical control point (HACCP) systems, prerequisite programmes, standard operating procedures (SOPs) and good production practices in managing feed safety.

Echoing chapters 2 and 3, Chapter 6 highlights the importance of effective detection of contaminants, this time in cattle feed. The chapter reviews methods for sampling and detection of antibiotic residues in animal feed, using the example of distillers’ grains. The chapter reviews the use of distillers’ grains as animal feed and provides an overview of multiresidue methods for analysing residues in feed, with particular attention to
Part 2 Ensuring safety at slaughter

The second part of the book focuses on maintaining meat safety during slaughter and the preparation of fresh meat. Written by a former meat inspector, Chapter 7 begins by providing an overview of the purposes and importance of meat inspection programmes in the United States in addressing hazards to both human and animal health. Subsequent sections cover the design, implementation and results of ante-mortem and post-mortem inspection, and provide a review of some important procedures used by veterinary services to inspect cow heads, viscera and carcasses.

Chapter 8 reviews the slaughter process and the mechanisms of bacterial attachment to meat tissue. Contamination of animal carcasses during slaughtering procedures is undesirable, but unavoidable in the conversion of live animals to meat for consumption. Internal muscle tissues are essentially sterile, and most initial contamination of red meat carcasses is contributed by the hide during removal. The chapter reviews decontamination methods such as knife trimming, water washing and steam vacuuming, and evaluate their effectiveness. The chapter also considers hot water, organic acid and other decontamination treatments, reviews the potential for contamination during fabrication, and finally discusses the role of packaging, storage and shelf-life estimates in ensuring the safety of meat delivered to consumers.

Beef spoilage is primarily caused by bacteria, and maximising shelf-life is dependent on a multiple hurdle approach to generate conditions that inhibit microbial growth. This chapter begins by reviewing the factors which affect beef spoilage and microbial shelf-life, and the bacteria and processes involved in spoilage. Subsequent sections then consider methods for maximising the microbial shelf-life of beef products, including minimising the initial microbial burden in beef, chilling of beef carcasses, and the wide variety of packaging technologies. The latter include modified atmosphere packaging and low oxygen packaging. Packaging technologies also include active and intelligent packaging using oxygen scavengers, carbon dioxide scavengers/emitters, chlorine dioxide generators, moisture control agents and antimicrobial compounds.

While the industry has made great strides in reducing bacteria on raw beef products, improving safe consumer handling of beef remains a significant challenge. Factors such as the decline of some traditional cooking skills and the pressure to prepare food quickly will continue to challenge food safety educators in creating good and consistent food safety habits among consumers. Chapter 10 review the history of consumer beef preparation practices and food safety advice, research on compiling the best advice to give to consumers, and how awareness of food safety issues and food preparation behaviour has changed over time.

Traceability, or rapid access to knowledge of the history, treatment and location of cattle and beef products through supply chains, is of paramount importance to food safety investigations, corrective actions and product recalls. Chapter 11 defines traceability as applied to beef before describing in detail methods of unique identification for cattle, such as radio frequency identification (RFID) and DNA profiling. The chapter also explores
the traceability of beef offered by one- and two-dimensional barcoding. Cloud-based, distributed information systems for data entry, storage and retrieval are emerging as methodologies of choice for participants in the beef supply chain. The chapter provides a case study of cattle and beef traceability through a supply chain from farm to retail using a distributed network, the EPCglobal Network for cattle and beef traceability.
Index

Academy of Nutrition and Dietetics 195
Aerobic plate counts (APC) 148
AIN. see animal identification number (AIN)
American Meat Institute (AMI) 189
AMI. see American Meat Institute (AMI)
AMR. see antimicrobial-resistant (AMR)
Animal handling and welfare 85–86
Animal identification number (AIN) 206
Ante-mortem inspection
design of 136–137
implementation of 137–138
results of 138–139
Anthrax 6–7
Antibiotic residues, in animal feed
distiller’s grains 106–107
comparing surveys 115
European Union 2013 survey 115
Food and Drug Administration 2008 survey 113
Food and Drug Administration 2010 survey 113–114
survival of 116–117
University of Minnesota 2011 survey 114–115
multiresidue methods
for analysing veterinary and other residues 107–108
ion-trap tandem mass spectrometry 108–111
orbitrap highresolution mass spectrometry 111–113
overview 105–106
risk assessment 118
Antibiotic resistance 40–48
Antimicrobial compounds, of beef 178–179
Antimicrobial-resistant (AMR) 35, 59, 105
Antimicrobial susceptibility tests (ASTs) 41
APC. see aerobic plate counts (APC)
ASTs. see antimicrobial susceptibility tests (ASTs)
Auto-ID. see automatic identification (Auto-ID)
Automatic identification (Auto-ID) 205
Bacille Calmette-Guérin (BCG) 21
Bacillus cereus 67–68
Bacterial Rapid Detection using Optical scattering Technology (BARDOT) 64
Banding, beef traceability by 208–211
BARDOT. see Bacterial Rapid Detection using Optical scattering Technology (BARDOT)
BCG. see Bacille Calmette-Guérin (BCG)
Beef carcass inspection systems
ante-mortem inspection
design of 136–137
implementation of 137–138
results of 138–139
important inspection procedures
carcass inspection 143
head inspection 142
viscera inspection 142–143
overview 133–134
post-mortem inspection
design of 139–140
implementation of 140
results of 141–142
successful programmes 134–136
Beef carcass meat
and bacterial attachment 147–148
decontamination methods
and hot water 151–152
knife trimming 148–149
and organic acids 152–155
other interventions 156–158
steam vacuum 150–151
trimming versus washing 150
water wash 149–150
overview 145
process flow description 146–147
Beef inspection procedures
carcass inspection 143
head inspection 142
viscera inspection 142–143
Beef Quality Assurance (BQA) program 90
Beef safety
before 1993, 187–188
awareness and behaviour changes
in the United States 193–196
E. coli outbreak (1993) 189–190
global food safety education 192–193
overview 187
reliable indicators of (2000–present) 190–192
Bovine spongiform encephalopathy (BSE) 7–8, 96
BPW. see buffered peptone water (BPW)
BQA. see Beef Quality Assurance (BQA) program
Brucellosis 8
BSE. see bovine spongiform encephalopathy (BSE)
Buffered peptone water (BPW) 62
Campylobacter pathogen detection 65–67
Canadian Partnership for Food Safety Education (CPFSE) 192
Carbon dioxide scavengers/emitters 178
Carcass inspection 143
Cattle identification, and traceability 204–205
CDC. see Centers for Disease Control and Prevention (CDC)
CDI. see *Clostridium difficile* infections (CDI)
CDT. see cytolethal distending toxin (CDT)
CE. see competitive exclusion (CE)
Center for Veterinary Medicine (CVM) 113
Centers for Disease Control and Prevention (CDC) 6
Chilling and microbial shelf-life 173–174
Chlorine dioxide generators 178
Clean cattle policy 117
Clostridium perfringens 67
Clustered regularly interspaced short palindromic repeat (CRISPR) 63
Combination treatments, of beef 179
Competitive exclusion (CE) 23
COT. see co-trimoxazole-resistant (COT)
Co-trimoxazole-resistant (COT) 41
CPFSE. see Canadian Partnership for Food Safety Education (CPFSE)
Crimean-Congo haemorrhagic fever virus (VHFV) 10
CRISPR. see clustered regularly interspaced short palindromic repeat (CRISPR)
Cryptosporidium 9
CVM. see Center for Veterinary Medicine (CVM)
Cytolethal distending toxin (CDT) 15, 68
Dark Firm Dry (DFD) 170
Decontamination, of beef carcass meat and hot water 151–152
knife trimming 148–149
and organic acids 152–155
other interventions 156–158
steam vacuum 150–151
trimming versus washing 150
water wash 149–150
Decontamination methods, and carcass meat and hot water 151–152
knife trimming 148–149
and organic acids 152–155
other interventions 156–158
steam vacuum 150–151
trimming versus washing 150
water wash 149–150
DFD. see Dark Firm Dry (DFD)
DFM. see direct-fed microbials (DFM)
Direct-fed microbials (DFM) 23
Distiller’s grains, in animal feed 106–107
comparing surveys 115
European Union 2013 survey 115
Food and Drug Administration 2008 survey 113
Food and Drug Administration 2010 survey 113–114
survival of 116–117
University of Minnesota 2011 survey 114–115
DNA profiling, and traceability 207–208
E. coli O157:H7 and non-O157 STEC food safety management 87–89
thefood safety management 87–89
pathogen detection
culture isolation of 63–64
FSIS microbiology laboratory guidebook method 69–70
methods used 60–63
EDGS. see wet distillers grains with solubles (WDGS)
EDTA. see ethylenediaminetetraacetic acid (EDTA)
EFSA. see European Food Safety Authority (EFSA)
EHEC. see enterohaemorrhagic *E. coli* (EHEC)
EIA. see enzyme-linked immunosassay (EIA)
Electromagnetic interference (EMI) 206
Electronic product code (EPC) 216
Electronic Product Code Information Services (EPCIS) 211
ELISA. see enzymelinked immunosorbent assays (ELISA)
Enterohemorrhagic *E. coli* (EHEC) 11, 35, 59
Enteropathogenic *E. coli* (EPEC) 11
Enterotoxigenic *E. coli* (ETEC) 11
Enzyme-linked immunosassay (EIA) 60
Enzymelinked immunosorbent assays (ELISA) 37
EPC. see electronic product code (EPC)
EPCglobal Network 218
EPEC. see Enteropathogenic *E. coli* (EPEC)
EPICS. see Electronic Product Code Information Services (EPCIS)
ERY. see Erythromycin-resistant (ERY)
Erythromycin-resistant (ERY) 41
ETEC. see Enterotoxigenic *E. coli* (ETEC)
Ethylenediaminetetraacetic acid (EDTA) 110
European Food Safety Authority (EFSA) 85
European Union 2013 survey 115
ExPEC. see extraintestinal pathogenic *E. coli* (ExPEC)
Extraintestinal pathogenic *E. coli* (ExPEC) 41
Fabrication 158
FDX. see full-duplex procedure (FDX)
Federal Meat Inspection Act (FMIA) 3
Feed safety
food safety risks 96–97
chemical 97–98
overview 95–96
storage, mixing and delivery 98–100
Five Keys to Safer Food poster 192
FMI. see Food Marketing Institute (FMI)
FMIA. see Federal Meat Inspection Act (FMIA)
FNP-ELISA. see functional nanoparticle-enhanced ELISA (FNP-ELISA)
Food and Drug Administration (FDA) 49, 97, 106, 188
2008 survey 113
Index

2010 survey 113–114
Food Marketing Institute (FMI) 189
Food Safety Campaign Group 192
Food Safety Inspection Service (FSIS) 4, 188
microbiology laboratory guidebook method 69–70
Food safety management animal handling and welfare 85–86
and E. coli O157, 87–89
good farming practices (GFP) 80–85
quality assurance programmes 90
Food safety risks 96–97
FSIS. see Food Safety Inspection Service (FSIS)
FMS. see Full scan mass spectrometry (FSMS)
Full-duplex procedure (FDX) 206
Full scan mass spectrometry (FSMS) 107
Functional nanoparticle-enhanced ELISA (FNP-ELISA) 37
GFP. see good farming practices (GFP)
GHPs. see good hygienic practices (GHPs) Giardia 9–10
Global food safety education 192–193
Global Traceability Standard (GTS) 209
Global Trade Item Number (GTIN) 209
GMPs. see good manufacturing practices (GMPs)
Good farming practices (GFP) 80–85
Good hygienic practices (GHPs) 80, 159
Good manufacturing practices (GMPs) 159
GTIN. see Global Trade Item Number (GTIN)
GTS. see Global Traceability Standard (GTS)
HACCP. see Hazard Analysis And Critical Control Point (HACCP)
Haemolytic uraemic syndrome (HUS) 12
Haemorrhagic fever 10
Half-duplex procedure (HDX) 206
Hazard Analysis And Critical Control Point (HACCP) 80, 99
HDX. see half-duplex procedure (HDX)
Head inspection 142
High-resolution mass spectrometry (HRMS) 107
Hot water, and carcass meat 151–152
HRMS. see high-resolution mass spectrometry (HRMS)
HUS. see haemolytic uraemic syndrome (HUS)
ICT. see information and communication technology (ICT)
Immunomagnetic separation (IMS) 40, 60
IMS. see immunomagnetic separation (IMS)
Information and communication technology (ICT) 204
International Organization for Standardization (ISO) 67
Ion-trap tandem mass spectrometry 108–111
ISO. see International Organization for Standardization (ISO)
Journal of Food Protection 194
Knife trimming 148–149
versus washing 150
L. monocytogenes 66
LAB. see Lactic acid bacteria (LAB)
Lactic acid bacteria (LAB) 172
LAMP. see loop-mediated isothermal amplification (LAMP)
Leptospira 16
Listeria 16–17
pathogen detection 65–67
Livestock Production Assurance – Quality Assurance program (LPA-QA) 90
Loop-mediated isothermal amplification (LAMP) 39
Low-oxygen packaging 176
LPA-QA. see Livestock Production Assurance – Quality Assurance program (LPA-QA)
M. tuberculosis complex (MTBC) 8
MAP. see modified atmosphere packaging (MAP); Mycobacterium avium subsp. paratuberculosis (MAP)
MBM. see meat and bonemeal (MBM)
Meat and bonemeal (MBM) 96
Microbial shelf-life, of beef and chilling 173–174
ensuring palatability 173–174
factors affecting 170–171
overview 169–170
and packaging active and intelligent 177–179
antimicrobial compounds 178–179
carbon dioxide scavengers/emitters 178
chlorine dioxide generators 178
combination treatments 179
low-oxygen 176
modified atmosphere 175–176
moisture control agents 178
overview 174–175
oxygen scavengers 177
vacuum 176–177
prerequisite actions for spoilage 171–172
MICs. see minimum inhibitory concentrations (MICs)
Minimum inhibitory concentrations (MICs) 40–41
Modified atmosphere packaging 175–176
Modified atmosphere packaging (MAP) 171
Modified Rainbow Agar (mRBA) 62
Modified tryptic soy broth (mTSB) 39
Moisture control agents 178
MRBA. see modified Rainbow Agar (mRBA)
MTBC. see M. tuberculosis complex (MTBC)
MTSB. see Modified tryptic soy broth (mTSB)
Multiresidue methods, and animal feed for analysing veterinary and other residues 107–108
ion-trap tandem mass spectrometry 108–111
orbitrap highresolution mass spectrometry 111–113
Mycobacterium avium subsp. paratuberculosis (MAP) 59
pathogen detection 68–69
NARMS. see National Antimicrobial Resistance Monitoring System (NARMS)
NASBA. see nucleic acid-based sequence amplification (NASBA)
National Antimicrobial Resistance Monitoring System (NARMS) 40
National Farm Biosecurity Reference Manual – Grazing Livestock Production 85
National Food Safety Education Month 189
National Veterinary Services Laboratory (NVSL) 13
Nucleic acid-based sequence amplification (NASBA) 39
NVSL. see National Veterinary Services Laboratory (NVSL)
Object name service (ONS) 216
OIE. see Organisation of Animal Health (OIE)
One-dimensional (1D) barcode label 208
ONS. see object name service (ONS)
Orbitrap highresolution mass spectrometry 107, 111–113
Organic acids, and carcass meat 152–155
Organisation of Animal Health (OIE) 80
Oxygen scavengers 177
Packaging, of beef
active and intelligent 177–179
antimicrobial compounds 178–179
carbon dioxide scavengers/emitters 178
chlorine dioxide generators 178
combination treatments 179
low-oxygen 176
modified atmosphere 175–176
moisture control agents 178
overview 174–175
oxygen scavengers 177
vacuum 176–177
PAHO. see Pan American Health Organization (PAHO)
Pan American Health Organization (PAHO) 192
Partnership for Food Safety Education (PFSE) 190
Pathogen detection
antibiotic resistance 40–48
Bacillus cereus 67–68
Clostridium difficile infections (CDI) 68
Clostridium perfringens 67
E. coli O157:H7 and non-O157 STEC culture isolation of 63–64
FSIS microbiology laboratory guidebook method 69–70
methods used 60–63
L. monocytogenes 66
Listeria and Campylobacter 65–67
MAP 68–69
overview 35–37, 59–60
rapid methods for advantages and limitations 39–40
description 37–39
and Salmonella 64–65
Pathogens, affecting beef
Campylobacter 15
controlling animal management and biosecurity practices 18–20
non-traditional interventions 23–24
use of vaccines 20–23
Escherichia coli 11–12
Leptospira 16
Listeria 16–17
overview 3–6
Salmonella 12–15
zoonotic diseases
anthrax 6–7
bovine spongiform encephalopathy (BSE) 7–8
brucellosis 8
tuberculosis 8–9
zoonotic parasites and viruses
Cryptosporidium 9
Giardia 9–10
haemorrhagic fever 10
PCR. see polymerase chain reaction (PCR)
PFSE. see Partnership for Food Safety Education (PFSE)
Polymerase chain reaction (PCR) 36, 60
Post-mortem inspection
design of 139–140
implementation of 140
results of 141–142
Prerequisite programme (PRP) 172
PRP. see prerequisite programme (PRP)
Pure Food and Drug Act 3
QR. see quick response (QR) systems
Quality assurance programmes 90
Quick response (QR) systems 205
Radio-frequency identification (RFID) 177, 205–207
Index

Ready-to-eat (RTE) 66
Relative standard deviation (RSD) 113
Research Triangle Institute (RTI) 189
RSD. see relative standard deviation (RSD)
RTE. see ready-to-eat (RTE)
RTI. see Research Triangle Institute (RTI)

Safe Tables Our Priority (STOP) 189
Salmonella 12–15
 pathogen detection 64–65
Sanitation standard operating procedures (SSOP) 172
Shiga toxin-producing Escherichia coli (STEC) 35, 59
Single-nucleotide polymorphisms (SNP) 63
SMAC. see sorbitol MacConkey (SMAC)
SNP. see single-nucleotide polymorphisms (SNP)
Solid phase extraction (SPE) 107
SOPs. see standard operating procedures (SOPs)
Sorbitol MacConkey (SMAC) 63
SPE. see solid phase extraction (SPE)
SSOP. see sanitation standard operating procedures (SSOP)
Standard operating procedures (SOPs) 96, 172
Staphylococcus enterica 35
STEC. see Shiga toxin-producing Escherichia coli (STEC)
STOP. see Safe Tables Our Priority (STOP)

TCC. see total coliform count (TCC)
TEC. see total Enterobacteriaceae count (TEC)
Ten Golden Rules for Safe Food Preparation 192

TGY. see Tryptone Glucose Yeast Extract (TGY)
‘Thermy the Thermometer’ campaign 191
Time-of-fl ight (TOF) 107
Time-temperature indicators (TTI) 177
TOF. see Time-of-fl ight (TOF)
Total coliform count (TCC) 173
Total Enterobacteriaceae count (TEC) 173
Total viable count (TVC) 173
Traceability and cattle identification 204–205
defined 202–204
and DNA profiling 207–208
and EPCglobal Network 218
identification by barcoding 208–211
information systems 211–217
overview 201–202
and RFID 205–207
Trisodium phosphate (TSP) 147
Tryptic soy broth (TSB) 44
Tryptone Glucose Yeast Extract (TGY) 67
Tryptose sulphite cycloserine (TSC) 67
TSB. see tryptic soy broth (TSB)
TSC. see tryptose sulphite cycloserine (TSC)
TSP. see trisodium phosphate (TSP)
TTI. see time-temperature indicators (TTI)
TTSP. see Type III secreted protein system (TTSP)
Tuberculosis 8–9
TVC. see total viable count (TVC)
Two-dimensional (2D) barcodes 209–210
Tylosin-resistant (TYL) 41
Type III secreted protein system (TTSP) 21

Uniform resource locator (URL) 210
University of Minnesota 2011 survey 114–115
University of Vermont modification medium (UVM) 66
URL. see uniform resource locator (URL)
UVM. see University of Vermont modification medium (UVM)

Vacuum packaging, of beef 176–177
Viscera inspection 142–143

VWHFV. see Crimean-Congo haemorrhagic fever virus (VWHFV)
Water wash, and carcass meat 149–150
trimming versus 150
Wet distillers grains with solubles (WDGS) 20
WGS. see whole-genome sequence (WGS)
WHO. see World Health Organization (WHO)
Whole-genome sequence (WGS) 49, 62
World Health Organization (WHO) 105, 192