Achieving sustainable cultivation of cassava

Volume 2: Genetics, breeding, pests and diseases

Edited by Dr Clair Hershey, formerly International Center for Tropical Agriculture (CIAT), Colombia
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series list</td>
<td>x</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xiv</td>
</tr>
<tr>
<td>Introduction</td>
<td>xv</td>
</tr>
<tr>
<td>Part 1 Cassava genetic resources and breeding tools</td>
<td></td>
</tr>
<tr>
<td>1 Advances in understanding cassava growth and development</td>
<td>3</td>
</tr>
<tr>
<td>Virgílio Gavicho Uarrota, Deivid L. V. Stefen, Clovis Arruda de Souza and Cileide Maria Medeiros Coelho, University of the State of Santa Catarina (UDESC), Brazil; Rodolfo Moresco and Marcelo Maraschin, Federal University of Santa Catarina (UFSC), Brazil; Fernando David Sánchez-Mora, Technical University of Manabí (UTM), Ecuador; and Eduardo da Costa Nunes, Enilto de Oliveira Neubert and Luiz Augusto Martins Peruch, Santa Catarina State Agricultural Research and Rural Extension Agency (EPAGRI), Brazil</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>2 Overview of cassava growth and development</td>
<td>5</td>
</tr>
<tr>
<td>3 Leaf development, canopy formation and photosynthesis</td>
<td>8</td>
</tr>
<tr>
<td>4 Root development</td>
<td>11</td>
</tr>
<tr>
<td>5 Carbon partitioning in cassava</td>
<td>12</td>
</tr>
<tr>
<td>6 Cassava response to environmental conditions: solar radiation and temperature</td>
<td>14</td>
</tr>
<tr>
<td>7 Cassava response to environmental conditions: water availability</td>
<td>17</td>
</tr>
<tr>
<td>8 Cassava response to environmental conditions: salinity, atmospheric CO\textsubscript{2} and other greenhouse gases</td>
<td>20</td>
</tr>
<tr>
<td>9 Post-harvest physiological deterioration</td>
<td>23</td>
</tr>
<tr>
<td>10 Summary and future trends</td>
<td>27</td>
</tr>
<tr>
<td>11 Where to look for further information</td>
<td>28</td>
</tr>
<tr>
<td>12 References</td>
<td>28</td>
</tr>
<tr>
<td>2 Conservation and distribution of cassava genetic resources</td>
<td>37</td>
</tr>
<tr>
<td>Michael Abberton, Badara Gueye, Tchamba Marimagne and Folarin Soyode, International Institute of Tropical Agriculture (IITA), Nigeria</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>37</td>
</tr>
<tr>
<td>2 Origins and genetic diversity of cassava</td>
<td>38</td>
</tr>
<tr>
<td>3 Ex situ conservation of cassava genetic material</td>
<td>39</td>
</tr>
<tr>
<td>4 Field conservation of cassava genetic material</td>
<td>39</td>
</tr>
<tr>
<td>5 Core collections of cassava genetic material</td>
<td>40</td>
</tr>
<tr>
<td>6 In vitro conservation of cassava genetic material</td>
<td>41</td>
</tr>
<tr>
<td>7 Cryopreservation of cassava genetic material</td>
<td>42</td>
</tr>
<tr>
<td>8 Conservation of cassava genetic material as true seed</td>
<td>43</td>
</tr>
<tr>
<td>9 Data collection and management in genebanks</td>
<td>43</td>
</tr>
<tr>
<td>10 Germplasm distribution</td>
<td>44</td>
</tr>
<tr>
<td>11 In situ conservation of cassava genetic material</td>
<td>45</td>
</tr>
<tr>
<td>12 Molecular genetic studies of cassava diversity</td>
<td>45</td>
</tr>
</tbody>
</table>

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Where to look for further information</td>
<td>46</td>
</tr>
<tr>
<td>14 Acknowledgements</td>
<td>46</td>
</tr>
<tr>
<td>15 References</td>
<td>46</td>
</tr>
<tr>
<td>3 Developing new cassava varieties: tools, techniques and strategies</td>
<td>49</td>
</tr>
<tr>
<td>Hernán Ceballos, Nelson Morante, Fernando Calle, Jorge Lenis and</td>
<td></td>
</tr>
<tr>
<td>Sandra Salazar, International Center for Tropical Agriculture (CIAT),</td>
<td></td>
</tr>
<tr>
<td>Colombia</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>49</td>
</tr>
<tr>
<td>2 Cassava breeding objectives</td>
<td>55</td>
</tr>
<tr>
<td>3 Pests and diseases of cassava</td>
<td>60</td>
</tr>
<tr>
<td>4 Evaluating and selecting cassava for breeding</td>
<td>61</td>
</tr>
<tr>
<td>5 Selection index in cassava breeding</td>
<td>66</td>
</tr>
<tr>
<td>6 Phenotypic correlations of cassava traits</td>
<td>67</td>
</tr>
<tr>
<td>7 Significance of breeding value</td>
<td>69</td>
</tr>
<tr>
<td>8 Quantitative genetics of complex traits in cassava</td>
<td>74</td>
</tr>
<tr>
<td>9 Future trends</td>
<td>77</td>
</tr>
<tr>
<td>10 Conclusion</td>
<td>80</td>
</tr>
<tr>
<td>11 Where to look for further information</td>
<td>81</td>
</tr>
<tr>
<td>12 References</td>
<td>82</td>
</tr>
<tr>
<td>4 Molecular approaches in cassava breeding</td>
<td>91</td>
</tr>
<tr>
<td>Luis Augusto Becerra Lopez-Lavalle, International Center for Tropical</td>
<td></td>
</tr>
<tr>
<td>Agriculture (CIAT), Colombia</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>91</td>
</tr>
<tr>
<td>2 Genetic diversity</td>
<td>92</td>
</tr>
<tr>
<td>3 Marker-assisted selection (MAS)</td>
<td>93</td>
</tr>
<tr>
<td>4 Genome sequencing of cassava</td>
<td>95</td>
</tr>
<tr>
<td>5 Genetic engineering in cassava</td>
<td>96</td>
</tr>
<tr>
<td>6 References</td>
<td>97</td>
</tr>
<tr>
<td>5 Marker-assisted selection in cassava breeding</td>
<td>101</td>
</tr>
<tr>
<td>Ismail Y. Rabbi, International Institute of Tropical Agriculture (IITA),</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>101</td>
</tr>
<tr>
<td>2 Molecular markers as genomic resources of cassava</td>
<td>103</td>
</tr>
<tr>
<td>3 Other cassava genomic resources</td>
<td>105</td>
</tr>
<tr>
<td>4 QTL mapping strategies</td>
<td>108</td>
</tr>
<tr>
<td>5 Genome-wide association mapping</td>
<td>111</td>
</tr>
<tr>
<td>6 Conclusion and future trends</td>
<td>111</td>
</tr>
<tr>
<td>7 Where to look for further information</td>
<td>112</td>
</tr>
<tr>
<td>8 References</td>
<td>112</td>
</tr>
<tr>
<td>6 Advances in genetic modification of cassava</td>
<td>117</td>
</tr>
<tr>
<td>P. Zhang, Q. Ma, M. Naconsie, X. Wu, W. Zhou, National Key Laboratory</td>
<td></td>
</tr>
<tr>
<td>of Plant Molecular Genetics, CAS Center for Excellence in Molecular</td>
<td></td>
</tr>
<tr>
<td>Plant Sciences, Chinese Academy of Sciences, China; and J. Yang,</td>
<td></td>
</tr>
<tr>
<td>Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan</td>
<td></td>
</tr>
<tr>
<td>Botanical Garden, China</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>117</td>
</tr>
<tr>
<td>2 Transition from model cultivars to farmer-preferred cultivars</td>
<td>118</td>
</tr>
<tr>
<td>3 Tools of gene expression regulation</td>
<td>122</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Production of virus-resistant cassava</td>
<td>123</td>
</tr>
<tr>
<td>5 Cassava biofortification for better nutrition</td>
<td>124</td>
</tr>
<tr>
<td>6 Starch modification of cassava for industrial applications</td>
<td>126</td>
</tr>
<tr>
<td>7 Improving storage, root production and post-harvest storage</td>
<td>127</td>
</tr>
<tr>
<td>8 Future trends and conclusion</td>
<td>130</td>
</tr>
<tr>
<td>9 Where to look for further information</td>
<td>131</td>
</tr>
<tr>
<td>10 Acknowledgements</td>
<td>131</td>
</tr>
<tr>
<td>11 References</td>
<td>131</td>
</tr>
</tbody>
</table>

Part 2 Breeding improved cassava varieties

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Breeding cassava for higher yield</td>
<td>139</td>
</tr>
<tr>
<td>Piya Kittipadakul, Pasajee Kongsil and Chalermpol Phumichai, Kasetsart University, Thailand; and Shelley H. Jansky, USDA-ARS Vegetable Crops Research Unit and University of Wisconsin-Madison, USA</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>139</td>
</tr>
<tr>
<td>2 Genetic diversity for cassava breeding</td>
<td>140</td>
</tr>
<tr>
<td>3 Breeding programmes: key objectives and selection stages</td>
<td>143</td>
</tr>
<tr>
<td>4 Selection schemes for breeding</td>
<td>145</td>
</tr>
<tr>
<td>5 Breeding for higher yield: Thailand as a case study</td>
<td>149</td>
</tr>
<tr>
<td>6 Measuring the success of the Thai breeding programme</td>
<td>150</td>
</tr>
<tr>
<td>7 Relationships among Thai cassava varieties</td>
<td>152</td>
</tr>
<tr>
<td>8 Progress in the current Thai breeding programme</td>
<td>155</td>
</tr>
<tr>
<td>9 Adaptability of varieties</td>
<td>159</td>
</tr>
<tr>
<td>10 Combining ability in Thai varieties</td>
<td>162</td>
</tr>
<tr>
<td>11 Exploitation of homozygosity and heterosis in cassava</td>
<td>164</td>
</tr>
<tr>
<td>12 Conclusion: how to improve cassava breeding programmes</td>
<td>165</td>
</tr>
<tr>
<td>13 Where to look for further information</td>
<td>167</td>
</tr>
<tr>
<td>14 References</td>
<td>167</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Breeding, delivery, use and benefits of bio-fortified cassava</td>
<td>171</td>
</tr>
<tr>
<td>Elizabeth Parkes and Olufemi Aina, International Institute of Tropical Agriculture (IITA), Nigeria</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>171</td>
</tr>
<tr>
<td>2 The HarvestPlus breeding programme for pro-vitamin A cassava</td>
<td>173</td>
</tr>
<tr>
<td>3 Delivering pro-vitamin A cassava varieties to farmers: the HarvestPlus Programme in Nigeria</td>
<td>177</td>
</tr>
<tr>
<td>4 Encouraging use of pro-vitamin A cassava by consumers</td>
<td>181</td>
</tr>
<tr>
<td>5 Retention of carotenoids and bioavailability after processing</td>
<td>184</td>
</tr>
<tr>
<td>6 Quantification of carotenoid content in pro-vitamin A cassava varieties and food products</td>
<td>185</td>
</tr>
<tr>
<td>7 Conclusion and future trends</td>
<td>189</td>
</tr>
<tr>
<td>8 Appendix: Procedure for carotenoid determination using iCheck™ methodology</td>
<td>191</td>
</tr>
<tr>
<td>9 Where to look for further information</td>
<td>192</td>
</tr>
<tr>
<td>10 Acknowledgements</td>
<td>192</td>
</tr>
<tr>
<td>11 References</td>
<td>192</td>
</tr>
</tbody>
</table>
9 Breeding cassava to meet consumer preferences for product quality 197
 Adebayo Abass, International Institute of Tropical Agriculture (IITA), Tanzania; Wasiu Awoyale, International Institute of Tropical Agriculture (IITA), Liberia and Kwara State University, Nigeria; and Lateef Sanni and Taofik Shittu, Federal University of Agriculture, Nigeria
 1 Introduction 197
 2 Uses of cassava 198
 3 Farmer, processor and end-user preferences 200
 4 Target traits: nutritional and sensory properties 200
 5 Target traits: processing properties 202
 6 Target properties: products 205
 7 Conclusions 206
 8 References 206

Part 3 Managing pests and diseases

10 Diseases affecting cassava 213
 James Legg, International Institute of Tropical Agriculture (IITA), Tanzania; and Elizabeth Alvarez, International Center for Tropical Agriculture (CIAT), Colombia
 1 Introduction 213
 2 Viral cassava diseases in Africa 214
 3 Viral cassava diseases in Latin America and Asia 220
 4 Bacterial blight, phytoplasmas and frogskin disease 224
 5 Cassava fungal diseases: foliar 227
 6 Cassava fungal diseases: root rots 230
 7 Summary 232
 8 Future trends in research 233
 9 Where to look for further information 234
 10 References 235

11 Integrated management of arthropod pests of cassava: the case of Southeast Asia 245
 Ignazio Graziosi and Kris A.G. Wyckhuys, International Center for Tropical Agriculture (CIAT), Vietnam
 1 Introduction 245
 2 Cassava pests in Southeast Asia 246
 3 Guidelines for non-chemical pest management 254
 4 Future trends and conclusion 259
 5 Where to look for further information 260
 6 Acknowledgements 260
 7 References 260

12 Weed control in cassava cropping systems 271
 S. Hauser and F. Ekeleme, International Institute of Tropical Agriculture (IITA), Nigeria
 1 Introduction 271
 2 Effects of weeds on cassava cultivation: an overview 272
 3 Cultural control measures: land management before planting 276

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
Introduction

1 The roles, challenges and opportunities for cassava in development

For the last century agricultural scientists have embraced and met the challenges of providing technologies that gave farmers the capacity to stay ahead of the growing food demands from increasing populations. Hunger and malnutrition still exist -- and cause far too much misery and livelihood risk -- but UN statistics show clear progress in reducing food deficits at the global level. Agricultural science has ever more tools at its disposal, but at the same time an expanding panorama of expectations from its users. While the Green Revolution of the 1960s and beyond made landmark progress by focusing mainly on productivity of cereal grains under high input conditions, the world rightly demands more attention to environmental impact of agriculture (water quality, soil erosion, genetic resources), quality and nutrition of food, dwindling inputs for expanding productivity, and social justice issues such as equity and opportunity for women. Agricultural sciences are slowly adapting to these new realities, but not quickly enough, and with too few resources committed to success, especially in developing countries. This is the broader context within which we consider the cassava story as a key target for sustainable improvement.

Although cassava is little-known outside the tropics, globally it is the fourth most important calorie source after wheat, rice and maize. It is especially renowned as a crop that supports farmers in more marginal conditions and with poor access to inputs, due to its ability to yield well under low-fertility soils and with periodic drought where more sensitive crops would be devastated. Although it was domesticated from its wild ancestors in the Americas, over half of global production now comes from Africa where it has a leading role in food security. Cassava is largely an energy crop. Early in the growth cycle, beginning at about 2-3 months, some of the roots convert to starch storage organs. From a physiological standpoint, this is a mechanism to store energy through periods of stress, and for recovery when the stress is alleviated. In agriculture, farmers typically aim to minimize stress so that as much of the root starch as possible can be recovered for human use. Although cassava is often referred to as a subsistence crop, this is in fact only a small part of present-day production. There is a growing dichotomy between cassava as a low-input, low-yield crop of the poor, and cassava as a vibrant and highly flexible crop driven by industrial demand. Even in Africa where it is nearly entirely a crop of small farmers, mainly for human food, a large majority of production is marketed for off-farm use. In Asia, most of production is already for industrial uses, and with the exception of a few countries, especially Indonesia, India and the Philippines, human consumption is relatively low. Even in industrial markets, most of production is on small farms. Nonetheless, large-scale industrial systems are emerging around the globe, driven by robust demand for cassava products and by technologies that facilitate production and processing at scale. Some facets of cassava production are not easy to industrialize, i.e. to mechanize or implement at large scale, for several reasons. These constraints are gradually being overcome. Planting and harvesting can be mechanized. But there are still many aspects...
of production that favor small farmer management, and cassava production is likely to be dominated by small farmers for decades to come. Just as the crop is grown primarily by poor farmers, consumers also tend to be from the lower income strata. For governments and development agencies who want to differentially benefit the poor, cassava is an ideal target for sustainable improvement.

2 Science progress and the needs for supporting cassava’s future roles

Cassava’s features, especially its minimal production in developed countries, have often meant that research investment has long been far less than for most important food crops. This situation was reversed to some degree when two International Agricultural Research Centers – the International Center for Tropical Agriculture (CIAT) in Cali, Colombia and the International Institute for Tropical Agriculture (IITA) in Ibadan, Nigeria were founded in the late 1960s, and were mandated to work on cassava on a global scale (historically, CIAT in the Americas and Asia, and IITA in Africa). This investment motivated considerable parallel investment by national research programs around the world. Through the 1980s, most countries with significant cassava production had developed human and physical capital to improve the crop and the livelihoods of people who depended on it. However, by the 1990s, and especially in Latin America, many countries discontinued or severely cut funding to cassava research. A sort of development fatigue had set in for many traditional donors, and there was a rising belief that that the private sector would take on much of the responsibility for crop improvement research. In other crops, and especially maize and soybeans, research was more and more taken on by the private sector, which was able to get a return on investment through the sale of technologies such as seed and chemicals. But cassava provided much less opportunity for profit from the private sector, and therefore lagged in technology development. By early into the 21st century, some of the key donor agencies for agricultural development began to recognize the need and the potential to invest in cassava, especially the Bill and Melinda Gates Foundation. In addition, the CGIAR -- parent organization of CIAT and IITA -- renewed its interest in cassava and recognized the synergies that could be achieved by joint work on key starchy, vegetatively propagated crops. Thus, in 2011, the Root, Tuber and Banana CGIAR Research Program (RTB-CRP) began operation, involving four CGIAR centers and five key crops (cassava, potato, sweet potato, bananas/plantains and yams). At about the same time, some of first major private sector investment in cassava research was initiated to develop amylose-free (waxy) cassava varieties in Thailand and Colombia.

While cassava still receives far less research funding in proportion to its value, compared to other major food crops, there has been key interest in recent years from donors, governments, and a limited number of private sector organizations to better fund cassava research. Cassava has been reasonably well-positioned in the molecular revolution, in terms of development of breeding techniques and information. However, the practical applications remain largely a future hope, and impact to date from breeding has been though more conventional approaches.
3 Bringing together the latest research and development information, and expected outcomes of this book

There is no recent comprehensive review of cassava research and development. With the explosion of information in general, and specifically about crop research, scientists have a difficult challenge to stay broadly informed about any crop, even one in which they may be specialized. These two volumes bring together global experts across the spectrum of cassava production and utilization topics, to distill and analyze information toward the broader context of achieving sustainable cassava cultivation. Apart from the broad chapter contents, the reader is provided extensive reference lists for further consultation and in-depth learning. This book will enable single-source consultation of a wide range of topics relevant to cassava R&D well into the future.

4 Section and chapter overviews

These two volumes present a comprehensive review of the history, the current strategies and the future potential to further transform cassava value chains toward sustainable systems. Each volume divides into three complementary sections.

Volume 1: Part 1 describes the cassava plant and its uses. **Chapter 1** takes an ethno-biological journey through the crop’s early history, informed especially by practices still carried out today in some of the crop’s most traditional growing areas of South America’s Amazon basin. **Chapter 2** describes the high diversity of food products from cassava, especially in Africa, where over 90% of cassava is destined for human food use. Many of the processes were brought from the crop’s homeland in the America centuries ago, and expanded and modified to meet local needs. **Chapter 3** reviews the opposite end of the spectrum – cassava’s diverse industrial uses, and especially starch. Much of SE Asia’s production is destined for industrial uses, but Africa and Latin America are also advancing in these more sophisticated, value-added markets. **Chapter 4** shows the potential and some examples of the transformation of traditional products and markets into higher value markets in Africa, especially for high quality cassava flour (HQCF).

Part 2 of Volume 1 begins within a broad overview of cassava production, processing and use across Asia, Africa and Latin America, **Chapter 5, 6 and 7**, respectively. Although the crop was domesticated in the Americas, only about 18% of current production comes from this region, and over half from Africa. These chapters compare and contrast the commonalities and differences among the regions, with lessons from each that can support sustainable development goals. **Chapter 8** draws on the regional overviews to highlight some of the global challenges and opportunities for sustainable cassava development, and the drivers of research and policy for setting priorities. Clearly there is no single strategy that applies globally, and every strategy fits into the context of an evolving social, economic, agronomic and environmental environment, among others. **Chapter 9** discusses the need to target and involve small-holder farmers in the development of cassava technologies, with case studies from Africa. **Chapter 10** presents the Global Cassava Partnership for the 21st Century (GCP21) as a global support partnership for cassava research and development. GCP21 is a not-for-profit international alliance of 45 organizations, aiming
to fill gaps in cassava R&D in order to unlock the potential of cassava for improving food security and income, especially for the poor.

Part 3 of Volume 1 includes a comprehensive coverage of production practices for sustainable intensification of cassava production. Chapter 11 describes the full range of production practices that growers should take into account to improve yields, profitability and sustainability – land preparation, plant populations, cropping systems, weed management, pest and disease management, and harvesting. The chapter draws heavily on experiences from Asia, but with relevance around the world. Chapter 12 reviews the critical management of seed in cassava – normally through the vegetative reproduction through stem pieces. Currently nearly all seed is managed under informal systems, but this is slowly changing. Practices and systems developed in India inform the needs, challenges and experiences globally to develop improved seed systems. Chapters 13, 14 and 15 give extensive coverage to best practices for managing cassava nutrition to achieve high and sustainable yields, through fertility management and soil conservation. As the demands increase for higher yield through sustainable practices, effective long-term soil fertility maintenance is a core strategy. The chapters draw especially on very extensive research and production experience in Asia and Latin America, where fertilizer use is far more common than in Africa. The chapters cover the relationship between soil fertility and crop productivity, how to diagnose nutritional needs and disorders, and best practices to achieve sustainable productivity through nutrient application. Chapter 16 describes rotation and intercropping in cassava cultivation, especially common in Africa. There is a growing body of evidence on the sustainability and income advantages of diversified crop systems. Because of cassava’s long period in the field, and its slow early growth, there is a wide range of alternative options for managing multiple crops that are complementary to cassava’s growth and development. Finally, Chapter 17 of Volume 1 reviews the principles of mechanization for all aspects of cassava production, which until now has been limited, especially in Africa. The chapter uses a case study of the Cassava Mechanization and Agro-Processing Project of the Africa Agricultural Technology Foundation to illustrate principles, challenges and opportunities for cassava mechanization.

Volume 2 of Achieving Sustainable Cassava Cultivation covers genetic resources, breeding, and pests and diseases. Part 1 focuses on genetic resources and breeding tools. Chapter 1 reviews knowledge on cassava’s unique growth and development features as a perennial crop managed as an annual, its vegetative propagation, and the fact that it has no phasic development as is the case for the grain and grain legume crops. This understanding is key to improving the crop through both management and breeding. Chapter 2 describes the cassava’s genetic resources, especially the ex situ collections managed by the International Agricultural Research Centers (CIAT and IITA), a fundamental resource for the crop’s genetic improvement. Chapter 3 delves into the genetic basis for cassava breeding, and provides novel and innovative strategies to move beyond the current plateau for improving cassava yield. In particular, the chapter describes in detail the rationale and the possible strategies to exploit heterosis and to make cassava breeding more efficient through the use of inbreeding. Chapter 4 brings the reader up to date on the fast-moving repertoire of molecular knowledge that supports cassava breeding. While cassava lagged behind other major crops initially in the molecular revolution, it has been catching up fast in recent years and molecular techniques are poised to bring major benefits to the growers and consumers of this crop.
Chapter 5 provides the technical background and describes specific molecular tools for making cassava breeding more efficient. The use of marker assisted selection (MAS) and genomic selection (GS) are covered in some detail. Chapter 6 reviews the current status and the potential for improving cassava through genetic engineering, or genetic modification through targeting the insertion of genes directly into the crop's genome to achieve novel traits. In spite of rapid scientific advances, the regulatory environment limits impact at the field level while governments and the public assess and absorb the potential risks and benefits.

Part 2 of Volume 2 looks at specific breeding goals for root yield and quality, and progress toward reaching them. Chapter 7 uses a case study for cassava breeding programs in Thailand, which has had one of the world's most successful cassava improvement efforts through the collaboration of two local centers (The Department of Agriculture and Kasetsart University), with additional support from International Centers (CIAT) and the Thai cassava industry. The fact that breeding efforts were aimed exclusively at industrial markets allowed the Thai programs to focus on yield and starch content, and to gain valuable experience in breeding for these two traits. Chapter 8 reviews a comprehensive program in West Africa to improve the nutritional content of cassava, for pro-vitamin A. The program supported by the HarvestPlus initiative demonstrates the many components of the value chain that need to be considered – from breeding through measuring nutritional impact at the household level. This case study is illustrative of the need for cassava improvement programs to be fully integrated with processors and consumers to develop successful products. Chapter 9 reveals the importance and the complexity of breeding for the fine-tuned consumer preferences, especially in Africa where a plethora of different products and their regional variations present major challenges to breeders with regard to identifying priority traits and their prioritization for breeding. The chapter uses examples from Africa to sort through some of these complexities and guide breeders in their planning.

Part 3 of Volume 2 covers pest and disease management in cassava, including weeds. These are areas that have received insufficient attention in the past, due to a widespread belief that cassava is a rugged crop that will produce reasonably well without any need to manage pests and diseases. However, as production practices have intensified, and especially as insects, mites and pathogens have moved with ease around the world, it is now well-understood that sustainable production is possible only with good management of these problems. Chapter 10 describes the major diseases affecting cassava and their integrated management. It is noteworthy that two of Africa's most devastating problems – cassava mosaic disease and cassava brown streak disease – have not been found in the Americas where the crop and nearly all other of its pests and disease have co-evolved. Asia, once nearly free of serious disease problems, is recently experiencing new challenges, for example with witches broom disease and Sri Lankan cassava mosaic disease. Chapter 11 reviews the arthropod pest complex of cassava and the importance of integrated pest management strategies. Because of cassava's long growth cycle, along with other factors, pesticide applications are usually not economically or ecologically sustainable. Cassava entomologists have a long success in biological control of major pests, especially the cassava mealybug, once one of Africa's most devastating pest problems and now brought under control in most regions through a parasitic wasp introduced from cassava's homeland in the Americas. Chapter 12 discusses integrated weed management for cassava, with a focus on Africa. Currently, the vast majority of weed control is done...
manually in Africa. However, the demands for more efficient and effective weed control are creating the need for research on new options, both mechanical and chemical, as well as refined crop management such as intercropping and supporting early-vigor and shading through fertilization, plant spacing and variety selection. In Africa, most weeding is done by women, and new options for better weed management can have broad gender implications for the continent.
Index

temperature 16–17
water availability 17–20
nutritional properties 200–201
overview 49–52
pests and diseases of 60–61
phenotypic correlations 67–69
post-harvest physiological deterioration 204–205
products 205–206
quantitative genetics of 74–77
sensory properties 202
starch properties 203
through stem cuttings 52–54
uses of 198–199

cassava anthracnose disease (CAD)
biology, symptoms and effects on yield 228
control 229
epidemiology 228

cassava bacterial blight (CBB)
biology, symptoms and effects on yield 224
control 225
epidemiology 224

cassava brown leaf spot (CBLS)
biology, symptoms and effects on yield 229
control 229–230
epidemiology 229

cassava fungal diseases
biology, symptoms and effects on yield 218–219
cassava anthracnose disease (CAD) 228
cassava brown leaf spot (CBLS) 229
Fusarium spp 231
Phytophthora spp 230
Rhizoctonia solani 232
super-elongation disease (SED) 227–228
control 229
Fusarium spp 231–232
Phytophthora spp 231
Rhizoctonia solani 232
super-elongation disease (SED) 228
epidemiology 227–228

cassava genetic material
conservation of 43
core collections of 40–41
cryopreservation of 42–43
data collection and management in genebanks 43–44
ex situ conservation of 39
field conservation of 39–40
germplasm distribution 44–45
molecular genetic studies of 45–46
origins and genetic diversity of 38
overview 37–38
in situ conservation of 45
in vitro conservation of 41–42

cassava green mite (CGM) 94

cassava haplotype map 106–107

cassava mosaic begomoviruses (CMBs)
basic biology 214–215
control 217–218
epidemiology 215–217
symptoms and effects on yield 215
cassava mosaic disease (CMD) 93–94

cassava phytoplasmas 225–227
biology, symptoms and effects on yield 225–226
control 227
epidemiology 226–227

CBB. see cassava bacterial blight (CBB)
CBLS. see cassava brown leaf spot (CBLS)
CFSD. see cassava frogskin disease (CFSD)
CG. see cyanogenic glucosides (CG)
CGM. see cassava green mite (CGM)
chemical weed control
post-emergence herbicides 290–292
pre-emergence herbicides 288–290

CMBs. see cassava mosaic begomoviruses (CMBs)
CMD. see cassava mosaic disease (CMD)
conservation, of cassava genetic material 43
cover crop fallow 277–278
cryopreservation 42–43
cyanogenic glucosides (CG) 56–57
ex situ conservation, of cassava genetic material 39

fertilizer, and weed control 282
fibre content, in cassava 203–204
Index

field conservation, of cassava genetic material 39–40
flowering biology, of cassava 54–55
Fusarium spp
 biology, symptoms and effects on yield 231
 control 231–232
 epidemiology 231

GBS. see genotyping-by-sequencing (GBS)

GCA. see general combining ability (GCA)

genebanks 43–44
genetic diversity
 and cassava breeding 92–93, 142–143
 of cassava genetic material 38
genetic engineering, and cassava breeding 96–97
genetic modification, of cassava and biofortification
 iron 125
 vitamin A/carotenoids 125–126
 vitamin B6, 126
 zinc 124–125
model cultivars to farmer-preferred cultivars 118–122
overview 117–118

root production and post-harvest storage 127–130
starch modification 126–127
tools of 122–123
and virus-resistant cassava 123–124

genome sequencing
 and cassava breeding 95–96

genetic-wide association studies (GWAS) 111
genomic resources, and MAS
 amplified fragment length polymorphisms (AFLP) 103
cassava haplotype map 106–107
genotyping-by-sequencing (GBS) 104–105
high-density genetic linkage maps 105–106
microsatellite or simple sequence repeats (SSR) 104
next-generation SNP markers 104–105
random amplification of polymorphic DNA (RAPD) 104
reference genome 106
restriction fragment length polymorphisms (RFLP) 103
single-nucleotide polymorphisms (SNPs) 104

GWAS. see genome-wide association studies (GWAS)

hand tools, and weed control 284

HarvestPlus breeding programme 173–177
 in Nigeria 177–181
herbicides
 post-emergence 290–292
 pre-emergence 288–290
 -resistant cassava 292
heterosis, in cassava breeding 164–165
high-density genetic linkage maps 105–106
higher yield, cassava breeding for
 measuring success 150–152
 overview 139–140
 progress in 155–159
 Thai commercial varieties 152–155
 in Thailand 149–150
homozygosity, in cassava breeding 164–165

in situ conservation, of cassava genetic material 45
intercropping
 and weed control 281–282
in vitro conservation, of cassava genetic material 41–42
iron 125

labour requirements, and weed control 272–273
land clearing, and weed control 276–277
Latin America, viral cassava diseases in 220–223
 biology, symptoms and effects on yield 221–222
 control 222–223
 epidemiology 222
 overview 220–221
leaf and canopy development 8–10

manual hand tools 284
marker-assisted selection (MAS)
 advantages of 102
 and cassava breeding 93–95
 disadvantages of 102–103
 genome-wide association studies (GWAS) 111
 and genomic resources
 amplified fragment length polymorphisms (AFLP) 103
cassava haplotype map 106–107
genotyping-by-sequencing (GBS) 104–105

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
high-density genetic linkage
maps 105–106
microsatellite or simple sequence repeats
(SSR) 104
next-generation SNP markers 104–105
random amplification of polymorphic DNA
(RAPD) 104
reference genome 106
restriction fragment length polymorphisms
(RFLP) 103
single-nucleotide polymorphisms
(SNPs) 104
overview 101–102
QTL mapping 108–110
MAS. see marker-assisted selection (MAS)
mealybugs
non-chemical management of 255–257
in Southeast Asia 247–250
mechanical weed control
manual hand tools 284
motorized tools 284–286
physical weed control options 287–288
tractor-drawn machines 286–287
mites
non-chemical 257–258
in Southeast Asia 250–252
molecular approaches, in cassava
breeding 91–92
and genetic diversity 92–93
and genetic engineering 96–97
and genome sequencing 95–96
and marker-assisted selection (MAS) 93–95
molecular genetic studies 45–46
motorized tools, for weed control 284–286
near-infrared spectroscopy (NIRS) 187
next-generation SNP markers 104–105
Nigeria, HarvestPlus breeding
programme 177–181
NIRS. see near-infrared spectroscopy (NIRS)
non-chemical management
of mealybugs 255–257
mites 257–258
whiteflies 258–259
nutrient sources, and weed control 282
nutritional characteristics, in root 58–60
nutritional properties 200–201
peel characteristics, in root 58–60
photosynthesis 10–11
physical weed control options 287–288
Phytophthora spp
biology, symptoms and effects on yield 230
control 231
epidemiology 230–231
plant density, and weed control 280–281
planting patterns, and weed control 280–281
post-emergence herbicides 290–292
post-harvest physiological deterioration 23–27,
204–205
post-harvest storage, and genetic
modification 127–130
pre-emergence herbicides 288–290
random amplification of polymorphic DNA
(RAPD) 104
RAPD. see random amplification of polymorphic
DNA (RAPD)
reference genome 106
restriction fragment length polymorphisms
(RFLP) 103
RFLP. see restriction fragment length
polymorphisms (RFLP)
Rhizoctonia solani
biology, symptoms and effects on yield 232
control 232
epidemiology 232
root development, and cassava 11–12
root production, and genetic
modification 127–130
root quality traits 57–58
salinity, and cassava 20–21
SCA. see specific combining ability (SCA)
secondary pests management 253–254
SED. see super-elongation disease (SED)
seed germination 62–64
seedling plant nurseries 62–64
sensory properties 202
shelf life of stored roots 57
simple sequence repeats (SSR) 104
SNPs. see single-nucleotide polymorphisms (SNPs) 104
starch characteristics, in root 58–60
starch modification 126–127
starch properties 203

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
stem cuttings, cassava through 52–54
super-elongation disease (SED)
 biology, symptoms and effects on yield 227–228
 control 228
 epidemiology 228
temperature, and cassava 16–17
 tillage regimes 278–280
 tractor-drawn machines 286–287
uniform yield trials 65–66
varietal choice, and weed control 282–283
viral cassava diseases
 in Africa 214–220
 biology, symptoms and effects on yield in Asia 223
 cassava bacterial blight (CBB) 224
 cassava brown streak
 ipomoviruses 218–219
 cassava frogskin disease (CFSD) 225–226
 cassava mosaic begomoviruses (CMBs) 214–215
 cassava phytoplasmas 225–226
 in Latin America 221–222
control
 in Asia 223–224
 cassava bacterial blight (CBB) 225
 cassava frogskin disease (CFSD) 227
 cassava mosaic begomoviruses (CMBs) 217–218
 cassava phytoplasmas 227
 in Latin America 222–223
epidemiology
 in Asia 223
 cassava bacterial blight (CBB) 224
 cassava frogskin disease (CFSD) 226–227
 cassava mosaic begomoviruses (CMBs) 215–217
 cassava phytoplasmas 226–227
 in Latin America 222
 overview 213–214
virus-resistant cassava 123–124
vitamin A/carotenoids 125–126
vitamin B6, 126
water availability, and cassava 17–20
weed control, in cassava
 chemical
 post-emergence herbicides 290–292
 pre-emergence herbicides 288–290
 cover crop fallow 277–278
 critical phases of 273–276
 fertilizer application and nutrient sources 282
 herbicide-resistant cassava 292
 intercropping 281–282
 labour requirements 272–273
 land clearing and biomass management 276–277
 mechanical
 manual hand tools 284
 motorized tools 284–286
 physical weed control options 287–288
 tractor-drawn machines 286–287
 overview 271–272
 plant density and planting patterns 280–281
 tillage regimes 278–280
 varietal choice 282–283
 and yield losses 273
whiteflies
 non-chemical 258–259
 in Southeast Asia 253
zinc 124–125