Achieving sustainable cultivation of cocoa

Edited by Professor Pathmanathan Umaharan
Cocoa Research Centre - The University of the West Indies, Trinidad and Tobago
Part 1 Genetic resources and breeding

1. **Taxonomy and classification of cacao**

 Ranjana Bhattacharjee, International Institute of Tropical Agriculture (IITA), Nigeria; and Malachy Akoroda, Cocoa Research Institute of Nigeria, Nigeria

 1. Introduction 3
 2. Taxonomy and classification 4
 3. The three groups of cocoa varieties 11
 4. Conclusions 14
 5. Where to look for further information 14
 6. References 15

2. **Conserving and exploiting cocoa genetic resources: the key challenges**

 Brigitte Laliberté, Bioversity International, Italy; Michelle End, INGENIC (The International Group for Genetic Improvement of Cocoa), UK; Nicholas Cryer, Mondelez International, UK; Andrew Daymond, University of Reading, UK; Jan Engels, Bioversity International, Italy; Albertus Bernardus Eskes, formerly CIRAD and Bioversity International, France; Martin Gilmour, MARS Global Chocolate, UK; Philippe Lachenaud, Centre de coopération internationale en recherche agronomique pour le développement, France; Wilbert Phillips-Mora, Center for Tropical Agriculture Research and Education, Costa Rica; Chris Turnbull, Cocoa Research Association Ltd., UK; Pathmanathan Umaharan, Cocoa Research Centre, The University of the West Indies, Trinidad and Tobago; Dapeng Zhang, USDA-ARS, USA; and Stephan Weise, Bioversity International, Italy

 1. Introduction 20
 2. How challenges are being addressed: an overview 22
 3. Addressing challenges: securing existing ex situ cacao genetic resources 23
 4. Addressing challenges: developing a global strategic cacao collection 26
 5. Addressing challenges: collecting and gap filling in ex situ collections to reflect genetic diversity 27
 6. Addressing challenges: ensuring the in situ and on-farm conservation of important diversity 30
 7. Addressing challenges: strengthening the distribution and safe movement of germplasm 31
 8. Addressing challenges: strengthening the use of cacao genetic resources 33
 9. Addressing challenges: improving documentation and sharing of information 34
 10. Strengthening networking and partnerships for global collaboration 35
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 Research to strengthen the conservation and use of cacao genetic diversity</td>
<td>36</td>
</tr>
<tr>
<td>12 Acknowledgements</td>
<td>38</td>
</tr>
<tr>
<td>13 Where to look for further information</td>
<td>38</td>
</tr>
<tr>
<td>14 References</td>
<td>41</td>
</tr>
<tr>
<td>3 The role of gene banks in preserving the genetic diversity of cacao</td>
<td>47</td>
</tr>
<tr>
<td>Lambert A. Motilal, The University of the West Indies, Trinidad and Tobago</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>47</td>
</tr>
<tr>
<td>2 History of cacao collections</td>
<td>48</td>
</tr>
<tr>
<td>3 Gene bank concepts</td>
<td>48</td>
</tr>
<tr>
<td>4 Crux of conservation</td>
<td>50</td>
</tr>
<tr>
<td>5 Gene pool coverage</td>
<td>51</td>
</tr>
<tr>
<td>6 Techniques for conserving cacao germplasm</td>
<td>54</td>
</tr>
<tr>
<td>7 In situ and ex situ gene banks</td>
<td>55</td>
</tr>
<tr>
<td>8 Status of cacao field gene banks</td>
<td>60</td>
</tr>
<tr>
<td>9 Assessing genetic diversity</td>
<td>65</td>
</tr>
<tr>
<td>10 Curating field gene banks</td>
<td>68</td>
</tr>
<tr>
<td>11 Genetic diversity in cacao collections</td>
<td>70</td>
</tr>
<tr>
<td>12 Core and minicore</td>
<td>74</td>
</tr>
<tr>
<td>13 Future trends and conclusion</td>
<td>77</td>
</tr>
<tr>
<td>14 Where to look for further information</td>
<td>80</td>
</tr>
<tr>
<td>15 Acknowledgements</td>
<td>82</td>
</tr>
<tr>
<td>16 References</td>
<td>82</td>
</tr>
<tr>
<td>4 Safe handling and movement of cocoa germplasm for breeding</td>
<td>101</td>
</tr>
<tr>
<td>Andrew Daymond, University of Reading, UK</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>101</td>
</tr>
<tr>
<td>2 Overview of risks associated with plant movement</td>
<td>102</td>
</tr>
<tr>
<td>3 Levels of risk</td>
<td>102</td>
</tr>
<tr>
<td>4 Risk management governance and procedures</td>
<td>105</td>
</tr>
<tr>
<td>5 Case study: International Cocoa Quarantine Centre, Reading</td>
<td>106</td>
</tr>
<tr>
<td>6 Concluding remarks</td>
<td>108</td>
</tr>
<tr>
<td>7 Where to look for further information</td>
<td>109</td>
</tr>
<tr>
<td>8 References</td>
<td>109</td>
</tr>
<tr>
<td>5 Developments in cacao breeding programmes in Africa and the Americas</td>
<td>111</td>
</tr>
<tr>
<td>Dário Ahnert, Universidade Estadual de Santa Cruz, Brazil; and</td>
<td></td>
</tr>
<tr>
<td>Albertus Bernardus Eskes, formerly CIRAD and Bioversity International, France</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>111</td>
</tr>
<tr>
<td>2 Types of commercial cacao cultivars</td>
<td>114</td>
</tr>
<tr>
<td>3 Breeding objectives</td>
<td>115</td>
</tr>
<tr>
<td>4 Heterosis and heterotic groups in cacao</td>
<td>116</td>
</tr>
<tr>
<td>5 ‘Traditional’ and new cacao breeding methods</td>
<td>117</td>
</tr>
<tr>
<td>6 Cacao breeding programmes and outputs</td>
<td>118</td>
</tr>
<tr>
<td>7 Selection of cacao for organoleptic quality</td>
<td>143</td>
</tr>
<tr>
<td>8 Future trends and conclusion</td>
<td>149</td>
</tr>
<tr>
<td>9 References</td>
<td>150</td>
</tr>
</tbody>
</table>
Part 2 Cultivation techniques

6 Cocoa plant propagation techniques to supply farmers with improved planting materials 157
 Michelle End, INGENIC (The International Group for Genetic Improvement of Cocoa), UK; Brigitte Laliberté, Bioversity International, Italy; Rob Lockwood, Consultant, UK; Augusto Roberto Sena Gomes, Consultant, Brazil; George Andrade Sodré, CEPLAC/CEPEC, Brazil; and Mark Guiltinan and Siela Maximova, The Pennsylvania State University, USA
 1 Introduction 157
 2 Propagation by seeds 159
 3 Conventional vegetative propagation 161
 4 Cross-cutting issues 165
 5 Phytosanitary considerations 168
 6 Predicting demand for planting materials 168
 7 Considerations on estimating costs 169
 8 Future trends and conclusion 170
 9 Acknowledgements 171
 10 References 171

7 The potential of somatic embryogenesis for commercial-scale propagation of elite cacao varieties 173
 Siela N. Maximova and Mark J. Guiltinan, The Pennsylvania State University, USA
 1 Introduction 173
 2 The somatic embryogenesis method for cacao 174
 3 Field evaluation of somatic embryo trees 176
 4 Applying cacao somatic embryogenesis for long-term storage of germplasm 180
 5 Using somatic embryo plants for propagation by orthotropic rooted cuttings 181
 6 Field evaluation of orthotropic rooted cuttings 182
 7 Integrated system for vegetative propagation of cacao 185
 8 Technology transfer 185
 9 Advantages and constraints of tissue culture 190
 10 Future trends and conclusion 191
 11 Acknowledgements 192
 12 References 192

8 Good agronomic practices in cocoa cultivation: rehabilitating cocoa farms 197
 Richard Asare, International Institute of Tropical Agriculture (IITA), Ghana; Victor Afari-Sefa, World Vegetable Center, Benin; Sander Muilerman, Wageningen University, The Netherlands; and Gilbert J. Anim-Kwapong, Cocoa Research Institute of Ghana, Ghana
 1 Introduction 197
 2 Good pre-planting practices in cocoa cultivation 199
 3 Good post-planting practices in cocoa cultivation 203
4 Cocoa farm rehabilitation 210
5 Methods for cocoa farm rehabilitation 211
6 Case study: farmers’ preferred rehabilitation methods in Ghana 214
7 Conclusion and future trends 219
8 Where to look for further information 220
9 References 220

9 Improving soil and nutrient management for cacao cultivation 225
Didier Snoeck and Bernard Dubos, CIRAD, UR Systèmes de pérennes, France
1 Introduction 225
2 Case study: the need for one formula per plot 226
3 Case study: homogeneity in diversity 230
4 Soil diagnosis in practice 231
5 Future trends and conclusion 231
6 Where to look for further information 233
7 References 234

Part 3 Diseases and pests

10 Cocoa diseases: witches’ broom 239
Jorge Teodoro De Souza, Federal University of Lavras, Brazil; Fernando Pereira Monteiro, Federal University of Lavras and UNIVAG Centro Universitário, Brazil; Maria Alves Ferreira, Federal University of Lavras, Brazil; and Karina Peres Gramacho and Edna Dora Martins Newman Luz, Comissão Executiva do Plano da Lavoura Cacaueira (CEPLAC), Brazil
1 Introduction 239
2 Geographical distribution and historical perspective 240
3 Pathogen taxonomy, biology and disease cycle 242
4 Diversity, host range and symptomatology 244
5 Omics of M. perniciosa 249
6 Fungal pathogenicity and disease physiology 250
7 Plant development and disease epidemiology 251
8 Disease control: phytosanitation, and chemical and biological control 253
9 Disease control: genetic resistance and integrated management 256
10 Concluding remarks and outlook 258
11 Where to look for further information 259
12 Acknowledgements 260
13 References 260

11 Frosty pod rot, caused by Moniliophthora roreri 271
Ulrike Krauss, Palm Integrated Services and Solutions (PISS) Ltd., Saint Lucia
1 Introduction: the pathogen 271
2 Spread, invasion risk and impact of Moniliophthora roreri 272
3 Management options: management cascade for invasive alien species 274
4 Management options: impact mitigation 279
5 Conclusions 282
6 Where to look for further information 283
7 References 283
Contents

12 Cacao diseases: vascular-streak dieback
David I. Guest, University of Sydney, Australia; and Philip J. Keane, LaTrobe University, Australia

1 Introduction 287
2 VSD symptoms and pathogen biology 289
3 VSD epidemiology 293
4 VSD management 294
5 Case study: the importance of field studies 296
6 Conclusion 298
7 Future trends 298
8 Where to look for further information 299
9 References 300

13 Insect pests affecting cacao
Leïla Bagny Beilhe, Régis Babin and Martijn ten Hoopen, CIRAD, France

1 Introduction 303
2 Cacao pests in the Americas and the Caribbean 304
3 Cacao pests in West Africa 308
4 Cacao pests in Asia 312
5 Advances in control of cacao pests: breeding for pest resistance 315
6 Advances in control of cacao pests: agro-ecological control of pests in cacao-based agroforestry systems 316
7 Conclusion 319
8 Future trends 320
9 Where to look for further information 320
10 References 320

14 Nematode pests of cocoa
Samuel Orisajo, Cocoa Research Institute of Nigeria, Nigeria

1 Introduction 327
2 Hidden nature of plant-parasitic nematodes 328
3 Plant-parasitic nematodes associated with cacao 328
4 Disease complexes 332
5 Management of plant-parasitic nematodes of cacao 333
6 Future trends and conclusion 337
7 Where to look for further information 338
8 References 339

15 Advances in pest- and disease-resistant cocoa varieties
Christian Cilas and Olivier Sounigo, CIRAD, France; Bruno Efombagn and Salomon Nyassé, Institute of Agricultural Research for Development (IRAD), Cameroon; Mathias Tahi, CNRA, Côte d’Ivoire; and Sarah M. Bharath, Meridian Cacao, USA

1 Introduction 345
2 History of diseases and pests of cocoa 346
3 Assessment of resistance 348
4 Breeding for Phytophthora disease resistance 348
5 Conclusion 361
6 References 362
Part 4 Safety and sensory quality

16 Improving best practice with regard to pesticide use in cocoa 367
M. A. Rutherford, J. Crozier and J. Flood, CABI, UK; and S. Sastroutomo, CABI-SEA, Malaysia
 1 Introduction 367
 2 Pesticide use in cocoa-producing countries 368
 3 Improving pesticide regulation 369
 4 Developing best practice for pesticide use 370
 5 Case studies: establishing baselines, raising awareness and promoting best practice 372
 6 Conclusion 374
 7 Future trends 375
 8 Where to look for further information 376
 9 References 378

17 Mycotoxins in cocoa: causes, detection and control 381
Mary A. Egbuta, Southern Cross University, Australia
 1 Introduction 381
 2 Mycotoxins contaminating cocoa 382
 3 Detection of mycotoxins in cocoa 386
 4 Controlling mycotoxins in cocoa production 388
 5 Conclusion 390
 6 Where to look for further information 390
 7 References 390

18 Analysing sensory and processing quality of cocoa 395
Darin A. Sukha and Naailah A. Ali, The University of the West Indies, Trinidad and Tobago
 1 Introduction 395
 2 The evolution of sensory evaluation as a science 401
 3 Cocoa quality and the link to flavour 402
 4 Analysing sensory and processing quality of cocoa 409
 5 Flavour assessment of cocoa 420
 6 Conclusion 431
 7 Future trends 432
 8 Where to look for further information 435
 9 References 436

Part 5 Sustainability

19 Climate change and cocoa cultivation 445
Christian Bunn, Fabio Castro and Mark Lundy, International Center for Tropical Agriculture (CIAT), Colombia; and Peter Läderach, International Center for Tropical Agriculture (CIAT), Vietnam
 1 Introduction 445
 2 Case study on global climate projections at cocoa-producing regions: overview, methods and data 448
3 Case study on global climate projections at cocoa-producing regions: results and discussion 450
4 Case study on regionally differentiated climate change impacts in Ivory Coast: overview and methodology 456
5 Case study on regionally differentiated climate change impacts in Ivory Coast: results and discussion 457
6 Conclusions 463
7 Acknowledgements 465
8 References 465

20 Analysis and design of the shade canopy of cocoa-based agroforestry systems 469
Eduardo Somarriba, CATIE, Costa Rica; Luis Orozco-Aguilar, University of Melbourne, Australia; Rolando Cerda, CATIE, Costa Rica; and Arlene López-Sampson, James Cook University, Australia
1 Introduction 469
2 Cocoa shade typologies 470
3 A four-step guide for analysis of the shade canopy 477
4 Designing improved shade canopies 483
5 Future needs: a call for action 489
6 Where to look for further information 491
7 Acknowledgements 491
8 References 494

21 Organic cocoa cultivation 501
Amanda Berlan, De Montfort University, UK
1 Introduction 501
2 Production trends in organic cocoa 502
3 Organic certification 503
4 Pricing issues in organic cocoa production 505
5 Organic yields and cultivation methods 507
6 Pest and disease management 509
7 Conclusions and future trends 509
8 Where to look for further information 511
9 References 511

22 Cocoa sustainability initiatives: the impacts of cocoa sustainability initiatives in West Africa 515
Verina Ingram, Yuca Waarts and Fedes van Rijn, Wageningen University, The Netherlands
1 Introduction 515
2 Historical context for the rise of voluntary sustainability standards 516
3 Sustainability initiatives 517
4 Case study: the impacts of cocoa sustainability initiatives in West Africa 523
5 Future trends 532
6 Conclusion 534
7 Where to look for further information 536
8 References 537
23 Supporting smallholders in achieving more sustainable cocoa cultivation: the case of West Africa

Paul Macek, World Cocoa Foundation, USA; Upoma Husain and Krystal Werner, Georgetown University, USA

1 Introduction 541
2 Changes in cocoa production 543
3 Agronomic and environmental challenges 543
4 Social and economic challenges 545
5 Initiatives to support smallholders 547
6 Conclusion 551
7 Future trends 553
8 Where to look for further information 554
9 References 555

Index 559
Introduction

There is a growing global demand for cocoa. However, cultivation is dependent on ageing trees with low yields and increasing vulnerability to disease. There is also growing concern about the environmental impact of cultivation in such areas as soil health and biodiversity. There is therefore an urgent need to make cocoa cultivation more efficient and sustainable to ensure a successful future. These challenges are addressed in Achieving sustainable cultivation of cocoa.

Part 1 reviews genetic resources and developments in breeding. Part 2 discusses optimising cultivation techniques to make the most of new varieties. Part 3 summaries the latest research on understanding and combatting the major fungal and viral diseases affecting cocoa. Part 4 covers safety and quality issues whilst the final part of the book looks at ways of improving sustainability, including the role of agroforestry, organic cultivation and ways of supporting smallholders.

Part 1 Genetic resources and breeding

The first part of the volume reviews genetic resources and developments in breeding. Chapter 1 discusses the origins of cacao as well as the taxonomy and classification of the varieties of Theobroma. The chapter then reviews the distinctive characteristics of the three main varieties of Theobroma: Criollo, Forastero and Trinitario.

Moving on from classification and taxonomy to genetics, the subject of Chapter 2 is the key challenges of conserving and exploiting cocoa genetic resources. The future of the world cocoa economy depends on the availability of genetic diversity and the sustainable use of this broad genetic base to breed improved varieties. Decreasing cacao genetic diversity (whether conserved in-situ, on farms or in ex-situ collections) is a serious problem which needs to be urgently addressed. A Global Strategy was published in 2012 to optimize the conservation and maximize the use of cacao genetic resources as the foundation of a sustainable cocoa economy. The chapter describes the key challenges in delivering this strategy, how they are being addressed and the priorities for further research and actions. These include securing existing ex-situ cacao genetic resources, developing a global strategic cacao collection, and collecting and gap filling in ex-situ collections to reflect genetic diversity. The chapter also looks at the importance of ensuring the in-situ and on-farm conservation of important diversity, strengthening the distribution and safe movement of germplasm, improving the use of cacao genetic resources, and improving documentation and sharing of information. Some of these issues are discussed in more detail in the following three chapters.

Building on the previous chapter, Chapter 3 focuses specifically on the role of gene banks in preserving the genetic diversity of cacao. The centre of diversity of cacao in South America is characterized by genetic erosion from deforestation, but fortunately a wealth of genetic diversity exists in global cacao collections. The chapter discusses the role and types of gene banks to capture genetic diversity. The chapter deals with the distinction between cacao gene banks and other gene banks and examines how this affects the management and estimation of genetic diversity. The chapter advocates a SNP panel for fingerprinting, and addresses molecular marker-assisted management with the objective of comparing global collections and formulating a core collection.
Complementing the themes of the preceding two chapters, Chapter 4 concentrates on the safe handling and movement of cocoa germplasm for breeding. Movement of cocoa germplasm is often required in breeding programmes to increase the genetic diversity pool or for the testing of clones/progeny in the field. However, such movement risks the spread of pests and diseases, many of which are confined to particular geographical locations. It is therefore critical that movement of germplasm is conducted within a quarantine framework. The chapter reviews the risks associated with the movement of cocoa germplasm. It considers international governance of plant movement before discussing the work of the International Cocoa Quarantine Centre at the University of Reading as a hub for international movement of cocoa germplasm.

The final chapter of the section, Chapter 5, covers developments in cacao breeding programmes in Africa and the Americas. The chapter explores the main developments obtained as a result of cacao breeding programmes in Trinidad, Brazil, Ecuador and Costa Rica in the Americas and in Ghana, Côte d’Ivoire, Nigeria and Cameroon in Africa. The chapter describes the different types of commercial cacao cultivars and the breeding objectives of the programmes. It examines heterosis and heterotic groups in cacao and explores the contrast between ‘traditional’ and new cacao breeding methods. Finally, the chapter examines the issue of breeding cacao for organoleptic quality.

Part 2 Cultivation techniques

The second part of the volume discusses optimising cultivation techniques to make the most of new varieties. The theme of Chapter 6 is cocoa plant propagation techniques. The availability of high performance planting materials to cocoa farmers is an important part of a package of measures to improve the productivity of cocoa farms and thus the sustainability of the cocoa economy. The chapter reviews the methods, advantages and challenges of techniques of mass propagation, with a focus on seed and conventional vegetative propagation (tissue culture techniques are covered in the following chapter). The chapter discusses key challenges in supplying farmers with improved planting materials. These include availability of source materials, personnel and infrastructure requirements, phytosanitary considerations, costs and levels of demand.

Continuing the theme of propagation, Chapter 7 examines the potential of somatic embryogenesis (SE) for commercial-scale propagation of elite cacao varieties. Plant tissue culture can be used to speed up the development and deployment of genetically-improved genotypes. Research conducted by multiple groups for over 25 years has led to the development of protocols for efficient somatic embryogenesis of cacao. The chapter provides a synthesis of this research on cacao tissue culture methods and field-test evaluations of SE-derived plants. The chapter also reviews current activities by cacao-producing countries in large-scale propagation of important genotypes, with case studies from Africa, Asia and the Americas.

Moving on to agronomic practices, Chapter 8 focuses on the achievement of good agronomic practices in cocoa cultivation and the rehabilitation of cocoa farms. Adoption of good agronomic practices is crucial for the sustainability of cocoa cultivation and this chapter describes good practice at both the pre- and post-planting stages. The chapter focuses on the challenge of rehabilitating cocoa farms, and includes a detailed case study on rehabilitation of farms in Ghana.
The final chapter of the section, Chapter 9, looks specially at the challenge of improving soil and nutrient management in cacao cultivation. The chapter summarises key research on the role and availability of key nutrients affecting cacao growth and health such as phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg). The variability of yield responses to nutrients has highlighted the ways these nutrients interact both with each other and other factors such as soil, climate, and topography. The chapter outlines a targeted approach to nutrition management based on correcting the soil so that the cacao can find the nutrients it needs in optimal quantities. Through two detailed case studies, the chapter discusses ways of determining an appropriate fertiliser formula for individual plots using physical-chemical analyses of soil samples.

Part 3 Diseases and pests

The third part of the volume summaries the latest research on understanding and combatting the major fungal and viral diseases affecting cocoa. The subject of Chapter 10 is the cocoa disease witches' broom. Caused by the hemibiotrophic basidiomycete Moniliophthora perniciosa, witches' broom is one of the most serious cocoa diseases. The pathogen co-evolved with cocoa in the Amazon River basin and is currently restricted to South and Central America but represents a serious risk to other cocoa-producing regions of the world are at risk. In the last few years new technologies such as bioinformatics and the establishment of a robust model of host-plant interaction have enabled significant advances in our knowledge of witches' broom. The chapter reviews the latest research on disease physiology, genomics and transcriptomics, diversity, and management practices to control the disease.

Moving on to another major cocoa disease, Chapter 11 focuses on frosty pod rot, caused by the fungus Moniliophthora roreri. The chapter summarises what we know about the pathogen before considering the spread, invasion risk and impact of Moniliophthora roreri on cocoa. The chapter then examines management options for dealing with the disease, including ways of preventing and minimizing the impact of invasive species which spread disease.

Continuing the theme of cocoa diseases, Chapter 12 looks at vascular-streak dieback (VSD), caused by a previously undescribed tullasneloid basidiomycete, Oncobasidium theobromae (now Ceratobasidium theobromae). The chapter describes the symptoms of VSD and the biology of the pathogen, the disease's epidemiology and methods of management, as well as including a detailed case study showing the importance of field studies in identifying, tracking and preventing the disease.

Moving away from the subject of diseases, Chapter 13 considers insect pests affecting cacao. Pests have a major impact on cacao production, both from direct damage to crops and as vectors of disease. Estimates of losses due to pest and disease range from 30–40%. The use of pesticides for pest control can have numerous negative impacts on the environment and human health. An integrated and holistic approach is therefore required to enhance and sustain crop production. The chapter describes the main insect pests attacking cacao in each of the three principal production regions: the Americas, Africa and Asia, and outlines control measures adopted for each of the main insect pests. The chapter also includes detailed case studies that showcase how research can help to develop more sustainable and environmentally-friendly control measures.
The focus of Chapter 14 is on nematode pests of cocoa. Plant-parasitic nematodes cause significant cocoa yield losses, sudden death of trees and retardation of seedling growth in nurseries. The chapter explores the challenges in identifying damage caused by nematodes. It then describes the main nematode pests associated with cocoa and typical damage symptoms. The chapter also addresses available control options in successful nematode management.

The final chapter of the section, Chapter 15, turns to advances in pest and disease-resistant cocoa varieties. Cocoa production is increasingly subject to parasitic pressures. Currently, Cacao Swollen Shoot Virus (CSSV) threatens the production of the largest production basin in West Africa, in Côte d’Ivoire, Ghana, Togo and Nigeria. In Asia, Cocoa Pod Borer and Vascular Streak Dieback (VSD) hamper the extension of cultivation areas and reduce production. In South America, where cocoa originated, Moniliasis and Witches Broom have significantly limited production. Other pests, like mirids or black pod disease due to several species of Phytophthora, also affect cacao production. The chapter describes the genetic improvement of resistance, focusing on the widely prevalent black pod disease. The chapter discusses the use of new tools coming from molecular biology, including marker assisted selection (MAS) and genomic selection (GS), and the ways they are being used in breeding for Phytophthora disease resistance.

Part 4 Safety and sensory quality

The fourth part of the volume covers safety and quality issues. Echoing themes in Chapter 13, the subject of Chapter 16 is improving best practice with regard to pesticide use in cocoa. Consumer concerns about food safety have been translated into regulations governing minimum pesticide residues in cocoa. Consequently, development and implementation of best practice for pesticide use is critical, but presents major challenges. The chapter includes detailed case studies on establishing baselines, effective monitoring promoting awareness and developing a holistic approach.

Moving from the danger of pesticide traces to toxins left behind by fungi, Chapter 17 considers the causes, detection and control of mycotoxins in cocoa. Mycotoxins are produced as secondary metabolites by various species of filamentous fungi, and may affect many agricultural crops and products. The potential health risks associated with these chemical compounds mean that significant attention has been given to their detection and control. However, most study has so far been dedicated to mycotoxin contamination of agricultural crops such as cereals, with less attention given to cocoa. The chapter presents an overview of the current understanding of mycotoxin contamination of cocoa. The main groups of mycotoxins are discussed, followed by a summary of three methods of detection. The chapter then explains the various methods of controlling mycotoxins in cocoa and discusses attempts to decontaminate infected crops. The chapter concludes that there is a need for more research into the different mycotoxins affecting cocoa and methods of reducing their presence and impact.

The final chapter of the section, Chapter 18, focuses on analysing sensory and processing quality of cocoa. Flavour is a critical aspect of cocoa quality, determining to a large extent the value and end use of traded cocoa beans. The chapter provides a road map towards bridging the knowledge gap that currently exists between industry and cocoa producers by defining approaches for analysing the sensory and processing quality of cocoa.
chapter describes the development of more practical and harmonized quality criteria for cocoa farmers around the world. It also explores research on the genetic expression of flavor, developments in sensory evaluation and the use of both physical and sensory evaluation as a tool to drive improvements in the cocoa value chain.

Part 5 Sustainability

The final part of the book looks at ways of improving the environmental sustainability of cocoa production. The subject of Chapter 19 is the relationship between climate change and cocoa cultivation. The chapter provides a number of case studies which focus on global climate projections for cocoa producing regions, including assessment of regionally-differentiated climate change impacts in Côte d’Ivoire.

Keeping with the theme of the interaction between cocoa production and the environment, Chapter 20 considers critical issues in applying agroforestry science to cocoa cultivation programmes. Cocoa-based agroforestry systems are a conspicuous element of agricultural landscapes worldwide. The chapter concentrates on the analysis and design of the shade canopy in cocoa-based agroforestry systems. Shade canopy analysis and design is a key component of crop husbandry, and requires a good understanding of the interactions, synergies and trade-offs between shade, yield and environmental services. The chapter provides a robust approach to analyze and design an optimal shade canopy that provides a diverse, resilient system which balances differing requirements such as carbon storage and cocoa yields.

Chapter 21 provides an overview of methods for organic cocoa cultivation. As a crop, cocoa can be grown successfully using organic methods, and demand for organic chocolate has risen in line with the overall growth in the organic market. The chapter offers a summary of current issues in the production of organic cocoa. The chapter also considers issues surrounding the certification and pricing of organic cocoa. The chapter summarises a variety of different cultivation methods, such as the differences between agroforestry-based cultivation and full-sun grown cocoa cultivation. Finally, the chapter considers different techniques for controlling pests and diseases without the use of chemical inputs.

Complementing the preceding chapters, Chapter 22 considers cocoa sustainability initiatives. Largely implemented by cocoa farmers and groups, sustainability initiatives are often supported by traders, government agencies, certification organisations and other not-for-profit organisations. The chapter examines the different sustainability initiatives and their social, economic and environmental impacts on cocoa farmers, cocoa farms and cocoa ecosystems. The chapter provides detailed case studies of impacts in Ghana and Côte d’Ivoire.

The volume’s final chapter, Chapter 23, looks at supporting smallholders in achieving more sustainable cocoa cultivation. The chapter examines the recent evolution of sustainability in the cocoa and chocolate value chain. Using the case of West Africa, especially the countries of Côte d’Ivoire and Ghana, the chapter examines the key social, economic, and environmental challenges facing smallholders. The chapter provides an overview of initiatives undertaken by public and private actors to address these problems. The chapter focuses on collaborative efforts that bring together various private sector actors in the value chain. The chapter concludes by considering three important developments in the areas of voluntary certification and standards; the discussion of a living income; and the question of price and future supply and demand for cocoa.
Index

Alternative oxidase chain (AOX) 244
Aromyx EssenceChip™ 435
Artificial neural network (ANN) 434
Asia, cocoa propagation in
Centre for Cocoa Biotechnology Research, Malaysian Cocoa Board 187
‘Frontiers in Science and Technology for Cacao Quality, Productivity and Sustainability’ (symposium) 188
Indonesian Coffee and Cocoa Research Institute (ICCRI) 187

Basidiospores 251–252
Brazil, cacao breeding programme in
hybrid selection 123
mass and clone selection 121
population breeding and clone selection 125
Breeding programmes of cocoa
cloning programmes and outputs
Brazil 121
Cameroon 142
Ecuador 126
Ghana 130
Ivory Coast 137
Nigeria 135
Trinidad 118
see also individual breeding programmes
commercial cultivar types 114–115
development in Africa 130–143
development in Americas 118–129
heterosis and heterotic groups 116
ICS (Imperial College Selection), Brazil 111
ojectives 115
organoleptic quality selection
by fine chocolate sensory trait 144
by flavour and bulk 143
by native Chuncho aromatic pulp and bean survey in Peru 146
by new pulp and chocolate sensory traits 145
by pulp sensory trait 144
selection and multiplication of aromatic cacao varieties 148–149
sensory studies and diversity 147–148
‘traditional’ and new cacao breeding methods 117

Cacahuatl (Aztec). see Cacao/cocoa
Cacao/cocoa 3–14
distribution 3
subspecies and domesticated 4
diversity and varieties
Canumão River 7
Cheesman 6
domestication effects 8
scientific classification/taxonomic tree 7
‘Food of Gods’ 3
proposed new classification 13
taxonomy and classification 4
Bernoulli 5
Hart 6
Morris 5–6
varieties
Criollo 11
Forastero 11
Nacional 12
Trinitario and similar hybrids 12
Cacaoyer (French). see Cacao/cocoa
CacaoNet. see Global Network for Cacao Genetic Resources (CacaoNet)
Codex Alimentarius Commission (CAC) recommendations to control
ymycotoxins 389
Comissao Executiva do Plano da Lavoura Cacaueira (CEPLAC) 240
Commission on Phytosanitary Measures 32
Costa Rica, cacao breeding programme in
hybrid selection 128
mass and clone selection 128
population breeding and clone selection 129

Early detection and rapid response (EDRR) 277
Ecuador, cacao breeding programme in
hybrid selection 127
mass and clone selection 126
population breeding and clone selection 127
EDRR. see Early detection and rapid response (EDRR)
Enzyme-linked immunoassay (ELISA) 387
Estacao de Recursos Geneticos Jose Haroldo (ERJOH) 256
‘Estacion Experimental Tropical’ (EET) 111
Ex situ cacao conservation 20

Farming
assessment results 216
ANOVA 216
cost–benefit analysis 218
data analysis 214
study area and sampling procedure 214

‘Food of Gods.’ see Cacao/cocoa
Frosty pod rot. see Witches’ broom disease of cacao

Gas Chromatographic Mass Spectrometry (GC MS) 433
Gene bank and genetic diversity preservation 47
assessing genetic diversity 65
concept 48
core and minicore 74
coverage 51
crux of conservation 50
curating 68
DNA banks 57
ex situ 55
genetic diversity 70
history 48
in situ 55
in vitro 57
seed bank 57
techniques for conserving 54

Genetic resources of cacao
addressing challenges to
Annex 6 of 2012 Global Strategy 26
CacaoNet. see Global Network for Cacao Genetic Resources (CacaoNet)
collecting and gap filling ex situ collections
developing a global strategic cacao collection 26
ensuring in situ and on-farm conservation 30
Global Strategic Cacao Collection (GSCC) 22
improving documentation and sharing of information 34
International Cocoa Quarantine Centre at the University of Reading (ICQC,R) 26
overview 22
role of non-governmental organizations (NGOs) 29
securing existing genetic resources 23
simple sequence repeat (SSR) 26
strengthening distribution and safe movement of germplasm 31

strengthening use of genetic resources 33
conservation and exploitation 20
in clonal varieties 21
by ex situ 20
by in situ 20
in local varieties (landraces) 21
in Upper Amazon region 21
partnerships and global collaboration 35
research and use of genetic diversity 36
strengthening networking 35

Ghana, cacao breeding programme in hybrid selection 132
avoid self-incompatible clones 133
parents 134
mass- and open-pollinated selection 131
population breeding 134
Ghana Cocoa Board (Cocobod) 198
Global Environment Facility (GEF) 275
Global Network for Cacao Genetic Resources (CacaoNet) 22
Global Strategic Cacao Collection (GSCC) 22
Global Strategy for the Conservation and Use of Cacao Genetic Resources 22

Good agronomic practices
case study in Ghana
farmer’s preference 214
methodological approach. see Methodological approach in cocoa farming
in cocoa cultivation 197–219
farm rehabilitation
methods. see Cocoa farm rehabilitation, methods
need for 210
stages 210
post-planting practices. see Post-planting practices in cocoa
pre-planting practices. see Pre-planting practices in cocoa
GSCC. see Global Strategic Cacao Collection (GSCC)

High-performance liquid chromatography (HPLC) 388

IAS. see Invasive alien species (IAS)
ICCO. see International Cocoa Organization (ICCO)
ICQC,R. see International Cocoa Quarantine Centre at the University of Reading (ICQC,R)
ICS. see Imperial College Selection (ICS), Brazil.
IGCD. see International Cocoa Germplasm Database (ICGD)
IICA. see Inter-American Institute for Cooperation on Agriculture (IICA)
Imperial College Selection (ICS), Brazil 111
Instituto Nacional de Colonizacao e Reforma Agraria (INCRA) 240
In situ cacao conservation 20
Insect pests of cacao
in Americas and Caribbean 304
Major. see Major cacao pests
Minor 306–308
in Asia 312
Major. see Major cacao pests
Minor 314–315
control
agro-ecological 316
breeding 315
shade 316
in West Africa 308
Major. see Major cacao pests
Minor 311–312
Inter-American Institute for Cooperation on Agriculture (IICA) 127
International Cocoa Germplasm Database (ICGD) 34
International Cocoa Organization (ICCO) 396, 502
International Cocoa Quarantine Centre at the University of Reading (ICQC,R) 26
International Plant Protection Convention (IPPC) 32
Invasive alien species (IAS) 274
Ivory Coast, cacao breeding programme in
clone selection 137
hybrid selection 139
population breeding 141
Kakaw (Mayan). see Cacao/cocoa
Major cacao pests
of Americas and Caribbean 304
control 306
miyriids 305
thrips 306
of Asia 312
control 314
miyriids 313
pod borer 312
of West Africa 308
control
mealybugs as vectors of CSSV 309–310
miyriids 308
Microsatellite markers. see Simple sequence repeat (SSR)
Minimum viable population (MVP) 50
Mitigating the Threats of Invasive Alien Species in the Insular Caribbean (MTIASIC) (project) 275
Moniliophthora perniciosa. see Witches’ broom disease of cacao
Moniliophthora roreri
impact mitigation and control
biological 280
chemical 280
cultural 279
disease resistance and breeding 281
integrating management options 281
invasive alien species 274
management
early detection and rapid response (EDRR) 277
international legislative framework for phytosanitary measures 276
prevention 274
spread, invasion risk and impact 272
see also Frosty pod rot
‘Mother of Thousands’. see Somatic embryogenesis
Mycotoxins
causes, detection and control 381–389
contamination by aflatoxins 382
ochratoxins 384
control
Codex Alimentarius Commission (CAC). see Codex Alimentarius Commission (CAC)
detection
enzyme-linked immunossay (ELISA) 387
high-performance liquid chromatography (HPLC) 388
liquid chromatography–tandem mass spectrometry 388
National Center for Agricultural Research (CNRA) 186
National Plant Protection Organization (NPPO) 276
Near-infrared reflectance spectroscopy (NIRS) 432
Nematode pests of cocoa
disease complexes 332
ectoparasitic species 332
endoparasitic species 332
management and control
biological 334
chemical 333
organic soil amendments 335
resistant or tolerant cultivars 334
plant-parasitic nematodes 328
root-feeding nematodes 330
root-knot nematodes 328
root-lesion nematodes 330
Nigeria, cacao breeding programme in
first Nigerian breeding programme 135
second Nigerian breeding programme 136
third Nigerian breeding programme 136

© Burleigh Dodds Science Publishing Limited, 2018. All rights reserved.
Index

WACRI programme 135
NIRS. see Near-infrared reflectance spectroscopy (NIRS)
Non-governmental organizations (NGOs) 29

Olfactory genomics 435
Organic cultivation certification
pest and disease management 509
pricing 505
production trends 502
International Cocoa Organization (ICCO). see International Cocoa Organization (ICCO)
yields and cultivation method 507–508

Pest- and disease-resistant varieties assessment 348
breeding for. see Phytophthora breeding history 346
Pesticide use case studies
establishing baselines 372
expanding the scope 373–374
raising awareness and promoting best practice 373
in cocoa-producing countries 368
developing best practice 370
regulation 369
Pest risk analysis (PRA) 276
Phytophthora breeding classification 353
disease resistance 348–361
field resistance heritability 348
index-based selection
in Cameroon 358
in Côte d’Ivoire 355
leaf inoculation test 360
molecular markers 361
trials in
Cameroon 351
Côte d’Ivoire 352
Togo 351
Polymerase chain reaction (PCR) 108
Post-planting practices in cocoa establishing shade cover 204
intercropping in mature cocoa farms 206
intercropping in young cocoa farms 205
mulching 209
planting materials 203
pruning
formation/structural 208
sanitary 209
weed control 207
Pre-harvest practices in mycotoxin control 389
Pre-planting practices in cocoa establishing shade cover 201
land preparation 201
lining, pegging and spacing 201
planting materials 199
site selection 200
Primary processing of cocoa cleaning, bagging and storage 406
drying 405
fermentation 404
processing quality
cocoa butter 409
consistency 407
purity 408
Propagating of cocoa challenges and research needs 165
case studies
establishing baselines 372
expanding the scope 373–374
raising awareness and promoting best practice 373
in cocoa-producing countries 368
developing best practice 370
regulation 369
Pest risk analysis (PRA) 276
Phytophthora breeding classification 353
disease resistance 348–361
field resistance heritability 348
index-based selection
in Cameroon 358
in Côte d’Ivoire 355
leaf inoculation test 360
molecular markers 361
trials in
Cameroon 351
Côte d’Ivoire 352
Togo 351
Polymerase chain reaction (PCR) 108
Post-planting practices in cocoa establishing shade cover 204
intercropping in mature cocoa farms 206
intercropping in young cocoa farms 205
mulching 209
planting materials 203
pruning
formation/structural 208
sanitary 209
weed control 207
Pre-harvest practices in mycotoxin control 389
Pre-planting practices in cocoa establishing shade cover 201
land preparation 201
lining, pegging and spacing 201
planting materials 199
site selection 200
Primary processing of cocoa cleaning, bagging and storage 406
drying 405
fermentation 404
processing quality
cocoa butter 409
consistency 407
purity 408
Propagating of cocoa challenges and research needs 165
case studies
establishing baselines 372
expanding the scope 373–374
raising awareness and promoting best practice 373
in cocoa-producing countries 368
developing best practice 370
regulation 369
Pest risk analysis (PRA) 276
Phytophthora breeding classification 353
disease resistance 348–361
field resistance heritability 348
index-based selection
in Cameroon 358
in Côte d’Ivoire 355
leaf inoculation test 360
molecular markers 361
trials in
Cameroon 351
Côte d’Ivoire 352
Togo 351
Polymerase chain reaction (PCR) 108
Post-planting practices in cocoa establishing shade cover 204
intercropping in mature cocoa farms 206
intercropping in young cocoa farms 205
mulching 209
planting materials 203
pruning
formation/structural 208
sanitary 209
weed control 207
Pre-harvest practices in mycotoxin control 389
Pre-planting practices in cocoa establishing shade cover 201
land preparation 201
lining, pegging and spacing 201
planting materials 199
site selection 200
Primary processing of cocoa cleaning, bagging and storage 406
drying 405
fermentation 404
processing quality
cocoa butter 409
consistency 407
purity 408
Propagating of cocoa challenges and research needs 165
quantitative, vegetative
(clonal) propagation 161
availability of proven clones 162
techniques and operation of facilities. see Techniques and operation of facilities, cocoa propagation
cross-cutting issues
labour, skill requirements and farmer training 167
source materials availability 166
technologies and facilities 167
demand for planting materials 168
estimating costs 169
phytosanitary considerations 168
seed propagation 158
availability of varieties 159
garden design and operation 159–160
tissue culture (clonal) 158
Quantitative trait loci (QTL) 361
Regional Plant Protection Organizations (RPPOs) 32, 276
Root-feeding nematodes 330
Root-knot nematodes 328
Root-lesion nematodes 330
Royal Botanic Gardens at Kew, England 48
Safe handling and movement of cocoa germplasm associated risks
assessing and managing 102
movement of different plant materials 105
case study
International Cocoa Quarantine Centre, Reading 106
polymerase chain reaction (PCR) 108
risk management governance and procedures 105
international governance of plant movement 105
within-country quarantine procedures 106

© Burleigh Dodds Science Publishing Limited, 2018. All rights reserved.
‘Selecao Instituto Agronomico do Leste’ (SIAL) 111
‘Selecao Instituto do Cacau’ (SIC) 111
Sensory and processing quality
coarse powder, liquor and chocolate preparation
breaking and winnowing 417
chocolate making 418
liquor making 418
powder making 417
roasting 415
evolution 401
flavour assessment
calibration of persons 425
chocolate assessment 424
crude powder assessment 423
descriptors 425
intensity scales 424
panelist training 421
profiling of cocoa liquors 423
sensory statistics 429
tasting area and layout 420
visualisation 430
knowledge divide 400
quality and the link to flavor 402
primary processing, see Primary processing of cocoa
unlocking genetic flavour potential 403
sampling 409
aroma 412
bean count and individual bean weight 411
cut tests 412
moisture 411
passport data 410
physical 410
standards and protocols 398
Shade canopy and agroforestry systems
four-step guide
assessing plantation 478
assessing shade canopy 480
assessing site conditions 478
setting farmers’ objectives 478
improvements
analysing trade-offs and synergies by regression analysis 484
competitive allocation of basal area 486–488
typologies 470
cocoa–timber systems 471
simulation of shade patterns and light transmission models 489
timber harvest and damage 475–476
Simple sequence repeat (SSR) 26
Soil and nutrient management
case study
homogeneity in diversity 230
need for one formula per plot 226
diagnosis in practice 231
Somatic embryogenesis
acclimatization 175
commercial-scale propagation 173–189
conversion 175
integrated system for vegetative propagation for long-term storage of germplasm
orthotropic rooted cuttings field evaluation
Ecuador (III) 183
Puerto Rico 182
plant development 175
primary somatic embryogenesis 175
for propagation by orthotropic rooted cuttings
secondary somatic embryogenesis 175
somatic embryo trees field evaluation
Ecuador (I) 176
Ecuador (II) 179
Saint Lucia 176
technology transfer
Asia. see Asia, cocoa propagation
West Africa 185
Solid-phase micro-extraction (SPME) 433
Techniques and operation of facilities, cocoa propagation
budding 163
clonal gardens 164
grafting 163
marcotting 164
rooted cuttings 163
rootstocks 162
Theobroma cacao. see Cacao/cocoa
T. cacao ssp. cacao 4
T. cacao ssp. sphaerocarpum 4
Theobroma pentagona. see Cacao/cocoa
Trans-Amazonian Highway 240
Trinidad, cacao breeding programme in mass and clone selection 118
population breeding and clone selection 119
‘Trinidad Selected Hybrids’ (TSH) 256
‘Trinidad Selected Amazon’ (TSA) 256
TropGENE 34
UK Animal and Plant Health Authority 108
Vascular streak dieback (VSD) disease 187, 287–297
case study 296
epidemiology 293
management
biological control 296
cultural practices 295
disease resistance 294
fungicides 296
quarantine 294
symptoms and pathogen biology 289

© Burleigh Dodds Science Publishing Limited, 2018. All rights reserved.
Witches’ broom disease of cacao 239–259
disease control
 biological control 254
 chemical control 254
Estacao de Recursos Geneticos Jose Haroldo (ERJOH) 256
genetic resistance 256
 integrated management 258
phytosanitation 253
disease physiology 250–251
fungal pathogenicity 250
 omics 249
pathogen diversity and host range 244–247
pathogen taxonomy, biology and disease cycle 242
 alternative oxidase chain (AOX) 244
A.R. Ferreira 240
Comissao Executiva do Plano da Lavoura Cacaueira (CEPLAC) 240
Instituto Nacional de Colonizacao e Reforma Agraria (INCRA) 240
Moniliophthora perniciosa 241
plant development and disease epidemiology 251
 symptomatology 247
West Africa
 case studies
 Ghana 525
 impacts and approach 523–524
 Ivory Coast 526
impact of sustainability initiatives
 historical contexts 516
 voluntary sustainability standards 516–517
initiatives
 company sustainability programmes 548
 eliminate child labour 549
 enhance women’s empowerment 549
 growing importance of living income 552
 public-private partnerships 548
 question price and supply and demand 552
 voluntary certification and standards 551
 voluntary sustainability standards 547
supporting smallholders
 agronomic and environmental challenges 543
 changes in production 543
 social and economic challenges 545
sustainability initiatives
 corporate 521
 interlinking 523
 NGO and CSO 522
 platforms, networks and associations 519
 voluntary sustainability standards 520
World Trade Organization (WTO) 276
Zygotic embryos (ZEs) 174