Achieving sustainable cultivation of coffee

Breeding and quality traits

Edited by Dr Philippe Lashermes
Institut de Recherche pour le Développement (IRD), France
Contents

Series list xi
Introduction xv

Part 1 Plant physiology and breeding

1 Diversity and genome evolution in coffee
Philippe Lashermes and Marie-Christine Combes, Institut de Recherche pour le Développement (IRD), France
1 Introduction 3
2 Coffee diversity 4
3 Reproduction biology 8
4 Genome organization and evolution 10
5 Arabica origin and diversification 12
6 Future trends and conclusion 16
7 Where to look for further information 17
8 References 17

2 Coffee tree growth and environmental acclimation
Fábio M. DaMatta, Universidade Federal de Viçosa, Brazil
1 Introduction 21
2 The coffee tree at work: root growth, shoot growth and flowering 22
3 The coffee tree at work: fruiting and competition between vegetative and reproductive growth 26
4 Acclimation to environmental factors: irradiance 28
5 Acclimation to environmental factors: water 33
6 Acclimation to environmental factors: temperature 38
7 Conclusions 39
8 Where to look for further information 40
9 Abbreviations 41
10 References 41

3 Environmental and genetic effects on coffee seed biochemical composition and quality
Thierry Joët and Stéphane Dussert, Institut de Recherche pour le Développement (IRD), France
1 Introduction 49
2 Seed chemical composition and coffee quality 50
3 Biosynthetic genes and metabolic pathways 51
4 Genetic variation for seed chemical composition 53
5 Chemometric discrimination of Arabica and Robusta 55
6 Environmental effects 55
7 Environmental influence on transcriptional regulations 57
8 Chemometrics for coffee origin authentication 60
9 Case study: coffee Bourbon Pointu of La Réunion Island 60

© Burleigh Dodds Science Publishing Limited, 2018. All rights reserved.
| Contents |
|------------------|-------|
| 10 Future trends and conclusion 61 |
| 11 Where to look for further information 61 |
| 12 References 61 |
| 4 Ensuring the genetic diversity of coffee 69 |
| Sarada Krishnan, Denver Botanic Gardens, USA |
| 1 Introduction 69 |
| 2 Coffee genetic resources 70 |
| 3 Case study: conservation of wild Coffea spp. in Madagascar 73 |
| 4 Future trends and conclusion 75 |
| 5 Where to look for further information 78 |
| 6 References 79 |
| 5 Developing varieties of Arabica coffee 83 |
| Herbert A. M. van der Vossen, Coffee Breeding Consultant, The Netherlands |
| 1 Introduction 83 |
| 2 Genetic resources 84 |
| 3 Breeding strategies 89 |
| 4 Major Arabica coffee-breeding programmes 89 |
| 5 Preconditions to successful next-generation cultivars of Arabica coffee: genetic variation and resistance to diseases and pests 97 |
| 6 Preconditions to successful next-generation cultivars of Arabica coffee: further issues 100 |
| 7 Conclusions 104 |
| 8 Where to look for further information 105 |
| 9 Abbreviations 105 |
| 10 References 106 |
| 6 Developing varieties of Robusta coffee 115 |
| N. Surya Prakash, Central Coffee Research Institute, India |
| 1 Introduction 115 |
| 2 Coffee species and their commercial development 116 |
| 3 Growth habits and agronomical characteristics of Robusta coffee 117 |
| 4 Breeding behaviour of C. canephora 117 |
| 5 Genetic resources and diversity of C. canephora 118 |
| 6 Cultivation of C. canephora: historical perspective 121 |
| 7 Genetic structure of base populations and phenotypic variability 122 |
| 8 Development of improved varieties in Robusta: initial efforts 123 |
| 9 Breeding methods followed and Robusta varieties developed 123 |
| 10 Limiting factors to sustained breeding initiatives 128 |
| 11 Breeding priorities: a rapidly-changing situation 128 |
| 12 Developing new varieties of Robusta: scope, limitations and pragmatic strategies 130 |
| 13 Future trends and conclusion 133 |
| 14 Where to look for further information 134 |
| 15 Acknowledgements 134 |
| 16 References 134 |
7 Developments in molecular breeding techniques in Robusta coffee

Alan Carvalho Andrade, Embrapa Café/Inovacafé, Brazil

1 Introduction
2 Molecular markers
3 Genetic diversity
4 Candidate genes and QTLs
5 Molecular breeding
6 Future trends and conclusion
7 Where to look for further information
8 References

8 Breeding caffeine-free coffee beans

Chifumi Nagai, Hawaii Agriculture Research Center, USA; and Jean-Jacques Rakotomalala, Centre National de la Recherche Appliquée au Développement Rural, Madagascar

1 Introduction
2 Caffeine levels among coffee species
3 Low- and non-caffeine coffee varieties: production and characteristics
4 Challenges of large-scale cultivation
5 Summary and future trends
6 Where to look for further information
7 Acknowledgements
8 References

9 Disseminating improved coffee varieties for sustainable production

Charles Lambot and Juan Carlos Herrera, Nestlé R&D Center, France

1 Introduction
2 General strategy for validation of varieties
3 Physiological and organizational constraints
4 Statistical methods for multi-location and farmer trials
5 Case studies
6 Propagation methods
7 Legal aspects
8 Conclusion
9 Future trends
10 Where to look for further information
11 References

Part 2 Quality traits

10 Chemical composition of coffee beans: an overview

Michael N. Clifford, University of Surrey, UK; Iziar A. Ludwig, Universitat de Lleida, Spain; and Alan Crozier, University of California Davis, USA

1 Introduction
2 Overall composition of green coffee
3 Roasting and associated transformations
4 Chlorogenic acids in green coffee beans
5 Chlorogenic acids in roasted coffee beans, instant coffee and beverage 201
6 Caffeine 205
7 Trigonelline 205
8 Diterpenes 206
9 Melanoidins 207
10 Production of volatiles 208
11 Conclusion and future trends 209
12 Where to look for further information 210
13 References 210

11 Bioactive compounds in coffee beans with beneficial health properties 215
Ningjian Liang, Kaiwen Mu and David Kitts, University of British Columbia, Canada

1 Introduction 215
2 Health benefits of caffeine 218
3 Health benefits of phenolics 220
4 Coffee Maillard reaction products 222
5 Health benefits of trigonelline 225
6 Health benefits of cafestol and kahweol 225
7 Clinical studies on effects of coffee consumption on human health 226
8 Conclusion and future trends 229
9 References 230

12 Beneficial compounds from coffee leaves 237
Claudine Campa, UMR IPME, France; and Arnaud Petitvallet, Wize Monkey, Canada

1 Introduction 237
2 Characterization of leaf metabolites in cultivated coffee plants 238
3 Beneficial compounds for coffee plants 243
4 Beneficial compounds for humans 246
5 Case study: Wize Monkey 248
6 Conclusion 249
7 Future trends 250
8 Where to look for further information 251
9 References 251

13 Nutritional and health effects of coffee 259
Adriana Farah, Federal University of Rio de Janeiro, Brazil

1 Introduction 259
2 Nutrients and bioactive compounds of coffee 260
3 Main beneficial health effects of coffee 271
4 Potential side effects of coffee drinking 278
5 Final considerations 280
6 Acknowledgements 280
7 Where to look for further information 281
8 References 282
Contents

14 Advances in research on coffee flavour compounds 291

Roberto Buffo, National University of Tucumán, Argentina

1 Introduction 291
2 Chemical composition of green coffee beans 292
3 The roasting process 295
4 Chemical composition of roasted coffee 295
5 Brewing and incidental constituents of coffee 300
6 Coffee processing and its impact on aroma profile 301
7 Determination of key volatile aroma compounds in coffee 303
8 Conclusions 306
9 References 306

15 Harmful compounds in coffee 311

Noël Durand, CIRAD, France; and Angélique Fontana, University of Montpellier, France

1 Introduction 311
2 Pesticide residues 312
3 Ochratoxin A 313
4 Polycyclic aromatic hydrocarbons 315
5 Acrylamide 316
6 Conclusion 318
7 References 318

16 Flavour as the common thread for coffee quality along the value chain 323

Mario R. Fernández-Alduenda, Coffee Quality Institute, USA

1 Introduction 323
2 The evolution of cupping over the last 15 years 324
3 The SCAA Cupping Protocol 327
4 Cupping as a tool for quality-based decisions 329
5 Other meaningful quality parameters in coffee processing 332
6 Conclusion 334
7 Where to look for further information 334
8 References 334

17 Metabolomics as a powerful tool for coffee authentication 337

Sastia P. Putri and Eiichiro Fukusaki, Osaka University, Japan

1 Introduction 337
2 Quality and authenticity evaluation of food and agricultural products 338
3 The power of metabolomics for discriminating food products 339
4 The metabolomics approach for coffee authentication 340
5 Case study: applying GC/MS- and GC/FID-based metabolomics to authenticate Asian palm civet coffee 342
6 Future trends and conclusion 354
7 Where to look for further information 355
8 References 356
18 Life cycle analysis and the carbon footprint of coffee value chains

Louis Bockel and Laure-Sophie Schiettecatte, Food and Agriculture Organization (FAO) of the United Nations, Italy

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>359</td>
</tr>
<tr>
<td>2 Life cycle analysis</td>
<td>361</td>
</tr>
<tr>
<td>3 Valuing coffee quality and sustainability</td>
<td>367</td>
</tr>
<tr>
<td>4 Coffee value chain carbon footprint performance</td>
<td>368</td>
</tr>
<tr>
<td>5 Using carbon footprint performances to upgrade coffee value chains</td>
<td>373</td>
</tr>
<tr>
<td>6 Case study: green coffee in Haiti</td>
<td>375</td>
</tr>
<tr>
<td>7 Carbon footprint and green labelling</td>
<td>377</td>
</tr>
<tr>
<td>8 Conclusion</td>
<td>378</td>
</tr>
<tr>
<td>9 Where to look for further information</td>
<td>379</td>
</tr>
<tr>
<td>10 References</td>
<td>379</td>
</tr>
</tbody>
</table>

Index 383
Introduction

Coffee is one of the most widely traded commodities in the world, with *Coffea arabica* and *C. canephora* together accounting for 99% of the global coffee bean production. Despite its popularity as a beverage and its economic importance, sustainable coffee production currently faces a number of challenges. This is primarily due to an over reliance on a relatively small number of varieties vulnerable to a range of abiotic and biotic stresses, as well as the increasing expectations of quality amongst consumers. These challenges are addressed in *Achieving sustainable cultivation of coffee*.

Part 1 focuses on advances in understanding plant physiology and ensuring genetic diversity. These advances provide the basis for chapters summarizing developments in breeding improved varieties of Arabica and Robusta coffee. Part 2 reviews our understanding of the chemical composition, sensory properties and the potential nutraceutical benefits of coffee. Chapters also look at wider quality and sustainability issues.

Part 1 Plant physiology and breeding

Chapter 1 reviews the diversity of coffee and the evolution of its genome. While the worldwide production of coffee relies on a small number of cultivars, wild coffee trees represent huge reserves of genetic diversity that could help to mitigate the effects of an unstable climate and plant diseases, as well as improve health-related chemicals present in coffee seeds. This chapter describes the results of studies of coffee tree species distribution and characterization, reproduction biology, genome organization and evolution, phylogenetic relationships among coffee species and the molecular bases of coffee species diversification, as well as looking ahead to future developments in this area.

In Chapter 2, some aspects of coffee growth and development as well as the recent advances in the environmental physiology of growth and production are reviewed. The information deals with both *Coffea arabica* and *C. canephora*. This chapter is organized into sections dealing with vegetative growth, flowering and fruiting, competition between vegetative and reproductive growth, and physiological acclimation to environmental factors such as light, water and temperature.

Chapter 3 focuses on how the reserve compounds that accumulate in coffee seeds contribute – directly or via roasting-induced chemical reactions – to the broad spectrum of aromas and flavours in coffee. Coffee seed reserves are mainly composed of cell wall polysaccharides, lipids, proteins, sucrose and secondary metabolites including chlorogenic acids, caffeine and trigonelline. Understanding coffee quality requires a detailed characterization of the metabolic pathways in the synthesis of these aroma/flavour precursors. This chapter describes the current state of knowledge on the relationships between coffee quality, seed chemical composition and genetic and environmental effects, with a special focus on environmental regulation of coffee seed metabolic pathways. It includes a case study of coffee production on La Reunion Island and provides suggestions for further reading, as well as looking ahead to future developments in coffee seed chemical composition research.

As Chapter 4 points out, utilizing the varied genetic resources of coffee to develop varieties with drought stress tolerance, pest and disease resistance, high cup quality and increased yields will ensure the future sustainability of the crop. This chapter examines
the genetic resources of coffee in both ex situ collections and in situ situations. It also provides a detailed case study of the conservation of one coffee variety in Madagascar in the context of the development of the Global Strategy for Conservation for Coffee Genetic Resources, and looks ahead to future developments in this area.

Chapter 5 focuses on the fact approximately 60% of the annual world coffee production is harvested from Arabica (*Coffea arabica*), with the remainder harvested from Robusta (*C. canephora*) coffees. The former is superior in beverage quality, but more expensive to cultivate. The demand for quality coffees is steadily increasing, but anticipated climate change may jeopardize the sustainability of Arabica coffee production. This chapter reviews the achievements of several coffee research centres in conserving and evaluating genetic resources and variety development in Arabica coffee, and discusses the main preconditions for successful next-generation variety development. These are related to genetic variation, disease and pest resistances, tolerance to abiotic stress factors, beverage quality and cost-effective mass propagation of hybrid cultivars. Breeders will have to combine classic selection methods with advanced genetic and genomic technologies in order to meet the challenge of developing resilient (hybrid) cultivars for sustainable, climate-change tolerant Arabica coffee production.

Chapter 6 builds on Chapter 5 by focusing on Robusta coffee. As the chapter points out, the two species differ from each other in their centre of origin, breeding behaviour, growth habit, adaptability, production potential and quality attributes but together produce unique blends for the consumer. This chapter offers a comprehensive review of key issues in the development of Robusta coffee varieties, including genetic resources, breeding behavior, growth and agronomic requirements. This chapter describes the genetic structure of Robusta base populations and their phenotypic variability and initiatives to develop improved varieties. Building on both Chapters 5 and 6, Chapter 7 argues that faster breeding methods are needed for coffee to be able to cope with the challenges of climate change that lie ahead. This chapter focuses on molecular breeding techniques for *Coffea canephora* (Robusta coffee). The chapter examines genetic diversity, the development of molecular markers and the current state of molecular breeding, as well as looking ahead to future developments in this area.

Chapter 8 focuses on the fact that regular Arabica coffee contains approximately 1.2% caffeine. ‘Decaffeinated’ (less than 0.1%) and ‘low-caffeine’ (0.2–0.8%) coffee can be obtained by removing the caffeine. However, this can compromise the flavour and may lead to consumers viewing the product as less ‘natural’. Over the past 25 years, considerable effort has been made on developing naturally non- or low-caffeinated varieties, and some coffee beans with reduced caffeine content are now commercially available. Chapter 8 first reviews the process of caffeine biosynthesis and the economic significance of naturally decaffeinated and low-caffeine coffee. The chapter considers the varying levels of caffeine in different coffee species, the production and characteristics of non- and low-caffeine coffee, and the challenges of moving to large-scale cultivation of new varieties.

Chapter 9 points out that, although coffee is one of the most valuable agricultural commodities of the world, it is an orphan crop in relation to investment in plant breeding. An efficient system to develop, introduce and propagate improved coffee varieties is required to place productive and affordable plants at farmers’ disposal. This chapter describes ways of developing and propagating new coffee varieties to increase the efficiency of coffee production without compromising end-product quality. The chapter considers the physiological constraints of coffee variety development, the legal aspects of plant or seed shipments, and the protection of the breeder’s rights within national or
Part 2 Quality traits

Chapter 10 provides an overview of what we know about the composition of green coffee beans and the changes associated with roasting and beverage production. It provides a context for the following chapters. The chapter reviews recent advances related to the major chemical components of coffee such as the chlorogenic acids, the alkaloids (caffeine and trigonelline), the diterpenes (cafestol and kahweol), volatile aromatics and the melanoidins.

Chapter 11 focuses on the fact that in recent years, the health benefits of coffee beverage consumption have attracted considerable interest. This chapter describes the latest research on the potential health benefits of coffee components including caffeine, phenolics, trigonelline, cafestol and kahweol. The chapter pays particular attention to the antioxidant, anti-inflammatory and antimicrobial properties of these compounds, and evaluates the results of clinical studies of the effects of coffee beverage consumption on human health.

Chapter 12 explores an underutilized component of the coffee plant, the leaves. The leaves of the coffee plant have a significant impact on fruit quality, and identifying markers in leaves for plant adaptability to environmental stress provide an indication of the quality of future fruits. This chapter provides an inventory of molecules identified to date in the leaves of cultivated coffee trees which are characterized by a high antioxidant potential. The chapter describes the beneficial effects of the molecules found in leaves on both plant physiology and human health, and suggests where future trends of research in this area may lead.

Chapter 13 builds on Chapter 11 by describing the growing number of studies demonstrating that coffee is a complex mixture of bioactive substances that may act together to help prevent disease when consumed in the correct way. This chapter reviews the literature on the nutritional and health-related aspects of regular coffee consumption, and examines the evidence on the beneficial health effects of coffee as well as potential side effects, and looks ahead to future research in this area.

Chapter 14 discusses how coffee’s global appeal is related to its unique flavour, taste and mouthfeel. Coffee is the second most traded global commodity after petroleum, and a thorough understanding of the chemical dynamics associated with its aroma is essential to its popularity. This chapter covers the chemical composition of green coffee beans, the process of roasting, the profile of volatile and non-volatile compounds generated by roasting, and the chemical reactions responsible for their formation. The chapter discusses topics such as the presence of incidental compounds in roasted coffee and the key volatiles in the determination of coffee aroma.

Chapter 15 focuses on the fact that in recent years, public health issues in the food industry have led to regulations concerning contaminants in foodstuffs, including coffee. Four main types of compound are known to contaminate coffee, starting with pesticides that come from agricultural treatments, transport and storage. Ochratoxin A is the main mycotoxin found in coffee and is linked to environmental conditions and postharvest
processing. Polycyclic aromatic hydrocarbon contamination can be of exogenous (during drying) or endogenous (during roasting) origin, and finally, acrylamide appears during roasting. This chapter discusses each of these compounds, reviewing our current state of knowledge, regulations for avoiding or dealing with contamination, and effective ways of limiting contamination.

Chapter 16 focuses on quality which, in the case of coffee, ultimately means flavour. The assessment of coffee flavour quality is therefore the key tool for the quality assurance of coffee, and is essential in strategies for achieving higher value coffee. The chapter discusses the definition of ‘quality’ and reviews the many interesting advances in the prediction of coffee flavour using instrumental, analytical methods. It highlights the continued importance of sensory assessment in analysis of coffee flavour. This usually means cupping, the process of grading coffee quality based on tasting performed by an expert using a specific protocol. The chapter reviews how cupping has evolved, the protocols involved and how it can be used as a tool to reach consensus regarding quality. The chapter also considers other important quality parameters related to coffee processing.

Chapter 17 discusses detection of the fraudulent adulteration of coffee. Both coffee manufacturers and legislative authorities are responsible for establishing quality standards through labelling, composition regulations and routine evaluation protocols to circumvent unfair competition among manufacturers, as well as to ensure the safety, quality and authenticity of the product for consumers. This chapter addresses current issues in the area of adulteration of coffee as well as describing recent progress on coffee quality evaluation and authentication using metabolomics. The chapter includes a detailed case study on the application of GC/MS and GC/FID-based metabolomics to authenticate Asian palm civet coffee, and looks ahead to future research trends in this area.

Chapter 18 presents the concepts and tools around life cycle assessment (LCA) and carbon footprint (CFP) analysis and their applications to the coffee value chain. Coffee is characterized by a particularly complex value chain with multiple actors involved along every step from production to the consumer. This chapter explains the concepts of life cycle analysis and describes in detail how carbon footprint analysis can be used to upgrade coffee value chains. The chapter includes a case study on the use of the EX-ACT value chain tool in Haiti.
Index

β-carbolines 268
2-propenamide, see Acrylamide
4-coumarate CoA ligase (4CL) 59

AARP Diet and Health Study 271
Abyssinian coffee 87
ACGC. see Arabica Coffee Genome Consortium (ACGC)
Acrylamide 269–270, 316–318
ADEME. see Agency for Environment and Energy Management (ADEME)
Adulteration of coffee 340
AEDA. see Aroma dilution extraction analysis (AEDA)
AEZ. see Agro-ecological zones (AEZ)
AFLP. see Amplified fragment length polymorphism (AFLP)
Agency for Environment and Energy Management (ADEME) 366
Agro-ecological zones (AEZ) 179
Allopolyploids 14–15
Alzheimer's disease 274
Amplified fragment length polymorphism (AFLP) 120, 141
Anti-inflammatory activity 219
of cafestol and kahweol 226
of caffeine 219
of Maillard reaction products 223
of phenolics 221
of trigonelline 225
Antimicrobial activity
of caffeine 219
of Maillard reaction products 224–225
of phenolics 221–222
cafeic acid 222
CGA 221–222
protocatechuic acid 222
of trigonelline 225
Antioxidant activity
of cafestol and kahweol 225–226
of caffeine 218–219
of Maillard reaction products 222–223
of phenolics 220–221
of trigonelline 225
Arabica Catuaí 175
Arabica coffee. see Coffea arabica
Arabica Coffee Genome Consortium (ACGC) 103
Arabustas 128
Aroma dilution extraction analysis (AEDA) 304
Asian palm civet coffee 342–354
discriminant analysis 347
discriminant markers for authenticity assessment 348–351

extraction, derivatization and analytical conditions 346
GC/FID-based metabolite fingerprinting for 353–354
GC/MS-based metabolite profiling of 346–347
sample information 343–344
Avicenna 259

Bean Belt 116
Best linear unbiased prediction (BLUP) 148
Bilan Carbone 365
Bioactive amines 268
Bioactive compounds of coffee 265–268
β-carbolines 268
bioactive amines 268
caffeine 265
biosynthesis 160–161
in Coffea arabica 161–162
in Coffea canephora 162
in Coffea hybrids 163
content of green coffee 205, 292
content of roasted coffee 205
decaffeinated coffee 160
health benefits of 218–219
hyper stimulation and 278
low-caffeine coffee 160
sleep and 278
tolerance, dependence and withdrawal 278–279
in wild coffee species 162
chlorogenic acids 266
anti-inflammatory activity of 221
antimicrobial activity of 221–222
antioxidant activity of 220–221
in green coffee 197–201, 293
in roasted, instant coffee and beverage 201–205
diterpenes 206–207, 267–268
melanoidins and polysaccharides 267
trigonelline 267
in green coffee 292
health benefits of 225
Bioversity International 87, 98
BLUP. see Best linear unbiased prediction (BLUP)
Bourbon coffee 13
Bourbon Pointu 163
Breeding
behaviour of Coffea canephora 117–118
methods for robusta coffee 123–128
clonal/seed propagation 123–124
interspecific hybridization 127
inter-varietal hybridization 124–125

© Burleigh Dodds Science Publishing Limited, 2018. All rights reserved.
mass selection 123
polyplody breeding 127–128
reciprocal recurrent selection 125–126
British Standard Institute (BSI) 365
Brown Gold. see Coffee
BSI. see British Standard Institute (BSI)

Cafestol and kahweol
in green coffee 293
health benefits of 225–226
anti-inflammatory activity 226
antioxidant activity 225–226
Caffeic acid 222
Caffeine 265
biosynthesis 160–161
in Coffea arabica 161–162
in Coffea canephora 162
in Coffea hybrids 163
content of green coffee 205, 292
content of roasted coffee 205
decaffeinated coffee 160
health benefits of 218–219
anti-inflammatory activity 219
antimicrobial activity 219
antioxidant activity 218–219
hyper stimulation and 278
low-caffeine coffee 160
sleep and 278
tolerance, dependence and withdrawal 278–279
in wild coffee species 162
Caffeoyl feruloylquinic acids (CFQAs) 201
Caffeoylquinic acids (CQAs) 57, 59, 220–221, 244
Cancer and coffee 277–278
Candidate genes 145–147
Carbohydrates in coffee 293–294
Carbon dioxide in roasted coffee 299–300
Carbon footprint (CFP)
and coffee value chain 368–375
carbon-fixing performances 369–370
coffee farming systems 368–369
comparison 371–373
upgrading 373–374
concept of 362–363
and green labelling 377
Carbon Footprint – Product Category Rules (CFP-PCR) 364–365
Cardiovascular disease and coffee 275
Castillo variety 92
CATIE. see Centro Agronómico Tropical de Investigacion y Enseñanza (CATIE)
CBD. see Coffee berry disease (CBD)
CcDREB1D promoter 146
CCRI. see Central Coffee Research Institute (CCRI)
CEDECO. see Educational Corporation for Costa Rican Development (CEDECO)
CENICAFE. see Centro de Investigaciones del Café (CENICAFE)
Central Coffee Research Institute (CCRI) 89, 91–92
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) 97
Centro Agronómico Tropical de Investigacion y Enseñanza (CATIE) 73, 87, 97
Centro de Investigaciones del Café (CENICAFE) 92–93
Centro d’Investigación das Ferrugens do Caffeeiro (CIFC) 92, 93–94
CFP. see Carbon footprint (CFP)
CFP-PCR. see Carbon Footprint – Product Category Rules (CFP-PCR)
CFQAs. see Caffeoyl feruloylquinic acids (CFQAs)
CFT. see Cool Farm Tool (CFT)
C4H. see Cinnamate-4-hydroxylase (C4H)
CharmAnalysis™ 304
Chlorogenic acids (CGA) 58–59, 244, 266
anti-inflammatory activity of 221
antimicrobial activity of 221–222
antioxidant activity of 220–221
in green coffee 197–201, 293
in roasted, instant coffee and beverage 201–205
Cholesterol-raising effects and diterpenes 279
CIFC. see Centro d’Investigación das Ferrugens do Caffeeiro (CIFC)
Cinnamate-4-hydroxylase (C4H) 59
CIRAD. see Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)
Clonal/seed propagation 123–124
CLR. see Coffee leaf rust (CLR)
Coffea arabica 7, 9, 12–15
allotetraploid genome 13–14
breeding methods 89
breeding programmes 89–97
Central Coffee Research Institute (CCRI) 89, 91–92
Centro Agronómico Tropical de Investigacion y Enseñanza (CATIE) 97
Centro de Investigaciones del Café (CENICAFE) 92–93
Centro d’Investigación das Ferrugens do Caffeeiro (CIFC) 93–94
Coffee Research Foundation (CRF) 94–95
Instituto Agronômico de Campinas (IAC) 92
Jimma Agricultural Research Centre (JARC) 95–96
Tanzania Coffee Research Institute (TaCRI) 96
caffeine content in 161–162
disease-resistant cultivars of 103
efficient and cost-effective multiplication 102–103
genetic resources 84–88
germplasm 87–88
origin and geographic distribution 84–85
traditional cultivars 85–87
genetic variation 97–98
genome plasticity and diversification 14–15
genomics-assisted breeding in 103–104
low-caffeine in Madagascar 164–165
maintaining productivity 100
origin 14
overview 12–13
quality 101–102
resistance to diseases and pests 98–99
coffee berry disease 98–99
coffee leaf rust 98
coffee wilt disease 99
nematodes and insect pests 99
Coffea canephora 7–8, 11
breeding behaviour 117–118
caffeine content in 162
cultivation 121–122
genetic resources and diversity 118–121
genetic structure and phenotypic variability 122
sustained breeding initiatives 128
Coffea commersoniana 74
Coffea hybrids 163
Coffea kianjavatensis 74
Coffea liberica 7
Coffea montis-sacri 74
Coffea vatovavyensis 74
Coffee 115. see also Green coffee;
Roasted coffee
bioactive compounds of 265–268
β-carbolines 268
bioactive amines 268
caffeine 265
chlorogenic acids 266
diterpenes 267–268
melanoidins and polysaccharides 267
trigonelline 267
brewing of 300
Coffea arabica 12–15
allotetraploid genome 13–14
genome plasticity and diversification 14–15
origin 14
overview 12–13
Coffea species in Madagascar 73–75
consumption effects on human health 226–229
description 3–4
diversity 4–8
of cultivated species 7–8
habitat and adaptation 5–7
molecular phylogenetics 8
taxonomy 4–5
and environmental acclimation 28–39
irradiance 28–33
temperature 38–39
water 33–37
genetic resources 70–73
complementary conservation strategies 72–73
ex situ collections 71–72
in situ conservation 72
genome organization and evolution 10–12
harmful compounds in 268–271
acrylamide 269–270, 316–318
biogenic amines 270–271
furan 269–270
ocratoxin A 269, 313–314
PAH 269–270, 315–316
pesticides 269, 312
health effects of 271–278
cancer 277–278
cardiovascular disease 275
cognitive health 274
liver diseases 276–277
mental and physical performance 271–274
type 2 diabetes 276
incidental constituents 301
nutrients of 260–265
macronutrients 263
micronutrients 264–265
processing and impact on aroma profile 301–303
reproduction biology 8–10
side effects of 278–280
caffeine tolerance, dependence and withdrawal 278–279
cholesterol-raising effects of diterpenes 279
gastro-oesophageal reflux 279–280
hyper stimulation and sleep quality 278
tree growth 22–28
flowering 23–26
fruiting 26–28
root system 22
shoot structure 23
vegetative growth and fruit production 28
varieties for sustainable production 173–189
case studies 180–184
creation in experimental stations 175
description 173–175
evaluation in multi-location trials 175–176
legal aspects 186–187
physiological and organizational
constraints 178–179
propagation methods 184–186
statistical methods 179–180
validation in farmer trials 176–178
volatile aroma compounds in 303–306
Coffeeeae tribe 4
Coffee authentication and
metabolomics 340–341
GC/MS- and GC/FID-based 342–354
discriminant analysis 347
discriminant markers for authenticity
assessment 348–351
extraction, derivatization and analytical
conditions 346
profiling of Kopi Luwak 346–347,
353–354
sample information 343–344
Coffee beans 195–209
caffeine 205
anti-inflammatory activity of 219
antimicrobial activity of 219
antioxidant activity of 218–219
diterpenes 206–207
green coffee
chlorogenic acids in 197–201, 221–222
composition of 196
health benefits of cafestol and
kahweol 225–226
anti-inflammatory activity of 226
antioxidant activity of 225–226
health benefits of phenolics 220–222
anti-inflammatory activity 221
antimicrobial activity 221–222
antioxidant activity 220–221
Maillard reaction products 222–225
anti-inflammatory activity of 223
antimicrobial activity of 224–225
antioxidant activity of 222–223
melanoidins 207–208
roasted, instant coffee and beverage
chlorogenic acids in 201–205
roasting and associated
transformations 197
trigonelline 205–206
anti-inflammatory activity 225
antimicrobial activity of 225
antioxidant activity of 225
volatile components 208–209
Coffee berry disease (CBD) 94, –95, 98–99
The Coffee Cupper's Handbook 325
Coffee farming systems 368–369
Coffee leaf rust (CLR) 98
Coffee leaf tea 246
Coffee leaves, beneficial compounds
in 237–251
for coffee plants 243–246
description 237–238
for humans 246–247
metabolites in cultivated coffee
plants 238–242
Wize Monkey 248–249
Coffee quality 323–334
cupping
 evolution of 324–327
as tool for quality-based decisions
329–332
description 323–324
quality parameters in processing 332–334
SCAA Cupping Protocol 327–329
and sustainability 367–368
indicators 367–368
as market drivers 367
Coffee Quality Institute (CQI) 326
Coffee Research Foundation (CRF) 94–95
Coffee Research Station, Lyamungu 96
Coffee seed biochemical composition 49–61
biosynthetic genes and metabolic
pathways 51–53
Bourbon Pointu of La Réunion Island 60–61
chemometric discrimination of arabica and
robusta 55
and coffee quality 50–51
environmental effects 55–57
description 49–50
environmental influence on transcriptional
regulations 57–60
genetic variation for 53–55
global geographic origin authentication 60
Coffee Taster’s Flavour Wheel 327
Coffee value chain and carbon footprint 324,
366–375
carbon-fixing performances 369–370
coffee farming systems 368–369
comparison 371–373
upgrading 373–374
to measure efficiency 373–374
payment of environment services 374
Coffee wilt disease (CWD) 99
Cognitive health and coffee 274
Colletotrichum kahawae 98–99
Congolese genotypes 130–131
Congusta 127
Conilon coffee. see Coffea canephora
Conserved Ortholgue Set (COS) 141
‘Conserving coffee genetic resources’ 87
Conuga. see Congusta
Convention on Biological Diversity 97
Cool Farm Tool (CFT) 366
Cooperativa Nahualá 374
Cooperativa Renacimiento 374
COS. see Conserved Orthologue Set (COS)
Coumarins 243
CQAs. see Caffeoylquinic acids (CQAs)
CQI. see Coffee Quality Institute (CQI)
CRF. see Coffee Research Foundation (CRF)
Cupper's Wheel 325, 326
Cupping, coffee evolution of 324–327
as tool for quality-based decisions 329–332
Curtis, Marty 326
CWD. see Coffee wilt disease (CWD)
DArTseq. see Sequencing-based diversity array technology (DArTseq)
Decaffeinated coffee 160
Decoction method 300
Department for Environment Food and Rural Affairs (DEFRA) 365
Dicaffeoylquinic acids (di-CQAs) 57
Disease-resistant cultivars of arabica coffee 103
Diterpenes 206–207, 267–268
Divo Experimental Station 118
Dormancy phase 24
Drought tolerance 36–37
Dry milling 332
Dry processing 302
Economically motivated adulteration (EMA) 338–339
Educational Corporation for Costa Rican Development (CEDECO) 374
EFSA. see European Food Safety Authority (EFSA)
EIAs. see Environmental impact assessments (EIAs)
EMA. see Economically motivated adulteration (EMA)
Endosperm filling phase 27
Environmental impact assessments (EIAs) 75
Environmental Product Declaration (EPD) 364
EPIC. see European Prospective Investigation into Cancer and Nutrition (EPIC)
ESTs. see Expressed sequence tags (ESTs)
Ethiopian germplasm 87–88
European Food Safety Authority (EFSA) 315
European Prospective Investigation into Cancer and Nutrition (EPIC) 276
EX-ACT Value Chain (EX-ACT VC) 366
Expressed sequence tags (ESTs) 141
FAO. see Food and Agriculture Organization (FAO)
FAO Coffee Mission 87
Fatty acids in coffee 196
Federation Nacional de Cafeteros (FNC) 92
Feria-Morales, Alejandro 324
Fermentation 332
Fertilizer and caffeine content 168
F1 hybrid cultivars 96
Final Scores 329
Flavonoid content in coffee 244–245
Flavour quality in coffee 332
FNC. see Federation Nacional de Cafeteros (FNC)
FOFIFA. see National Center of Applied Research and Rural Development (FOFIFA)
Food and Agriculture Organization (FAO) 71, 74
Food products metabolomics and discriminating 339–340
quality and authentication 338–339
commercial treatment and unlawful substances 338–339
geographical region of origin 338
species of origin 338
Forward genetics 145
Fragrance 327
Free amino acids in green coffee 196, 294
Furan 269–270, 299
Furanones 299
Galactinol synthase (GolS3) 53
Galenus, Aelius 260
Gas chromatography and flame ionization detector (GC/FID)-based metabolite fingerprinting 343, 353–354
Gas chromatography and mass spectrometry (GC/MS)-based metabolite profiling 343, 346–347
Gas chromatography–olfactometry (GCO) 304
Gastro-oesophageal reflux 279–280
GBS. see Genotyping by sequencing (GBS)
GCA. see General combining ability (GCA)
GC coupled with quadrupole mass spectrometry (GC-Q/MS)-based metabolic profiling 343
GC/FID-based metabolite fingerprinting. see Gas chromatography and flame ionization detector (GC/FID)-based metabolite fingerprinting
GC/MS-based metabolite profiling. see Gas chromatography and mass spectrometry (GC/MS)-based metabolite profiling
GCO. see Gas chromatography–olfactometry (GCO)
GC-Q/MS-based metabolic profiling. seeGC coupled with quadrupole mass spectrometry (GC-Q/MS)-based metabolic profiling
General combining ability (GCA) 164–166
Generative selection 124, 185
Genome-Wide Association Studies (GWASs) 145
Genome-wide selection (GWS) 141, 148–149
Genomic in situ hybridization (GISH) 13
Genomics-assisted breeding in arabica coffee 103–104
Genomic selection (GS) 148–149
Genomic tools 132–133
Genotype-by-environment interaction (GXEI) 180
Genotype plus GXEI (GGE) 180
Genotyping by sequencing (GBS) 142
GGE. see Genotype plus GXEI (GGE)
GHG. see Greenhouse gas (GHG)
Gibberella xylarioides 99
GISH. see Genomic in situ hybridization (GISH)
Global Coffee Report 246
Global Crop Diversity Trust 70
GolS3. see Galactinol synthase (GolS3)
Gourmet coffee 324
Green Arabica Coffee Classification System 325
Green coffee 196, 291
in Haiti 375–377
non-volatile compounds of 292–294
cafestol and kahweol 293
caffeine 292
carbohydrates 293–294
chlorogenic acids in 197–201, 293
lipids 294
minerals 294
protein, peptides and free amino acids 294
soluble dietary fibre 293
trigonelline 292
water 293
volatiles of 295
Greenhouse gas (GHG) 360, 376–377
Green labelling 377
GS. see Genomic selection (GS)
Guineans genotypes 130–131
GWASs. see Genome-Wide Association Studies (GWASs)
GWS. see Genome-wide selection (GWS)
GXEI. see Genotype-by-environment interaction (GXEI)
Haitian green coffee 375–377
Harvard Health Professionals Follow-up Study 275
HCAs. see Hydroxycinnamic acids (HCAs)
HdT. see Hibrido de Timor (HdT) clones
Heartburn. see Gastro-oesophageal reflux
Hemileia vastatrix 98
Hibrido de Timor (HdT) clones 92, 93–94
Hippocrates 260
Hivos 374
HMF. see Hydroxymethylfurfural (HMF)
Hydraulic vulnerability 36
Hydroxycinnamic acids (HCAs) 203, 243–244
Hydroxymethylfurfural (HMF) 270
Hyper stimulation and caffeine 278
IAC. see Instituto Agronômico de Campinas (IAC)
IARC. see International Agency for Research on Cancer (IARC)
IBC. see Institute of Biodiversity Conservation (IBC)
ICCRI. see Indonesian Coffee and Cocoa Research Institute (ICCRI)
ICE. see Intercontinental Exchange Inc. (ICE)
ICGN. see International Coffee Genomics Network (ICGN)
ICO. see International Coffee Organization (ICO)
Illycaffé 162
Indonesian Coffee and Cocoa Research Institute (ICCRI) 344
INEAC. see Institut National pour’Etude Agronomique du Congo (INEAC)
Infusion method 300
Institute of Biodiversity Conservation (IBC) 87
Institut Français du Café et du Cacao (IFCC) 124
Institut National pour’Etude Agronomique du Congo (INEAC) 121
Instituto Agronômico de Campinas (IAC) 92, 163
Inter-African Coffee Organization 98
Intercontinental Exchange Inc. (ICE) 326
Interleukin-1 receptor-associated kinase (IRAK1) 247
International Agency for Research on Cancer (IARC) 270, 313
International Coffee Genomics Network (ICGN) 103
International Coffee Organization (ICO) 116
International Union for Conservation of Nature and Natural Resources (IUCN) 73
Inter-Simple Sequence Repeats (ISSRs) 141
Interspecific hybridization 127
Inter-varietal hybridization 124–125
IRAK1. see Interleukin-1 receptor-associated kinase (IRAK1)
Irradiance and coffee 28–33
growth and production 28–31
photosynthesis 31
photosynthetically active radiation (PAR) 32–33
Iso-mangiferin 241
ISSRs. see Inter-Simple Sequence Repeats (ISSRs)
IUCN. see International Union for Conservation of Nature and Natural Resources (IUCN)
IUCN Red List Category system 73–74
Jimma Agricultural Research Centre (JARC) 87, 95–96
Kianjavato Coffee Research Station (KCRS) 71, 74, 75
Kopi Luwak. see Asian palm civet coffee
Laurina 163
LCA, see Life Cycle Assessment (LCA)
Leaf water potential 24
Le Nez du Café 325–326
Leroy 163
Licensed Q Grader programme 326
Life cycle analysis 359–379
 carbon footprint 362–363
 Carbon Footprint – Product Category Rules (CFP-PCR) 364–365
 EX-ACT VC and CFT, 365–366
 Life Cycle Assessment (LCA) 361–362
 social and socio-economic Life Cycle Assessment 363–364
Life Cycle Assessment (LCA) 361–362
Limit of detection (LOD) 351
Limit of quantitation (LOQ) 351
Lipids in green coffee 196, 294
Liver diseases and coffee 276–277
LOD. see Limit of detection (LOD)
LOQ. see Limit of quantitation (LOQ)
Low-coffee arabica 164–165
Low-coffee coffee 159, 160
Low-coffee GCAs
 challenges of large-scale cultivation 166, 168
 fertilizer 168
 root stocks 166, 168
 in Madagascar 165–166
Macronutrients of coffee 263
Maillard reaction 207, 297, 298–299
Maillard reaction products (MRPs) 207, 222–225
 anti-inflammatory activity 223
 antimicrobial activity 224–225
 antioxidant activity 222–223
Mangiferin 241, 242, 245–247
MAPK. see Mitogen-activated protein kinase (MAPK)
Marker-assisted selection (MAS) 132, 148
Mass selection 123
Mass spectrometry (MS)-based detection system 341
Melanoidins 207–208, 222–224, 267
Melatonin 168
Mental performance and coffee 272–274
Metabolomics
 for coffee authentication 340–341
 for discriminating food products 339–340
 GC/MS- and GC/FID-based 342–354
 discriminant analysis 347
 discriminant markers for authenticity assessment 348–351
 extraction, derivatization and analytical conditions 346
 profiling of Kopi Luwak 346–347, 353–354
sample information 343–344
Micronutrients of coffee 264–265
Minerals in green coffee 294
Ministry of Agriculture and Rural Development of Ethiopia 162
Mitogen-activated protein kinase (MAPK) 247
MNHN. see Muséum national d’histoire naturelle (MNHN)
Molecular breeding techniques in robusta coffee 139–150
 candidate genes and QTLs 145–147
 description 139–141
 genetic diversity 143–145
 genomic selection (GS) 148–149
 marker-assisted selection (MAS) 148
 molecular markers 141–142
Molecular markers 141–142
Molecular phylogenetics 8
MRPs. see Maillard reaction products (MRPs)
MS-based detection system, Mass spectrometry (MS)-based detection system
Multiplexed shotgun genotyping (MSG) 142
Muséum national d’histoire naturelle (MNHN) 118
NAMAs. see Nationally Appropriate Mitigation Actions (NAMAs)
National Center of Applied Research and Rural Development (FOFIFA) 71, 73
National Institutes of Health 271
Nationally Appropriate Mitigation Actions (NAMAs) 374–375
Natural processing. see Dry processing
Nematodes and insect pests 99
NextRAD genotyping technique 142
NF-κB. see Nuclear factor kappa B (NF-κB)
Niacin 264
N-methyl nicotinic acid. see Trigonelline
N-methylpyridinium (NMP) 225
N-methyltransferases (NMTs) 11, 160–161
NMP. see N-methylpyridinium (NMP)
NMR. see Nuclear magnetic resonance (NMR)
NMTs. see N-methyltransferases (NMTs)
Non-caffeine coffee 163–164
Non-volatile compounds
 of green coffee 292–294
 cafestol and kahweol 293
 caffeine 292
 chlorogenic acids in 197–201, 293
 lipids 294
 minerals 294
 protein, peptides and free amino acids 294
 soluble dietary fibre 293
 trigonelline 292
 water 293
 in roasted coffee 297
Nuclear factor-E2-related factor 2 (Nrf2) 216

© Burleigh Dodds Science Publishing Limited, 2018. All rights reserved.
Nuclear factor kappa B (NF-κB) 247
Nuclear magnetic resonance (NMR) 55, 341
Nurses’ Health Study 275
OAV. see Odour activity values (OAV)
Ocratoxin A, 269, 313–314
Odour activity values (OAV) 304
Office de la Recherche Scientifique Outre-Mer (ORSTOM) Coffee Mission 87, 118
Omar, Sheikh 259
Omics technologies 3, 339
OpenCup 326
OPLS-DA. see Orthogonal projection to latent structures combined with discriminant analysis (OPLS-DA)
‘Organic Acids’ course 326
ORSTOM. see Office de la Recherche Scientifique Outre-Mer (ORSTOM)
Coffee Mission
Orthogonal projection to latent structures combined with discriminant analysis (OPLS-DA) 343, 347
Orthotropic branches 117
PAH. see Polycyclic aromatic hydrocarbons (PAH)
PAL. see Phenylammonialyase (PAL)
Palm Pilot 326
PAR. see Photosynthetically active radiation (PAR)
Parched pulse 259
Parkinson’s disease 274
Partial least squares (PLS) 305–306
Payments for ecosystem services (PES). see Payments for environmental services
Payments for environmental services 374
PCA. see Principal component analysis (PCA); Protocatechuic acid (PCA)
PCF. see Product carbon footprinting (PCF)
PES. see Payments for environmental services
Pesticides 269, 312
Phenolics
health benefits of 220–222
anti-inflammatory activity 221
antimicrobial activity 221–222
antioxidant activity 220
Phenylammonialyase (PAL) 59
Photosynthesis 31, 39
Photosynthetically active radiation (PAR) 29, 32–33
Physical performance and coffee 272–274
Pinhead phase 27
Plagiotropic branches 117
PLS. see Partial least squares (PLS)
Polycyclic aromatic hydrocarbons (PAH) 269–270, 315–316
Polyploidization 14
Polyploidy breeding 127–128
Polysaccharides 267
Pressure methods 300
Principal component analysis (PCA) 305, 343, 346, 349
ProClimate 370
Product carbon footprinting (PCF) 362
Programa Cooperativo Regional para el Desarrollo Tecnologico y Modernizacion de la Cafecultura (PROMECAFE) 97
Progreso 370
PROMECAFE. see Programa Cooperativo Regional para el Desarrollo Tecnologico y Modernizacion de la Cafecultura (PROMECAFE)
Protein and peptides in green coffee 196, 294
Protocatechuic acid (PCA) 222
Psilanthus genus 4
‘PUCE CAFE’ project 146
Pulping operation 332
Pyrazines 299
Q Grader certificate 326, 331
QIT Madagascar Minerals (QMM) 75
QTL. see Quantitative trait loci (QTL)
Quantitative real-time PCR (RT-qPCR) 145
Quantitative reverse transcription PCR (RT-qPCR) 147
Quantitative trait loci (QTL) 54–55, 132–133, 140, 145–147, 148–149
Quinic acid 203
RADseq. see Restriction site-Associated DNA tags (RADseq)
Rainforest Alliance 377
Random Amplified Polymorphic DNAs (RAPDs) 141
Rapid swelling phase 27
Rateleo. see General combining ability (GCA)
Rauwolf, Leonard 259
Razes 259
Reactive oxygen species (ROS) 240
Reciprocal recurrent selection (RRS) 125–126
Restriction fragment length polymorphism (RFLP) 13, 119, 141
Restriction site-Associated DNA tags (RADseq) 142
RFLP. see Restriction fragment length polymorphism (RFLP)
Ripeness, coffee 27, 332
RNA interference (RNAi) 163
Roasted coffee
chemical composition of 295–300
carbon dioxide 299–300
non-volatiles 297
volatiles 297–299
chlorogenic acids in 201–205, 297
Roasting process 197, 295
Robusta coffee. see also Coffea canephora
breeding methods 123–128
clonal/seed propagation 123–124
interspecific hybridization 127
inter-varietal hybridization 124–125
mass selection 123
polyploidy breeding 127–128
reciprocal recurrent selection 125–126
breeding priorities 128–130
for quality 129–130
description 115–116
development of varieties 130–133
choice of propagation 131
genetically distant genotypes 131
genomic tools application 132–133
and production agronomy 131–132
growth habits and agronomical
characteristics 117
improved varieties in 123
molecular breeding techniques in 139–150
candidate genes and QTLs 145–147
description 139–141
genetic diversity 143–145
genomic selection (GS) 148–149
marker-assisted selection (MAS) 148
molecular markers 141–142
species and commercial prospects 116–117
ROS. see Reactive oxygen species (ROS)
RRS. see Reciprocal recurrent selection (RRS)
RT-qPCR. see Quantitative real-time PCR
(RT-qPCR); Quantitative reverse
transcription PCR (RT-qPCR)

SAI. see Sustainable Agriculture Initiative (SAI)
Platform
SAM. see Significance analysis of microarrays/metabolites (SAM)
SCAA. see Specialty Coffee Association of America (SCAA)
SCAA Coffee Taster Certificate 326
SCAA Cupping Protocol 325, 326, 327–329, 331
SCAE. see Specialty Coffee Association of Europe (SCAE)
SDH. see Sorbitol dehydrogenase (SDH)
Self-incompatibility (SI) mechanism 8–9
‘Sensory Skills’ course 326
Sequencing-based diversity array technology
(DArTseq) 121, 144
Serotonin 168
Sl. see Self-incompatibility (SI) mechanism
Significance analysis of microarrays/metabolites
(SAM) 343, 347
Single Nucleotide Polymorphisms
(SNPs) 141, 142
Single Sequence Repeats (SSRs) 120, 141
S-LCA. see Socio-economic Life Cycle Assessment (S-LCA)
Sleep and caffeine 278
Slow metabolizers 272
SNPs. see Single Nucleotide Polymorphisms (SNPs)
Socio-economic Life Cycle Assessment (S-LCA) 363–364
Soluble dietary fibre in green coffee 293
Sorbitol dehydrogenase (SDH) 53
Speciality coffee 324
Specialty Coffee Association of America (SCAA) 166, 325, 326, 327
Specialty Coffee Association of Europe (SCAE) 327
Specialty Coffee Standard 325
Specialty Grade 325
Spermine and spermidine 168
S-RNase GSI system 8–9
SSRs. see Single Sequence Repeats (SSRs)
Statistical methods 179–180
Sterols in coffee 294
Strecker degradation 297
Suspended and slow growth stage 27
Sustainable Agriculture Initiative (SAI)
Platform 364–365
Swiss Water Process 160
Tanzania Coffee Research Institute (TaCRI) 96
Tastify™ 326
Temperature and coffee 38–39
growth and production 38–39
photosynthesis 39
TEs. see Transposable elements (TEs)
Transcriptome analysis 51
Transposable elements (TEs) 11
Trigonelline 205–206, 267
in green coffee 292
health benefits of 225
anti-inflammatory activity 225
antimicrobial activity 225
antioxidant activity 225
Tuna crisis 248
Type 2 diabetes and coffee 276
Typica 12
UCC Ueshima Company R&D Center 166
UNEP. see United Nations Environment Programme (UNEP)
Union internationale pour la Protection
des Obtentions Végétales
(UPOV) 175, 186–187
United Nations Conference on the Environment
and Development 361
United Nations Environment Programme
(UNEP) 363
UPOV. see Union internationale pour la Protection des Obtentions Végétales (UPOV)

USDA National Nutrient Database 263

Vegetative selection 124, 185
Volatile organic compounds (VOCs) 50–51, 60
Volatile selection 208–209
 of green coffee 295
 in roasted coffee 297–299

Water content
 and coffee 33–37, 196
 biomass partitioning and growth 35–36
 drought tolerance 36–37
 and gas exchange 33–35
 hydraulic vulnerability 36
 in green coffee 293

Water-use efficiency (WUE) 35
Wet processing 302
‘Which-won-where’ pattern 180
Wild coffee species 162
Wize Monkey 248–249
World Coffee Research 70, 178
WUE. see Water-use efficiency (WUE)

Xanthones 241