Achieving sustainable cultivation of grain legumes

Volume 2: Improving cultivation of particular grain legumes

Edited by Dr Shoba Sivasankar, Dr David Bergvinson, Dr Pooran Gaur, Dr Shiv Kumar, Dr Steve Beebe and Dr Manuele Tamò
Contents

Series list xi
Foreword xv
Acknowledgements xvii
Introduction xviii

Part 1 Cultivation of common beans, lentils, soybeans and groundnuts

1 Developing improved varieties of common bean 3
 James D. Kelly, Michigan State University, USA
 1 Introduction 3
 2 Yield and yield gap in common beans 4
 3 Factors affecting bean yields 5
 4 Quantitative trait loci (QTL) analysis 8
 5 Genomic analysis 12
 6 Conclusion 13
 7 Future trends 13
 8 Where to look for further information 14
 9 References 14

2 Improving cultivation practices for common beans 19
 John O. Ojiem, Kenya Agricultural and Livestock Research Organization, Kenya
 1 Introduction to the common bean: origin, domestication 19
 and economic importance
 2 World production trends 20
 3 Production constraints 23
 4 Cropping system 27
 5 Integrated pest management 30
 6 Management of diseases 31
 7 Water management 33
 8 Nutrient management: phosphorus (P) and nitrogen (N) 36
 9 Nutrient management: further issues 40
 10 Conclusion 43
 11 Where to look for further information 43
 12 Abbreviations and acronyms 44
 13 References 44

3 Developing improved varieties of lentil 51
 William Erskine, University of Western Australia, Australia; Ashutosh Sarker,
 International Center for Agricultural Research in the Dry Areas (ICARDA), India;
 and Shiv Kumar, International Center for Agricultural Research in the Dry Areas
 (ICARDA), Morocco
 1 Introduction 51
 2 Production regions and their agro-ecologies 52
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Phylogeny, domestication/spread and genetic resources</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td>Problems addressable by breeding</td>
<td>56</td>
</tr>
<tr>
<td>5</td>
<td>Breeding methods</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>New technologies</td>
<td>59</td>
</tr>
<tr>
<td>7</td>
<td>Success stories</td>
<td>62</td>
</tr>
<tr>
<td>8</td>
<td>Future trends</td>
<td>63</td>
</tr>
<tr>
<td>9</td>
<td>Where to look for further information</td>
<td>64</td>
</tr>
<tr>
<td>10</td>
<td>References</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>Improving cultivation of lentil</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Fred J. Muehlbauer, Washington State University, USA; and Ashutosh Sarker, International Center for Agricultural Research in the Dry Areas (ICARDA), India</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>71</td>
</tr>
<tr>
<td>2</td>
<td>Lentil description</td>
<td>73</td>
</tr>
<tr>
<td>3</td>
<td>Climate requirements for lentil cultivation</td>
<td>74</td>
</tr>
<tr>
<td>4</td>
<td>Land requirements for lentil cultivation</td>
<td>74</td>
</tr>
<tr>
<td>5</td>
<td>Nutrient requirements for lentil cultivation</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>Seed quality and treatments</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>Land preparation and planting</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>Innovations in lentil cropping systems</td>
<td>77</td>
</tr>
<tr>
<td>9</td>
<td>Conclusion and future trends</td>
<td>80</td>
</tr>
<tr>
<td>10</td>
<td>Where to look for further information</td>
<td>80</td>
</tr>
<tr>
<td>11</td>
<td>References</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>The use of marker-assisted selection in developing improved varieties of soybean</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Y.-C. Lee, R. Lemes Hamawaki, V. Colantonio, M. J. Iqbal and D. A. Lightfoot, Southern Illinois University, USA</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>83</td>
</tr>
<tr>
<td>2</td>
<td>Genomes as intellectual property</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>Methods for MAS</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>Marker development</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>Choice of markers</td>
<td>88</td>
</tr>
<tr>
<td>6</td>
<td>Identification of polymorphism</td>
<td>89</td>
</tr>
<tr>
<td>7</td>
<td>Genetic and association map development</td>
<td>91</td>
</tr>
<tr>
<td>8</td>
<td>Marker-assisted recovery of recurrent parent genome</td>
<td>92</td>
</tr>
<tr>
<td>9</td>
<td>MAS in recurrent cross populations</td>
<td>92</td>
</tr>
<tr>
<td>10</td>
<td>Scoring of phenotypes</td>
<td>93</td>
</tr>
<tr>
<td>11</td>
<td>Use of molecular markers to select desirable traits in soybean</td>
<td>93</td>
</tr>
<tr>
<td>12</td>
<td>Future trends and conclusion</td>
<td>98</td>
</tr>
<tr>
<td>13</td>
<td>Where to look for further information</td>
<td>98</td>
</tr>
<tr>
<td>14</td>
<td>References</td>
<td>99</td>
</tr>
<tr>
<td>6</td>
<td>Improving cultivation practices for soybeans in sub-Saharan Africa</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Frederick P. Baijukya and Harun M. Murithi, International Institute of Tropical Agriculture (IITA), Tanzania; and Fred Kanampiu, International Institute of Tropical Agriculture (IITA), Kenya</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>105</td>
</tr>
<tr>
<td>2</td>
<td>Trends in soybean production and consumption in SSA</td>
<td>107</td>
</tr>
</tbody>
</table>

© Burleigh Dodds Science Publishing Limited, 2018. All rights reserved.
Bravo-Ureta and Jeremy Jelliffe, University of Connecticut, USA; Agnes Budu, University of Ghana, Ghana; Hendrix Chalwe, Alice Mweetwa and Munsanda Ngulube, University of Zambia, Zambia; Awere Dankyi and Brandford Mochia, Crops Research Institute, Ghana; Vivian Hoffmann, International Food Policy Research Institute, USA; Amade Muitia, Mozambique Institute of Agricultural Research, Mozambique; Agnes Mwangwela, Lilongwe University of Agriculture and Natural Resources, Malawi; Sam Njoroge, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Malawi; David Okello, National Semi-Arid Resources Research Institute (NaSARRI), Uganda; and Nelson Opoku, University for Development Studies, Ghana

1 Introduction
2 Factors impacting aflatoxin development
3 Prediction models for aflatoxin development
4 Minimizing aflatoxin contamination
5 Aflatoxin contamination during drying, storage and processing
6 Challenges in mycotoxin research
7 Value chain projects
8 Conclusion
9 Where to look for further information
10 References

Part 2 Cultivation of cowpea, faba beans and pigeonpea

10 Breeding improved varieties of cowpea
B. B. Singh, G.B. Pant University of Agriculture and Technology, India

1 Introduction
2 Production constraints
3 Cowpea breeding programmes and past challenges
4 Cowpea breeding at IITA
5 Highlights of progress made
6 Cowpea international trials
7 Future trends and conclusion
8 Where to look for further information
9 References

11 Improving cultivation of cowpea in West Africa
Alpha Y. Kamara, Lucky O. Omoigui and Nkeki Kamai, International Institute of Tropical Agriculture (IITA), Nigeria; Sylvester U. Ewansiha, University of Benin, Nigeria; and Hakeem A. Ajeigbe, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nigeria

1 Introduction
2 Optimal plant population
3 Plant configuration in intercropping systems in West Africa
4 Manipulating planting dates to improve cowpea productivity
5 Nutrient management for increased cowpea productivity
6 Integrated pest management (IPM) in cowpea production
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Future trends and conclusion</td>
<td>247</td>
</tr>
<tr>
<td>8</td>
<td>Where to look for further information</td>
<td>247</td>
</tr>
<tr>
<td>9</td>
<td>References</td>
<td>248</td>
</tr>
<tr>
<td>12</td>
<td>Developing improved varieties of faba bean</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Fouad Maalouf, International Center for Agricultural Research in the Dry Areas (ICARDA), Lebanon; and Seid Ahmed and Somanagouda Patil, International Center for Agricultural Research in the Dry Areas (ICARDA), Morocco</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Introduction</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>2 Heat tolerance</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>3 Drought tolerance</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>4 Herbicide tolerance</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>5 Breeding for resistance to foliar diseases</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>6 Breeding for broomrape resistance</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>7 Biological nitrogen fixation</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>8 Major achievements</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>9 Future trends and conclusion</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>10 References</td>
<td>263</td>
</tr>
<tr>
<td>13</td>
<td>Efficient and sustainable production of faba bean</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>R. Redden, RJR Agricultural Consultants, Australia; X. Zong, Chinese Academy of Agricultural Sciences (CAAS), China; R. M. Norton, International Plant Nutrition Institute and The University of Melbourne, Australia; F. L. Stoddard, University of Helsinki, Finland; F. Maalouf, International Centre for Agricultural Research in the Dry Areas (ICARDA), Lebanon; S. Ahmed and M. El Bouhssini, International Centre for Agricultural Research in the Dry Areas (ICARDA), Morocco; Y. Tao and L. Rong, Chinese Academy of Agricultural Sciences (CAAS), China; and L. Ling, Liaoning Academy of Agricultural Science, China</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Introduction</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>2 Faba bean production in China</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>3 Faba bean production in Central and West Asia, North Africa regions (CWANA)</td>
<td>274</td>
</tr>
<tr>
<td></td>
<td>4 Faba bean breeding</td>
<td>276</td>
</tr>
<tr>
<td></td>
<td>5 Faba bean genetic and genomic resources</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>6 Faba bean management with limited water resources</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>7 Faba bean BNF</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>8 Faba bean mineral nutrient requirements</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>9 Conclusion</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>10 Where to look for further information</td>
<td>288</td>
</tr>
<tr>
<td></td>
<td>11 References</td>
<td>288</td>
</tr>
<tr>
<td>14</td>
<td>Developing improved varieties of pigeonpea</td>
<td>297</td>
</tr>
<tr>
<td></td>
<td>K. B. Saxena, United Arab Emirates; Y. S. Chauhan, Department of Agriculture and Fisheries, Australia; C. V. S. Kumar, A. J. Hingane, R. V. Kumar, R. K. Saxena and G. V. R. Rao, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), India</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Introduction</td>
<td>297</td>
</tr>
<tr>
<td></td>
<td>2 Pigeonpea for nutritional security</td>
<td>298</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3</td>
<td>Factors affecting stability of pigeonpea production</td>
<td>299</td>
</tr>
<tr>
<td>4</td>
<td>Genetic factors influencing sustainability of pigeonpea production</td>
<td>303</td>
</tr>
<tr>
<td>5</td>
<td>Enhancing pigeonpea sustainability through crop modelling</td>
<td>306</td>
</tr>
<tr>
<td>6</td>
<td>Enhancing sustainability through an efficient seed system</td>
<td>307</td>
</tr>
<tr>
<td>7</td>
<td>Enhancing sustainability through plant breeding</td>
<td>308</td>
</tr>
<tr>
<td>8</td>
<td>Pigeonpea hybrids for greater productivity and sustainability</td>
<td>316</td>
</tr>
<tr>
<td>9</td>
<td>Future trends and conclusion</td>
<td>320</td>
</tr>
<tr>
<td>10</td>
<td>Where to look for further information</td>
<td>321</td>
</tr>
<tr>
<td>11</td>
<td>References</td>
<td>321</td>
</tr>
<tr>
<td>15</td>
<td>Improving the cultivation of pigeonpea</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>K. R. Latha and L. Vimalendran, Tamil Nadu Agricultural University,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>India</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>327</td>
</tr>
<tr>
<td>2</td>
<td>Seeds and sowing</td>
<td>329</td>
</tr>
<tr>
<td>3</td>
<td>Intercropping/mixed cropping</td>
<td>334</td>
</tr>
<tr>
<td>4</td>
<td>Nutrient management</td>
<td>336</td>
</tr>
<tr>
<td>5</td>
<td>Water management</td>
<td>341</td>
</tr>
<tr>
<td>6</td>
<td>Efficient use of fertilizer and water</td>
<td>343</td>
</tr>
<tr>
<td>7</td>
<td>Weed management</td>
<td>347</td>
</tr>
<tr>
<td>8</td>
<td>Agronomic management of pigeonpea hybrids</td>
<td>349</td>
</tr>
<tr>
<td>9</td>
<td>Early-maturing pigeonpea varieties</td>
<td>351</td>
</tr>
<tr>
<td>10</td>
<td>Rabi and summer pigeonpea cultivation</td>
<td>355</td>
</tr>
<tr>
<td>11</td>
<td>Harvesting, threshing and storage</td>
<td>356</td>
</tr>
<tr>
<td>12</td>
<td>Conclusion</td>
<td>356</td>
</tr>
<tr>
<td>13</td>
<td>Guidelines for future research</td>
<td>357</td>
</tr>
<tr>
<td>14</td>
<td>Where to look for further information</td>
<td>358</td>
</tr>
<tr>
<td>15</td>
<td>References</td>
<td>359</td>
</tr>
</tbody>
</table>

Index | 367 |
Foreword

The world continues to face serious challenges of hunger and malnutrition as well as the challenges of increasing food production in a sustainable way that protects the environment and maintains the productivity of agricultural land. According to the FAO, despite all the efforts to address these challenges over many years, about 795 million people of the 7.3 billion people in the world, or one in nine, suffered from chronic undernourishment in 2014–2016. Despite their vital importance to address these global challenges, pulses have not received sufficient world attention for the potential role they can play. Pulses are at least 3 to 4 times richer in plant-based protein compared to major cereals crops such as rice and wheat. They have a complementary amino acid profile with cereals and make a balanced diet when combined with cereals. This is particularly important for the low-income strata of the population. They are also high in micro-nutrients, especially iron and zinc, which address the problem of hidden hunger and anemia. Pulses are also high in dietary fiber and a good source of carbohydrates which makes them a great functional food.

In addition to their unique nutritional qualities, pulses, as leguminous plants, fix atmospheric nitrogen which enhances soil fertility and maintains soil productivity, protecting the environment. They have a relatively low carbon footprint compared to other crops since they do not require chemical nitrogen fertilizer. Including pulses in crop rotations reduces the overall N fertilizer requirement of crop production systems which has great benefits to the subsequent crops in the rotation. This makes them important climate change crops. Pulses are certainly the best crops to solve the soil problems caused by the cereals monoculture that many developing countries follow due to the subsidies for cereals.

Only very recently the world community recognized the importance of pulses through the declaration of 2016 as the International Year of Pulses (IYP 2016). This was announced by the United Nations General Assembly upon the recommendation of FAO General Conference. Although the recognition was belated, it has been an excellent opportunity ‘to raise public awareness of the nutritional benefits of pulses as part of sustainable food production aimed towards food security and nutrition’. The IYP 2016 was successful in achieving its objectives considering the many activities held throughout the world, as was well documented by The IYP 2016 Legacy developed by FAO with other stakeholders on pulses as ‘nutritious seeds for sustainable future’.

However, pulses still face major challenges that require immediate attention so that they can play their potential role to help achieve food and nutritional security as well as sustainable agricultural production systems. The areas that require immediate attention include the following:

- Pulses should be considered as major crops and not as secondary crops mostly grown under rainfed marginal conditions. Thus, they deserve much more investment in both research and development (R & D) which are currently negligible compared to the R & D investment in cereals.
- More research efforts should focus on ensuring high yield potential by utilizing a wider range of genetic diversity to mine desirable genes from both conserved land races and wild relatives.
- More work needs to be done on yield instability through breeding for tolerance and durable resistance to a range of abiotic and biotic stresses.
• More attention needs to be paid to emerging new constraints and stresses that are caused by climate change, including excessive drought and heat as well as emerging diseases and insect pests.
• Overcoming inappropriate policies favouring cereal production at the expense of pulses as a result of subsidies. This could involve either lifting subsidies on cereals or providing similar subsidies to pulses as India rightly did recently.
• Last but not least, overcoming the limited access of farmers to high quality seed from improved varieties and other important inputs for high pulses productivity.

The two volumes of *Achieving sustainable cultivation of grain legumes*, the first on advances in breeding and cultivation and the second on improving cultivation of particular grain legumes, are very timely. They bring more visibility to these important crops as well as updated knowledge on both the science and practical advances in cultivation addressing the challenges facing specific pulses so that they can play their role in achieving food and nutritional security as well as sustainable agricultural production.

Mahmoud El Solh, Ph.D.
Former Director General
International Center for Agricultural Research in the Dry Areas (ICARDA)
Introduction

Grain legumes are widely cultivated, particularly for their dry seeds (known as pulses). The FAO defines pulses as crop plant members of the *Leguminosae* family (commonly known as the pea family) that produce edible seeds. In this definition, only legumes harvested for dry grain are classified as pulses, excluding species such as soybean and groundnut. However, broader definitions of grain legumes include groundnut and soybean as well as common bean and lentils which are grown globally. Other more regionally-specific types of pulses include cowpea, faba beans and pigeonpea.

Grain legumes are important in the developing world for a number of reasons. They are a rich source of protein and fibre, minerals and vitamins. In addition, their rapid growth and ability to fix nitrogen and improve soil health makes them a key rotation crop in the sustainable intensification and diversification of smallholder farming. This makes grain legumes a key food security crop. However, yields in developing countries are low as a result of such factors as the need for improved varieties of seed, poor seed distribution, the impact of pests and diseases, as well as vulnerability to poor soils, drought and other effects of climate change. There is now a rich body of research addressing these challenges.

The challenges facing grain legumes are addressed in the two volumes of *Achieving sustainable cultivation of grain legumes*:

- Volume 1 Advances in breeding and cultivation techniques
- Volume 2 Improving cultivation of particular grain legumes

This volume reviews key research on particular types of grain legumes with chapters on developing improved varieties as well as improvements in cultivation techniques. Part 1 covers common beans, lentils, soybeans and groundnuts. Part 2 discusses cowpea, faba beans and pigeonpea.

Part 1 Cultivation of common beans, lentils, soybeans and groundnuts

There is a long history of genetic improvement of the common bean. Chapter 1 describes breeding programs focusing on a wide range of biotic and abiotic production constraints, traits for local adaptation and consumer quality, with yield being the overriding challenge for most bean breeding programs. The chapter assesses the wide range of breeding procedures used to improve bean yields, from ideotype to molecular breeding. It discusses the impact of these techniques on yield gains and future trends in genomic analysis research on yield improvement.

Chapter 2 looks at the origin, domestication and economic importance of common bean, including world production trends. It also assesses production constraints, such as soil fertility and acidity, pests and diseases, drought and heat stresses. It goes on to describe ways of addressing these constraints through cropping systems, integrated pest management, and management of diseases such as angular leaf spot (ALS), anthracnose, common bacterial blight and halo blight. Water and nutrient management, including phosphorus and nitrogen, are discussed, as well as sections on liming and foliar fertilization.
Lentil is a popular pulse consumed primarily in Asia. It has a high protein content and also contains high amounts of macro- and micro-nutrients. Lentil is an important food legume in the semi-arid regions of the world where it can be grown successfully on limited soil moisture and in relatively poor soils. The inclusion of lentils in rotations also benefits succeeding crops as a result of biological nitrogen fixation. Chapter 3 reviews the global production of lentils, including production regions and their agro-ecologies, and shows how breeding methods and technology, and the use of new varieties with higher yield potential and improved disease resistance, have led to increased productivity in many countries. It discusses successful attempts to broaden the genetic base of lentil in South Asia and to cross domestic varieties with wild relatives to access new disease-resistance genes. Finally, it considers the scope for breeding new climate-smart varieties of lentil in response to emerging climate changes and variability.

Chapter 4 describes the climate, land and nutrient requirements for lentil cultivation, before going on to address agronomic practices used in lentil-producing countries, including methods of land preparation, sowing, harvesting, threshing and cleaning. Procedures used in developed countries where the crop is entirely mechanized are also included, as well as innovations in lentil cropping systems. The chapter suggests improvements to seed supply systems, seed varieties, planting methods, weed control and harvesting methods.

After discussing research on the soybean genome, Chapter 5 describes methods for developing and using DNA markers derived from genomic sequences for monogeneic, oligogeneic and polygeneic traits, together with examples of successful mapping, fine mapping and gene isolation. The chapter discusses identification of polymorphism, genetic and association map development, and marker-assisted selection (MAS) of the recurrent parent genome. It also looks at MAS in recurrent cross populations, and the scoring of phenotypes, before examining ways in which marker-assisted selection can be used to isolate and select desirable traits in soybeans.

Soybean production in sub-Saharan Africa (SSA) has increased significantly in response to demand arising from increasing populations and improved incomes, though many countries still rely on imports. There is therefore an urgent need to further improve the production of this important legume. Chapter 6 discusses trends in soybean production and consumption across the region, and reviews best practices for soybean cultivation, together with evidence for their effectiveness in improving soybean yields. These best practices include use of improved varieties, inoculation, improved crop management, as well as nutrient, disease and pest management. The authors discuss the importance of supporting these practices with good input delivery and financing systems, agricultural advisory services and functioning output markets.

Groundnut is an important nutrient-dense crop grown in over 100 countries. Breeding for improved varieties is critical for increasing yields and enhancing quality. Chapter 7 describes the genetic resources of groundnut and their potential for mining desirable traits, potential breeding targets and ways to maximise groundnut oil quantity and quality. The chapter provides a detailed case study of groundnut production in Uganda, and outlines the potential benefits of improved groundnut varieties, including disease resistance, as well as suggesting future directions for groundnut research.

Groundnut is largely grown under rainfed conditions in Asia and Africa by resource-poor small-holder farmers, requiring low-cost technologies based on locally-available resources. The diverse growing conditions of the crop necessitate development of crop management
techniques to meet specific requirements. Genetic and management techniques can realize optimal groundnut pod yield, meet the needs of processors and consumers, and ensure food safety standards. Chapter 8 discusses the limitations of current agronomic guidelines, as well as best practice in field preparation, soil resource management, seed preparation, planting, weed and water management, as well as plant protection. The chapter goes on to describe harvesting, drying, curing and storage processes, as well as trends in seed production.

Aflatoxin contamination of crops and food poses a substantial threat to humans and livestock worldwide. Preventing various Aspergillus species from becoming established and growing on peanuts (groundnut, *Arachis hypogaea* L.) can reduce aflatoxin contamination. Chapter 9 describes factors that affect the growth of *A. flavus* and *A. parasiticus* on groundnuts. The chapter also discusses the use of models to predict contamination, as well as cultural and biological control measures designed to minimize contamination. The chapter also features three case studies from current value chain projects in Ghana, Haiti, and Malawi. The chapter argues the need for a more focused and concerted effort to address the issue of aflatoxin contamination in groundnuts.

Part 2 Cultivation of cowpea, faba beans and pigeonpea

Cowpea is a legume crop of vital importance to the livelihoods of millions of people, providing a nutritious grain and an inexpensive source of protein for both rural poor and urban consumers. It is grown for both food and animal feed and is an integral component of various cropping systems in the semi-arid tropics and sub-tropics covering over 65 countries. Chapter 10 describes production constraints, existing cowpea breeding programs and past challenges, with a particular focus on cowpea breeding at the International Institute for Tropical Agriculture (IITA). The chapter gives an account of progress in breeding improved varieties made to date, including cowpea international trials, and suggests lines of research for the future.

Chapter 11 examines what constitutes an optimal cowpea plant population and explains how to integrate the crop in intercropping systems in West Africa. The chapter explores how planting dates can be manipulated to improve cowpea productivity, and how nutrient management can be used to increase cowpea yields. Finally, the chapter examines the application of Integrated Pest Management (IPM) in cowpea production and looks ahead to future trends in this area.

The faba bean is an important cool-season food legume crop grown under different cropping systems for food, animal feed and as a green manure. Chapter 12 discusses key advances in producing new varieties of faba bean that can achieve high nitrogen fixation, are tolerant of heat, drought and herbicides, as well as varieties resistant to broomrape, and disease. The chapter looks ahead to future research trends in this area.

Faba bean is mainly grown under rain-fed conditions, although irrigated production is important in Egypt, parts of China and Central Asia. The main focus of Chapter 13 is faba bean cultivation under rain-fed growing conditions, covering production in China, West Asia, North and East Africa. The chapter discusses the diseases, weeds and pests affecting this crop and ways they can be managed. It also reviews faba bean breeding, genetic resources and markers for breeding, water deficit management, tillage systems, biological nitrogen fixation (BNF) and mineral nutrient requirements.
Pigeonpea is a high protein pulse crop that grows well under biotic and abiotic stress situations. It has the potential to play a significant role in meeting the challenges of food security in the tropics and sub-tropics. Chapter 14 examines the role of pigeonpea in global nutritional security for humans and animals, and addresses the physical, environmental and genetic factors that may affect the sustainability of pigeonpea production. The chapter examines four ways of enhancing pigeonpea production: through crop modelling, an efficient seed system, plant breeding and hybridization. Finally, the chapter considers the latest trends in pigeonpea breeding and production.

Production of pigeonpea is constrained by poor agronomic practices such as improper methods of sowing, incorrect sowing time, inadequate seed rate, insufficient weeding, inappropriate fertilization and insufficient irrigation. Low plant densities, low soil fertility, insufficient weeding and insufficient/inappropriate use of fungicides and herbicides may also be constraints. Chapter 15 discusses seeds and sowing, and analyses integrated crop management techniques for pigeonpea with an emphasis on efficient fertilizer, nutrient management and water use to maximize sustainable yields. The chapter examines the role of weed management and the potential contributions of pigeonpea hybrid cultivars, early maturing pigeonpea varieties, as well as rabi and summer pigeonpea. It concludes by looking at harvesting, threshing and storage techniques, before looking ahead to future trends in this area.
Index

Abiotic stress
 common bean production 24
cowpea 217
groundnut 134–136
lentil 57–58
pigeonpea susceptibility 303

Accesso Peanut Enterprise Corporation 201–202

Acquired thermotolerance (ATT) 136

Aflatoxin contamination, in
 groundnut 131–132, 168–169
 biological control 190
 case study 195–203
 controlling at village level 195–201
 cropping systems 185–186
 drying, storage and processing 190–192
 factors impact 182–184
 in Ghana 193–195
 irrigation 189–190
 minimizing 185–190
 in Mozambique 193–195
 nongovernmental organizations and private sector 201–202
 pod and kernel damage 190
 prediction models 184–185
 resistant cultivars 186–187
 soil fertility and plant nutrition 187
 soil organic matter and texture 187–188
 sowing and harvest date 188–189
 in Uganda 193–195
 value chain projects 193–203
 in Zambia 189

African Agricultural Technology Foundation (AATF) 228
Afri-Nut Ltd. 202–203
Agricultural extension and advisory services 119
Agricultural Production Systems Simulator (APSIM) 184

Agro-ecology
 lentil 53–54
 sub-Saharan Africa
 groundnut 125, 129, 137, 140
 soybean 110, 113
Agronomic management, pigeonpea hybrids 349–350

Alectra vogelii 223–224

All India Co ordinated Pulses Improvement Project (AICPIP) 331, 332, 336, 349
All India Co ordinated Research Project (AICRP) 334, 348, 359

AMF. see Arbuscular mycorrhizal fungi (AMF)

Andean bean
 genome-wide association studies 11, 13
 symbiotic nitrogen fixation 8
 yields 5, 6

Angular leaf spot (ALS) 25, 31

Anthracnose
 bean 25, 32
 lentil 63

Arachis hypogaea L. see Groundnut

Arbuscular mycorrhizal fungi (AMF)
 common beans 37–38
 faba bean 285–286

Arbuscules 162

Arid environments 311

Ascochyta blight (AB) 53–54

Aspergillus flavus 131–132, 137
 aflatoxin biosynthesis pathway in groundnut (see Groundnut)

Bacillus spp.
 B. subtilis 163
 B. thuringiensis 228–229

Bacterial artificial chromosome (BAC) 299

Bean. see also specific beans
 anthracnose 25, 32
 common mosaic necrotic virus (BCMN) 25
 common mosaic virus (BCMV) 25, 32
 golden mosaic virus (BGMV) 25
 golden yellow mosaic virus (BGYMV) 25
 root rots 33

Bean pod weevil 31

Bhoochetana project 339

Biofertilizers, groundnuts 161–162

Biological nitrogen fixation (BNF)
 common bean 27, 28
 cowpea 245
 faba bean 258–259, 282–283
 soybean 97–98, 108–109

Biomass
 accumulation of soybean variety 115
 pigeonpea 299–300

Biotechnology, for insect resistance 228–229

Biotic stress
 common bean production 24
 cowpea 217
 groundnut 127–134
 aflatoxin 131–132
 foliar diseases 132–134
 viruses 128–131
 lentil 57–58
 pigeonpea susceptibility 303

Blanket fertilizer application 157

BNF. see Biological nitrogen fixation (BNF)

Boron deficiency, groundnuts 161

Breeding method
 for broomrape resistance 258
 common beans 6
 cowpea
 drought and heat tolerance 224–225
 germplasm resources 219–220
improved nutritional quality 226–227
International Institute of Tropical Agriculture 218–220, 227
limited programmes and past challenges 217–218
nitrogen fixation 225–226
objectives 219, 221
phosphorus 225–226
resistance to major diseases 223
resistance to major insects 224
variety development and testing 220

faba bean
heat, drought and waterlogging stresses 278
Orobanche resistance 277
resistance to foliar/soil-borne diseases 276–277
fragile ecosystems 310–311
groundnut 126–136, 138–139
abiotic stress resistance 134–136
biotic stress resistance 127–134
yields 126–127
lentil 58–59
pigeonpea
disease resistance 312
high-protein content 314–316
insect resistance 312–313
resistance to waterlogging 313–314
resistance to foliar diseases 257–258

Broad bed furrows (BBF) 332
Broomrape (Orobanche spp.) 53, 57, 58, 63, 275
breeding for resistance 258, 277
herbicide tolerance 256
resistance varieties 259–260
Bruchus rufimanus 275
Bulked segregant analysis (BSA) 84

Cajanus cajan L. Millspaugh. see Pigeonpea
Calcium deficiency, groundnut 160–161, 187–188
CCRP. see Collaborative Crop Research Program (CCRP)
Central and West Asia, North Africa (CWANA) regions, faba bean 274–276, 278
Centro Internacional de Agricultura Tropical (CIAT) 7, 37
Cercospora leaf spot (Cercospora zonata) 277
CGIAR. see Consultative Group for International Agricultural Research (CGIAR)
Chandra Shekhar Azad University of Agriculture and Technology (CSUAT) 331
China, faba bean in 270–274
area and production 270–272
cropping systems 272–273
export and import 274
soil fertility 273
Chitedze Agricultural Research Station 202–203

CIAT. see Centro Internacional de Agricultura Tropical (CIAT)
Climate change
extra-short-duration pigeonpea varieties 351–352
impact on soybean 118
lentil cultivation 74
Clinton Guistra Enterprise Partnership 201
Coat protein (CP) 128
Collaborative Crop Research Program (CCRP) 26
Common bacterial blight 32
Common bean 3
adaptation 3
in Africa 21, 23–24
biological nitrogen fixation 27, 28
breeding methods 6
cropping system 27–30
diseases management 31–33
angular leaf spot 31
anthracnose 32
bean common mosaic viruses 32
bean root rots 33
common bacterial blight 32
halo blight 32
economic significance 20
in Europe 22
future trends 13–14
genome-wide association studies 12
genomic analysis 12
ideotype 5
integrated pest management 30–31
in Latin America 21, 23–24
in Mexico 4
North America and Caribbean 22
nutrient management 30, 36–43
foliar fertilization 42–43
integrated soil fertility management 40–42
liming for soil acidity management 42
nitrogen 36, 38–39
phosphorus 36–38
origin and domestication 19–20
partitioning 5–6
production constraints 23–27
moisture stress 25
pests and diseases 25
seed quality considerations 26–27
soil fertility and acidity 23–25
quantitative trait loci analysis 8–11
seed yield QTL 9–11
spatial distribution 28
sub-Saharan Africa 20, 22–23
water management 33–36
drip irrigation 34–36
furrow irrigation 34, 35
wild germplasm 7
world production trends 20–23
Index

yield gap 4
yields 4–5
component compensation 5
factors affecting 5–8
pyramid 6–7
under stress 7–8
Conservation tillage, see Tillage system
Consultative Group for International Agricultural Research (CGIAR) 358
Conventional intercropping system 28–29
Cotyledons 73, 131, 216
Cowpea 215
biotechnology for insect resistance 228–229
breeding
drought and heat tolerance 224–225
improved nutritional quality 226–227
International Institute of Tropical Agriculture 218–220, 227
limited programmes and past challenges 217–218
nitrogen fixation 225–226
objectives 219, 221
phosphorus 225–226
resistance to major diseases 223
resistance to major insects 224
variety development and testing 220
future trends 227–230
global production 228
improved varieties
impact 228
performance 223
protein, iron and zinc contents 227
pyramiding genes for resistance 224
insect pests 217
international trials (CITs) 227
medium maturing semi-erect type
varieties 222–223
origin 216
production constraints 217
regional preferences 216
Striga and Alectra resistance 223–224
versatility 216
West Africa 235–236
future trends 247
integrated pest management 245–247
intercropping systems 237–241
nutrient management 244–245
optimal population 236–237
rainfall distribution and planting dates 241–244
CP, see Coat protein (CP)
Crop geometry 332–333
Crop modelling, pigeonpea enhancing sustainability through 306–307
Cropping system
common bean 27–30
faba bean 272–273
lentil 77–79
pigeonpea 302, 339–341
Crop rotation 165
CSUAT, see Chandra Shekhar Azad University of Agriculture and Technology (CSUAT)
Cytoplasmic nuclear male sterility 316
Dehydration-responsive element binding (DREB) transcription factors 135
Democratic Republic of the Congo (DRC) groundnut leaf miner 142
soybean 113, 114
Disease resistance, breeding pigeonpea for 312
DNA markers, soybean 84, 88–89
Double cropping
lentil 52, 78
soybean-cowpea 228
Double-up legumes technology 165
DRC, see Democratic Republic of the Congo (DRC)
DREB transcription factors, see Dehydration-responsive element binding (DREB) transcription factors
Drip irrigation
common bean 34–36
pigeonpea 344–346
Drought tolerance
common bean 25, 33
cowpea breeding 224–225
faba bean 255–256
groundnut 134–136, 182–183
DSSAT-CROPGRO-Peanut 184
Early leaf spot (ELS) groundnut 127, 132–134, 168
Economic significance, common bean 20
Effector-triggered immunity (ETI) 131
ESDP varieties, see Extra-short-duration pigeonpea (ESDP) varieties
Ethiopian Institute of Agricultural Research (EIAR) 257–258, 277
Etiella zinckenella (Treitschke) 30
Exagris Africa Ltd., 202–203
Expressed sequence tag (EST) 59, 98, 132, 229
Extra-short-duration pigeonpea (ESDP) varieties 329
climate and soil 351–352
harvesting 354
intercropping and rotations 353
nutrient management 353
plant population density 352–353
seed rate and treatment 352
sowing 352
water management 354
weed management 353–354
yields 354–355
Faba bean 269–270
achievements 259–262
biological nitrogen fixation 258–259, 282–283
breeding
 broomrape resistance 258
 heat, drought and waterlogging stresses 278
 Orobanche resistance 277
 resistance to foliar diseases 257–258
 resistance to foliar/soil-borne diseases 276–277
in China 270–274
 area and production 270–272
 cropping systems 272–273
 export and import 274
 soil fertility 273
CWANA, 274–276
drought tolerance 255–256
foliar diseases 275–276
future trends 262–263
gene banks 278–279
genome mapping and markers 279–280
heat tolerance 255, 260–262
herbicide tolerance 256–257
insect pests 275–276
intercropping 282
marker-assisted selection 280
mineral nutrient requirements 283–287
Orobanche resistance varieties 259–260
pollen viability 260
production and productivity 253–254
relay cropping 282
status 274
water resources management 280–282
weed management 276
Faba bean necrotic yellow virus (FBNYV) 275, 276
Farming systems, groundnut 156
Farmyard manure (FYM) 161
Fertigation technology, pigeonpea 344–346
Fertilizer efficiency, pigeonpea 345–346
Flowering
cowpea 245–247
faba bean 255, 260, 281
pigeonpea 301–302, 342
Fluidigm approach 84
Focused Identification of Germplasm Strategy (FIGS) 58–59
Foliar diseases
breeding resistance to 257–258
faba bean 275–276
lentil 57
Foliar fertilization, common bean 42–43
Frankliniella fusca Hinds (tobacco thrips) 130
Frankliniella occidentalis (western flower thrips) 130
Furrow irrigation 34, 35
Fusarium wilt 53, 312, 313
Garbage-in, garbage-out (GIGO) QTL, 93
Genetic contamination, pigeonpea seed 305
Genetic resources
 common beans 7
 cowpea breeding 219–220, 229–230
 faba bean 278–280
 lentil 55–56
 for trait mining 126
Genome by sequencing (GBS) analyses 13
Genome-wide association studies (GWAS) 8, 11, 12
Genetic selection (GS) 143–144
Genotype by environment (GxE) stability 26
Ghana, aflatoxin in groundnut 193–195
Global positioning systems (GPS) 172–173
Glycine max L Merr. see Soybean
GRD. see Groundnut rosette disease (GRD)
Groundnut 155
aflatoxin contamination 131–132, 168–169
 biological control 190
 case study 195–203
 controlling at village level 195–201
 cropping systems 185–186
 drying, storage and processing 190–192
 factors impact 182–184
 in Ghana 193–195
 irrigation 189–190
 minimizing 185–190
 in Mozambique 193–195
 nongovernmental organizations and private sector 201–202
 pod and kernel damage 190
 prediction models 184–185
 resistant cultivars 186–187
 soil fertility and plant nutrition 187
 soil organic matter and texture 187–188
 sowing and harvest date 188–189
 in Uganda 193–195
 value chain projects 193–203
 in Zambia 189
agronomic recommendation limitation 157–158
biofertilizers 161–162
boron deficiency 161
breeding method 126–136, 138–139
 abiotic stress resistance 134–136
 biotic stress resistance 127–134
 yields 126–127
 calcium deficiency 160–161, 187, 188
 case study 137–143
 choice of variety/cultivar 158
 confectionery 142–143
 conservation tillage 159
 cultivation under polythene mulch 166–167
 drying 167–171
 early leaf spot 127, 132–134, 168
 ecology 156
 farming systems 156
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>fertilizers and amendments</td>
<td>159–160</td>
</tr>
<tr>
<td>field insect pests</td>
<td>169–170</td>
</tr>
<tr>
<td>field selection</td>
<td>159</td>
</tr>
<tr>
<td>foliar diseases</td>
<td>132–134, 168</td>
</tr>
<tr>
<td>future trends</td>
<td>143</td>
</tr>
<tr>
<td>growth regulators</td>
<td>167</td>
</tr>
<tr>
<td>harvesting</td>
<td>123–125, 170–171</td>
</tr>
<tr>
<td>health benefits</td>
<td>123</td>
</tr>
<tr>
<td>improvement in Uganda</td>
<td>137–143</td>
</tr>
<tr>
<td>insect pests, storage of</td>
<td>170</td>
</tr>
<tr>
<td>intercropping/crop rotation</td>
<td>165</td>
</tr>
<tr>
<td>land preparation</td>
<td>159</td>
</tr>
<tr>
<td>landrace improvements</td>
<td>143</td>
</tr>
<tr>
<td>late leaf spot</td>
<td>127, 132–134, 137, 142</td>
</tr>
<tr>
<td>leaf spot disease</td>
<td>172</td>
</tr>
<tr>
<td>macronutrient deficiency</td>
<td>160–161</td>
</tr>
<tr>
<td>manganese deficiency</td>
<td>161</td>
</tr>
<tr>
<td>marker-assisted selection</td>
<td>137, 143–144</td>
</tr>
<tr>
<td>micronutrient deficiency</td>
<td>161, 164</td>
</tr>
<tr>
<td>nitrogen fixation</td>
<td>124</td>
</tr>
<tr>
<td>oil quality and content</td>
<td>136–137</td>
</tr>
<tr>
<td>pathogens</td>
<td>127</td>
</tr>
<tr>
<td>phosphorus deficiency in</td>
<td>160</td>
</tr>
<tr>
<td>plant protection practices</td>
<td>167–170</td>
</tr>
<tr>
<td>precision cultivation</td>
<td>172–173</td>
</tr>
<tr>
<td>regional improvements</td>
<td>142</td>
</tr>
<tr>
<td>response surface methodology</td>
<td>185</td>
</tr>
<tr>
<td>seed systems</td>
<td>173</td>
</tr>
<tr>
<td>seed treatment and priming</td>
<td>162–164</td>
</tr>
<tr>
<td>Serenut 1–4 series</td>
<td>141</td>
</tr>
<tr>
<td>soilborne fungal diseases</td>
<td>168</td>
</tr>
<tr>
<td>soil insect pests control</td>
<td>170</td>
</tr>
<tr>
<td>soil resources management</td>
<td>159–162</td>
</tr>
<tr>
<td>sowing</td>
<td>162, 164–165</td>
</tr>
<tr>
<td>specific leaf area</td>
<td>135</td>
</tr>
<tr>
<td>storage</td>
<td>170–171</td>
</tr>
<tr>
<td>varieties and replacements</td>
<td>141</td>
</tr>
<tr>
<td>varieties improvement</td>
<td>140–143</td>
</tr>
<tr>
<td>viruses</td>
<td>128–131, 169</td>
</tr>
<tr>
<td>water management</td>
<td>166</td>
</tr>
<tr>
<td>weed management</td>
<td>165</td>
</tr>
<tr>
<td>worldwide production trends</td>
<td>124</td>
</tr>
<tr>
<td>yield gap</td>
<td>156–157</td>
</tr>
<tr>
<td>zinc deficiency</td>
<td>161</td>
</tr>
<tr>
<td>Groundnut leaf miner (Aproaerema modicella)</td>
<td>142</td>
</tr>
<tr>
<td>Groundnut rosette disease (GRD)</td>
<td>169</td>
</tr>
<tr>
<td>biotic stress resistance</td>
<td>127–129</td>
</tr>
<tr>
<td>improvements for resistance</td>
<td>140–141</td>
</tr>
<tr>
<td>regional improvements for resistance</td>
<td>142</td>
</tr>
<tr>
<td>symptoms</td>
<td>127</td>
</tr>
<tr>
<td>virus (GRAV)</td>
<td>128–129</td>
</tr>
<tr>
<td>Growth regulators, groundnuts</td>
<td>167, 172, 173</td>
</tr>
<tr>
<td>Halo blight</td>
<td>32</td>
</tr>
<tr>
<td>Harvest index</td>
<td></td>
</tr>
<tr>
<td>common beans</td>
<td>7</td>
</tr>
<tr>
<td>pigeonpea</td>
<td>300–301</td>
</tr>
<tr>
<td>Harvesting</td>
<td></td>
</tr>
<tr>
<td>early-maturing pigeonpea varieties</td>
<td>354</td>
</tr>
<tr>
<td>groundnut</td>
<td>123–125, 170–171, 188–189</td>
</tr>
<tr>
<td>lentil</td>
<td>79</td>
</tr>
<tr>
<td>pigeonpea</td>
<td>356</td>
</tr>
<tr>
<td>Heat stress</td>
<td></td>
</tr>
<tr>
<td>common bean</td>
<td>25</td>
</tr>
<tr>
<td>cowpea breeding</td>
<td>224–225</td>
</tr>
<tr>
<td>faba bean</td>
<td>255, 260–262</td>
</tr>
<tr>
<td>groundnut</td>
<td>134–136</td>
</tr>
<tr>
<td>Heterodera glycines</td>
<td>94</td>
</tr>
<tr>
<td>High-performance liquid chromatography (HPLC)</td>
<td>193</td>
</tr>
<tr>
<td>Human nutrition, pigeonpea</td>
<td>298</td>
</tr>
<tr>
<td>Hybrid technology, pigeonpea</td>
<td></td>
</tr>
<tr>
<td>adoption</td>
<td>317–319</td>
</tr>
<tr>
<td>evolution</td>
<td>316–317</td>
</tr>
<tr>
<td>high yields</td>
<td>318</td>
</tr>
<tr>
<td>promotion and marketing</td>
<td>319</td>
</tr>
<tr>
<td>seed production</td>
<td>318–319</td>
</tr>
<tr>
<td>two-parent hybrid breeding technology</td>
<td>319–320</td>
</tr>
<tr>
<td>ICPL 87119 (Asha) pigeonpea variety</td>
<td>312</td>
</tr>
<tr>
<td>Ideotype, common beans</td>
<td>5</td>
</tr>
<tr>
<td>IFLRC. see International Food Legumes Research Conferences (IFLRC)</td>
<td></td>
</tr>
<tr>
<td>IITA. see International Institute of Tropical Agriculture (IITA)</td>
<td></td>
</tr>
<tr>
<td>Indian Institute of Pulses Research (IIPR)</td>
<td>332, 348, 359</td>
</tr>
<tr>
<td>Insect pests</td>
<td></td>
</tr>
<tr>
<td>cowpea</td>
<td>217, 245–246</td>
</tr>
<tr>
<td>faba bean</td>
<td>275–276</td>
</tr>
<tr>
<td>groundnuts</td>
<td>169–170</td>
</tr>
<tr>
<td>pigeonpea</td>
<td>312–313</td>
</tr>
<tr>
<td>soybean</td>
<td>115–116</td>
</tr>
<tr>
<td>Integrated approaches, soybean yield</td>
<td>116–118</td>
</tr>
<tr>
<td>Integrated pest management (IPM)</td>
<td>185</td>
</tr>
<tr>
<td>common bean</td>
<td>30–31</td>
</tr>
<tr>
<td>cowpea</td>
<td>245–247</td>
</tr>
<tr>
<td>groundnuts</td>
<td>169</td>
</tr>
<tr>
<td>pigeonpea</td>
<td>313</td>
</tr>
<tr>
<td>Integrated soil fertility management (ISFM)</td>
<td>40–42</td>
</tr>
<tr>
<td>Intellectual property (IP)</td>
<td>84–85</td>
</tr>
<tr>
<td>Intercropping</td>
<td></td>
</tr>
<tr>
<td>common bean</td>
<td>27</td>
</tr>
<tr>
<td>conventional</td>
<td>28–29</td>
</tr>
<tr>
<td>cowpea</td>
<td>237–241</td>
</tr>
<tr>
<td>early-maturing pigeonpea varieties</td>
<td>353</td>
</tr>
<tr>
<td>faba bean</td>
<td>282</td>
</tr>
<tr>
<td>groundnuts</td>
<td>165</td>
</tr>
<tr>
<td>lentil</td>
<td>78</td>
</tr>
<tr>
<td>MBILII</td>
<td>28–29</td>
</tr>
<tr>
<td>pigeonpea</td>
<td>334–336</td>
</tr>
</tbody>
</table>
International Conference on Legume Genetics and Genomics 63
International Crops Research Institute for the
Semi-Arid Tropics (ICRISAT) 126, 133, 187, 312–314
on Alfisols 159
in Asia and Africa 174
broad bed furrows 332
germplasm collection 129, 130
high-protein pigeonpea 298
hybrids of pigeonpea 350
pigeonpea varieties 329–330
sorghum intercrop 334
weeds control in pigeonpea 347
International Food Legumes Research
Conferences (IFLRC) 63, 263
International Institute of Tropical Agriculture
(IITA) 218–220, 227
IPM. see Integrated pest management (IPM)
Irrigation
common bean 34–36
groundnut 173, 189–190
pigeonpea 342–346
ISFM. see Integrated soil fertility management
(ISFM)
Isoptenyltransferase (IPT) 135
Kano Agricultural and Rural Development
Authority (KNARDA) 226
Kharif crops 78
Landrace, groundnut 143
Late leaf spot (LLS) groundnut 127, 132–134, 137, 142
Leafhoppers 30–31
Leaf spot disease, groundnut 127, 132–134, 137, 168, 172
Lens culinaris Medikus spp., 54. see also Lentil
from wild species 62–63
Lentil 51–52, 71
agro-ecologies 53–54
breeding methods 58–59
cropping systems 77–79
cultivation
climate requirements 74
land requirements 74
nutrient requirements 74–75
description 73
development 62–63
domestication and spread 55
drying and storage 79
fallow replacement with annual cropping 77
future trends 63–64, 80
genetic base 62–63
genetic resources 55–56
global production 52–53
harvesting 79
land preparation 75–77
marker-trait association studies 60–61
molecular markers 59
new technologies 59–61
phylogeny 54
planting methods 76–77
plant populations and spacing 77
production 53–54, 71–73
seed quality and treatments 75
seeds classification 51
storage of seed 79
sulphur 73, 75
weed control 79
yield enhancement 56
yield stability 57–58
Linkage disequilibrium (LD) analysis 8
Livestock nutrition 298–299
Lotus japonicus 263
Macronutrient deficiency, groundnuts 160–161
Manganese deficiency, groundnuts 161
Marker-assisted selection (MAS)
faba bean 280
groundnut 137, 143–144
lentil 59, 61
soybean 84
development 85–87
future trends 98
genetic and association map
development 91–92
identification of polymorphism 89–91
methods for 85
QTL, 91–92, 97–98
recurrent cross populations 92–93
recurrent parent genotype 85, 92
scoring of phenotypes 93
selection programme 88–89
soybean cyst nematode 94–95, 97
steps involved in 86
sudden death syndrome 94–97
Marker-trait association studies, lentil 60–61
Maruca vitrata 313, 314
Maturity, pigeonpea 339
Meds & Food for Kids (MFK) 201
Micro irrigation 343
Micronutrients
groundnuts 161, 164
pigeonpea 339
Microsatellites 84, 85, 88–89, 92, 95, 98
Mixed cropping
groundnuts 165
lentil 78
pigeonpea 334–336
Moisture stress
 common bean 25
 pigeonpea 341
Molecular markers
 groundnut 136, 143–144
 lentil 57, 59, 61
 pigeonpea 304
 soybean 93–98
Monocropping 78, 186
Monsanto Corporation 228
Mozambique, aflatoxin in groundnut 193–195
Multiple cropping 27, 158, 221
Mycotoxins 181–182, 192–193
National Semi-Arid Resources Research Institute (NaSARRI) 137, 140
Network for Genetic Improvement of Cowpea for Africa (NGICA) 228
Nitrogen
 common bean 30, 36, 38–39
 cowpea 225–226, 244–245
 groundnuts 124
 lentil 52
 pigeonpea 336–337
 soybean variety 112–114
Nitrogen fixation
 biological
 common bean 27, 28
 cowpea 245
 faba bean 258–259, 282–283
 soybean 97–98, 108–109
 symbiotic 8, 11, 25, 38
Nutrient management
 common bean 30, 36–43
 biological nitrogen fixation 28
 foliar fertilization 42–43
 integrated soil fertility management 40–42
 liming for soil acidity management 42
 nitrogen 30, 36, 38–39
 phosphorus 36–38
 cowpea 244–245
 faba bean 283–287
 lentil cultivation 74–75
 pigeonpea 336–341
 cropping systems 339–341
 early-maturing pigeonpea varieties 353
 micronutrients 339
 nitrogen 336–337
 phosphorus 337–338
 potassium 338
 security 298–299
 sulphur 339
 soybean 112–114
Orobanche spp., 53, 57, 58, 63, 275
 breeding for resistance 258, 277
 herbicide tolerance 256
 resistance varieties 259–260
PAMP-triggered immunity (PTI) 131
Parasitic weed 53, 57, 58, 63, 275
 breeding for broomrape resistance 258, 277
 faba bean 256
 herbicide tolerance 256
 partial Orobanche resistance varieties 259–260
Partitioning, common beans 5–6
Peanut. see Groundnut
Peanut and Mycotoxin Innovation Laboratory (PMIL) 140
Peanut bud necrosis disease (PBND) 130, 169
Peanut bud necrosis virus (PBNV) 130, 169
Peanut stem necrosis diseases (PSND) 169
Peanut stripe disease (PStV) 169
PGPR. see Plant growth promoting rhizobacteria (PGPR)
Phaseolus vulgaris L. see Common bean
Phosphorus
 common bean 36–38
 cowpea 225–226, 244–245
 deficiency in groundnut 160
 faba bean 285–287
 pigeonpea 337–338
Phosphorus solubilizing bacteria (PSB) 162, 330, 337, 338
Phosphorus-solubilizing microorganisms (PSM) 162
Photoperiod sensitivity 301–302
Phytoalexins 183–184, 186
Pigeonpea 297–298, 327–328
 agronomic factors affecting 302–303
 adaptation 302–303
 maturity and cropping systems 302, 305
 breeding
 disease resistance 312
 high-protein content 314–316
 insect resistance 312–313
 resistance to waterlogging 313–314
 crop geometry 332–333
 dibbled 333–334
 drilling 333
 drip fertigation 344–346
 early-maturing varieties 351–355
 climate and soil 351–352
 extra-short-duration varieties 351
 harvesting 354
 intercropping and rotations 353
 nutrient management 353
 plant population density 352–353
 seed rate and treatment 352
 short-duration varieties 351
 sowing 352
 water management 354
 weed management 353–354
 yield 354–355
enhancing sustainability through crop modelling 306–307
through efficient seed system 307–308
through plant breeding 308–316
fertilizer efficiency 345–346
future trends 320
generation turnover in 309
genetic factors influencing 303–306
guidelines for future research 357–358
harvesting 356
human nutrition 298
hybrid technology
adaptation 317–319
agronomic management 349–350
evolution 316–317
high yields 318
promotion and marketing 319
seed production 318–319
two-parent hybrid breeding technology 319–320
intercropping 334–336
irrigation scheduling 344–345
livestock nutrition 298–299
micro irrigation 343
mixed cropping 334–336
nutrient management 336–341
cropping systems 339–341
micronutrients 339
nitrogen 336–337
phosphorus 337–338
potassium 338
sulphur 339
nutritional security 298–299
pan and crop coefficient 345
physiological factors affecting 299–302
biomass 299–300
flowering 301–302
harvest index 300–301
photoperiod sensitivity 301–302
rabi 355
seed treatment 330
selection of variety 329–330
sowing 330–333
depth 333
method 332–333
time 330–332
storage 356
summer 355–356
threshing 356
variability 304
wastelands 311
waterlogging 313–314, 328, 333, 351
water management 341–343
weed management 347–349
Pink-pigmented facultative methylotrophic (PPFMs) bacteria 259
Plant growth promoting rhizobacteria (PGPR) 162, 330
Polymorphism, MAS 89–91
Polythene mulch, groundnuts cultivation under 166–167
Potassium
groundnut 160
pigeonpea 338
Punjab Agricultural University (PAU) 331
Purdue Improved Crop Storage (PICS) bags 169
Quality Declared Seed (QDS) system 26–27
Quantitative trait loci (QTL) analysis
common beans 8–11, 13
groundnut 134
lentil 57
soybean 87, 91–92
biological nitrogen fixation 97–98
garbage-in, garbage-out 93
soybean cyst nematode 94–95, 97
sudden death syndrome 94–97
Rabi pigeonpea 331, 355
Rain-fed low and mid-hills 310–311
Ready-to-use therapeutic food (RUTF) 201
Recombinant inbred lines (RILs) 87
Recurrent cross populations 92–93
Recurrent parent genotype (RPG) 85, 92
Relay cropping 78, 282
Restriction fragment length polymorphism (RFLP) 88
Rhizobia, inoculation with 108–109
Rhizobium leguminosarum bv. viciae 52
Satellite RNA (satRNA) 128–129
SDS. see Sudden death syndrome (SDS)
Seed infection, symptoms of 26
Seed priming techniques 163–164
Seed quality
common bean 26–27
lentil 75
Seed treatment
early-maturing pigeonpea varieties 352
groundnuts 162–164, 173
pigeonpea 307–308, 330
Seed yield
extra-short-duration pigeonpea lines 308
Phaseolus vulgaris 9–10
and protein harvest 315
quantitative trait loci 11
Selectively amplified microsatellite polymorphic loci (SAMPL) 88
Serenut 1–4 groundnut series 141
Short-duration (SD) varieties
cowpea 221–222
pigeonpea 329, 331, 351–355
Single nucleotide polymorphisms (SNPs) 88–89
BARCBean3.6K Beadchip 8, 11, 13
common beans 7–11
Index

lentil 56
soybean 84–86
Single seed descent (SSD) method 6
SNF. see Symbiotic nitrogen fixation (SNF)
Soil acidity
common bean 23–25, 42
faba bean 254, 259
Soilborne fungal diseases 168
Soilborne plant pathogens 163
Soil fertility
common bean 23–25, 40–42
faba bean in China 273
groundnut 187
Soil organic matter (SOM) 187–188
Soil plant analysis development (SPAD) 135
Soil resources management 159
Soil texture 187–188
Sowing
early-maturing pigeonpea varieties 352
groundnut 162, 164–165, 188–189
pigeonpea 330–333
Soybean
in Brazil 109–110
in Butere, west Kenya 117
choice of marker 88–89
Democratic Republic of the Congo 113, 114
diseases 115–116
DNA markers 84, 88
geneticists and breeders 83
intellectual property 84–85
marker-assisted selection 84
development 85–87
future trends 98
genetic and association map development 91–92
identification of polymorphism 89–91
methods for 85
QTL 91–92, 97–98
recurrent cross populations 92–93
recurrent parent genotype 85, 92
scoring of phenotypes 93
selection programme 88–89
soybean cyst nematode 94–95, 97
steps involved in 86
sudden death syndrome 94–97
in Nigeria 110–112
single-nucleotide polymorphisms 84–86
sub-Saharan Africa 105–107
access to output market 119
climate change impact 118
cost of production 107–108
diseases 115–116
extension and advisory services 119
future trends 98
improved access to inputs 118
inoculation with rhizobia 108–109
input financing 118–119
integrated approaches 116–118
managing diseases and insect pests 115–116
nutrient management 112–114
optimizing plant population 114–115
production 107–108
suitability map 106
varieties 111–112
yields 108–112, 115
Soybean cyst nematode (SCN) 94–95, 97
Soybean rust 115–116
SPAD chlorophyll meter reading (SCMR) 135
Specific leaf area (SLA) 135
Stemphylium blight (SB) 53–54, 63
Storage
groundnuts 170–171
aflatoxin contamination 190–192
insect pests 170
lentil seed 79
pigeonpea 356
Stress. see specific stress
Striga gesnerioides 223–224
Strip intercropping system 238, 239, 241
Sub-Saharan Africa (SSA)
common bean 20, 22–23
soybean 105–107
access to output market 119
agro-ecology 110, 113
climate change impact 118
cost of production 107–108
diseases 115–116
diseases 115–116
extension and advisory services 119
future trends 98
improved access to inputs 118
inoculation with rhizobia 108–109
input financing 118–119
integrated approaches 116–118
managing diseases and insect pests 115–116
nutrient management 112–114
optimizing plant population 114–115
production 107–108
suitability map 106
varieties 111–112
yields 108–112, 115
Sudden death syndrome (SDS) 94–97
Sulphur (S) 161
deficiency 161
lentil 73, 75
pigeonpea 339
Summer pigeonpea 355–356
Symbiotic nitrogen fixation (SNF) 8, 11, 25, 38
Tamil Nadu Agricultural University (TNAU) 344, 346
TaqMan 84–86, 89, 95
Tillage system
faba bean 281–282
groundnut 158, 159, 172, 175
lentil 74–76
Tomato spotted wilt virus (TSWV) 129–130, 169
Transpiration efficiency (TE) 135
2,3,6-Trichlorobenzoic acid (TCBA) 167
Triticum aestivum 11
TSWV. see Tomato spotted wilt virus (TSWV)
Two-parent hybrid breeding technology 319–320
Uganda, groundnut in aflatoxin contamination 193–195 improvement 137–143
Unpredictable legume. see Groundnut
Vesicles 162
Vicia faba L. see Faba bean
Vigna unguiculata (L.) Walp. see Cowpea
Vigna vexillata 224
Viruses. see also specific viruses cowpea 222
groundnut 128–131, 169
Wastelands, pigeonpea 311
Waterlogging, pigeonpea 313–314, 328, 333, 351
Water management common bean 33–36
drip irrigation 34–36
furrow irrigation 34, 35
early-maturing pigeonpea varieties 354
faba bean 280–282
groundnuts 166
pigeonpea 341–343
Water use efficiency (WUE) common bean 35–36
groundnut 135
pigeonpea 334, 341–343, 346
Weed management early-maturing pigeonpea varieties 353–354
faba bean 276
groundnuts 165
lentil 79
pigeonpea 347–349
West Africa, cowpea 235–236
future trends 247
integrated pest management 245–247
intercropping systems 237–241
manipulating planting dates to improve productivity 241–244
nutrient management 244–245
optimal population 236–237
Wheat-based cropping systems 310
Whole-genome shotgun (WGS) assembly 229
Winter lentil 78
Yield gap common beans 4
groundnuts 156–157
Yields Andean bean 5, 6
common beans 4–5
component compensation 5
factors affect 5–8
pyramid 6–7
under stress 7–8
early-maturing pigeonpea varieties 354–355
groundnut 126–127
lentil 56–58
pigeonpea hybrids 318
soybean 108–112, 115–118
Zinc cowpea varieties 227
faba bean 286–287
groundnuts 161