Achieving sustainable cultivation of maize

Volume 2: Cultivation techniques, pest and disease control

Edited by Dr Dave Watson, CGIAR Maize Research Program Manager, CIMMYT, Mexico
Contents

Series list xi
Introduction xvi

Part 1 Maize cultivation techniques

1. Modelling crop growth and grain yield in maize cultivation 3

 Alam Sher, Xiaoli Liu and Jincai Li, Anhui Agricultural University, China; and Youhong Song, Anhui Agricultural University, China and The University of Queensland, Australia

 1. Introduction 3
 2. Crop modelling principles 4
 3. Predicting crop development under drought and heat stress 4
 4. Predicting biomass production under drought and heat stress 7
 5. Predicting grain yield formation under drought and heat stress 7
 6. Conclusions 8
 7. Where to look for further information 8
 8. References 8

2. Optimizing maize-based cropping systems: sustainability, good agricultural practices (GAP) and yield goals 13

 Charles Wortmann, Patricio Grassini and Roger W. Elmore, University of Nebraska-Lincoln, USA

 1. Introduction 13
 2. Defining sustainable crop production 13
 3. Good agricultural practices 14
 4. Setting targets and measuring performance 16
 5. Case study: improving maize cultivation in the United States, Ethiopia and Argentina 19
 6. Conclusions 28
 7. References 28

3. Maize seed variety selection and seed system development: the case of southern Africa 33

 Peter S. Setimela, Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Zimbabwe

 1. Introduction 33
 2. Maize variety development in southern Africa (SA) 36
 3. Maize seed industries 37
 4. The development of maize seed systems in SA 43
 5. The adoption of modern maize varieties 44
 6. Conclusions and future trends 45
 7. Where to look for further information 46
 8. References 46
4 Good agricultural practices for maize cultivation: the case of West Africa
 Alpha Kamara, International Institute of Tropical Agriculture, Nigeria
 1 Introduction 49
 2 Poor soil fertility and effects of drought on maize in West Africa 50
 3 Weed competition with maize 51
 4 Maize nutrient management 52
 5 Weed management for maize cultivation 54
 6 Management of soil moisture stress in maize 55
 7 Future trends and conclusion 56
 8 Where to look for further information 56
 9 References 56

5 Zero-tillage cultivation of maize
 Wade E. Thomason, Bee Khim Chim and Mark S. Reiter,
 Virginia Tech University, USA
 1 Introduction 61
 2 History of zero-tillage maize cultivation 61
 3 Advantages of zero-tillage maize production: reduced soil erosion 65
 4 Advantages of zero-tillage maize production: reduced nutrient losses 67
 5 Advantages of zero-tillage maize production: water infiltration and use, economics and soil organic matter 69
 6 Potential disadvantages of zero-tillage maize production 72
 7 Success with zero-tillage maize production 75
 8 The future of zero-tillage maize production 76
 9 Where to look for further information 76
 10 References 76

6 Conservation agriculture (CA) for sustainable intensification of maize and other cereal systems: the case of Latin America
 Bram Govaerts, International Maize and Wheat Improvement Center (CIMMYT), Mexico; Isabelle François, Consultant, Belgium; and Nele Verhulst, CIMMYT, Mexico
 1 Introduction: the need for sustainable soil management 81
 2 Introduction to CIMMYT’s long-term experimental sites 83
 3 The influence of CA on physical soil quality 85
 4 The influence of CA on chemical soil quality 87
 5 The influence of CA on biological soil quality 89
 6 Weed management under CA 92
 7 The influence of CA on productivity 93
 8 CA and climate change 94
 9 Implementation of CA 96
 10 Conclusions 100
 11 Where to look for further information 100
 12 Acknowledgements 101
 13 References 101

7 Precision maize cultivation techniques
 Louis Longchamps, Agriculture and Agri-Food Canada, Canada; and Raj Khosla, Colorado State University, USA
 1 Introduction 107
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Improving nutrient management for sustainable intensification of maize</td>
<td>Kaushik Majumdar, International Plant Nutrition Institute – South Asia, India; Shamie Zingore, International Plant Nutrition Institute – Sub-Saharan Africa, Kenya; Fernando García and Adrian Correndo, International Plant Nutrition Institute – Latin America – Southern Cone, Argentina; Jagadish Timsina, University of Melbourne, Australia; and Adrian M. Johnston, International Plant Nutrition Institute, Canada</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>1 Introduction</td>
<td></td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>2 Nutrient management challenges in maize</td>
<td></td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>3 Improved nutrient management</td>
<td></td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>4 Case studies in improving nutrient management: South Asia</td>
<td></td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>5 Case studies in improving nutrient management: Sub-Saharan Africa (SSA)</td>
<td></td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>6 Case studies in improving nutrient management: Latin America – Southern Cone</td>
<td></td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>7 Case studies in improving nutrient management: use of the Nutrient Expert® tool in China</td>
<td></td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>8 Research priorities</td>
<td></td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>9 Conclusions</td>
<td></td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>10 Where to look for further information</td>
<td></td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>11 References</td>
<td></td>
<td>174</td>
</tr>
<tr>
<td>9</td>
<td>Crop rotation: a sustainable system for maize production</td>
<td>Bao-Luo Ma, Ottawa Research and Development Centre, Agriculture and Agri-Food Canada; and Zhigang Wang, Inner Mongolia Agricultural University, China</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>1 Introduction: escalating global food demand and environmental challenges</td>
<td></td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>2 The simplification of cropping systems and associated problems for sustainability</td>
<td></td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>3 Yield enhancement in maize–legume rotation systems</td>
<td></td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>4 The impact of crop rotation on soil quality</td>
<td></td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>5 The impact of crop rotation on soil fertility and nutrient use efficiency</td>
<td></td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>6 Additional benefits of maize–legume rotation</td>
<td></td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>7 Summary and future trends</td>
<td></td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>8 Where to look for further information</td>
<td></td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>9 Acknowledgements</td>
<td></td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>10 References</td>
<td></td>
<td>196</td>
</tr>
</tbody>
</table>

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
Contents

10 Intercropping in sustainable maize cultivation
 Abeya Temesgen, Shu Fukai and Daniel Rodriguez,
 The University of Queensland, Australia
 1 Introduction 203
 2 Intercropping under different conditions: moisture and nitrogen levels 204
 3 Resource capture and use efficiency in maize-based intercropping: water, nitrogen and light 207
 4 Competition and complementary interactions in maize–legume intercropping 213
 5 Maize–legume intercropping evaluation 217
 6 Conclusions 220
 7 Where to look for further information 220
 8 References 220

11 Climate risk management in maize cropping systems
 Daniel Rodriguez, Caspar Roxburgh, Claire Farnsworth, Ariel Ferrante,
 Joseph Eyre, Stuart Irvine-Brown, James McLean, Martin Bielich, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Australia
 1 Introduction 227
 2 Sensitivity of rainfed maize cultivation 230
 3 Assessing the risk of rainfall variability 233
 4 Risk management in smallholder maize cropping 235
 5 Climate risk at the whole farm level 238
 6 A case study: the sustainable intensification of rainfed maize cropping in Mozambique 239
 7 Future trends 241
 8 Acknowledgements 242
 9 Where to look for further information 242
 10 References 242

12 Advances in maize post-harvest management
 Tadele Tefera, International Center of Insect Physiology & Ecology (icipe), Ethiopia
 1 Introduction 247
 2 Post-harvest losses in maize: an overview 248
 3 Major storage insects and fungi 249
 4 Traditional storage structures and food security 250
 5 Institutional factors impacting post-harvest losses 251
 6 Reducing post-harvest losses through technological interventions 251
 7 Conclusions 256
 8 Where to look for further information 257
 9 References 257

Part 2 Maize pests, diseases and weeds

13 Economically important insect pests of maize
 William D. Hutchison and Theresa M. Cira, University of Minnesota, USA
 1 Introduction 263
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Below-ground insect pests</td>
<td>264</td>
</tr>
<tr>
<td>3</td>
<td>Above-ground insect pests</td>
<td>269</td>
</tr>
<tr>
<td>4</td>
<td>Stored products pests</td>
<td>283</td>
</tr>
<tr>
<td>5</td>
<td>Case study: management of European corn borer in the United States</td>
<td>283</td>
</tr>
<tr>
<td>6</td>
<td>Future trends and conclusion</td>
<td>285</td>
</tr>
<tr>
<td>7</td>
<td>Where to look for further information</td>
<td>286</td>
</tr>
<tr>
<td>8</td>
<td>References</td>
<td>287</td>
</tr>
<tr>
<td>14</td>
<td>Nematodes associated with maize</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>T. L. Niblack, The Ohio State University, USA</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>293</td>
</tr>
<tr>
<td>2</td>
<td>Soil and plant nematodes: characteristics, identification and effects on maize</td>
<td>294</td>
</tr>
<tr>
<td>3</td>
<td>Lesion nematodes, Pratylenchus spp.</td>
<td>297</td>
</tr>
<tr>
<td>4</td>
<td>Root-knot nematodes, Meloidogyne spp.</td>
<td>300</td>
</tr>
<tr>
<td>5</td>
<td>Vermiform nematodes restricted to sandy soils: Belonolaimus, Longidorus, Paratrichodorus and Trichodorus spp.</td>
<td>302</td>
</tr>
<tr>
<td>6</td>
<td>Other nematodes</td>
<td>304</td>
</tr>
<tr>
<td>7</td>
<td>Conclusions</td>
<td>310</td>
</tr>
<tr>
<td>8</td>
<td>Where to look for further information</td>
<td>311</td>
</tr>
<tr>
<td>9</td>
<td>References</td>
<td>311</td>
</tr>
<tr>
<td>15</td>
<td>Control of rodent pests in maize cultivation: the case of Africa</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>Loth S. Mulungu, Sokoine University of Agriculture, Tanzania</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>317</td>
</tr>
<tr>
<td>2</td>
<td>The impact of rodents on maize crops in Africa</td>
<td>319</td>
</tr>
<tr>
<td>3</td>
<td>Rodent pests affecting maize</td>
<td>323</td>
</tr>
<tr>
<td>4</td>
<td>Managing rodent pests in maize crops</td>
<td>327</td>
</tr>
<tr>
<td>5</td>
<td>Summary</td>
<td>330</td>
</tr>
<tr>
<td>6</td>
<td>Future trends in rodent research</td>
<td>331</td>
</tr>
<tr>
<td>7</td>
<td>Where to look for further information</td>
<td>332</td>
</tr>
<tr>
<td>8</td>
<td>References</td>
<td>333</td>
</tr>
<tr>
<td>16</td>
<td>Rapid response to disease outbreaks in maize cultivation: the case of maize lethal necrosis</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>George Mahuku, International Institute of Tropical Agriculture (IITA), Tanzania; and P. Lava Kumar, International Institute of Tropical Agriculture (IITA), Nigeria</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>339</td>
</tr>
<tr>
<td>2</td>
<td>Emerging plant diseases</td>
<td>340</td>
</tr>
<tr>
<td>3</td>
<td>Factors influencing the emergence of maize diseases</td>
<td>342</td>
</tr>
<tr>
<td>4</td>
<td>Overview of strategies for mitigating risks from emerging maize diseases</td>
<td>347</td>
</tr>
<tr>
<td>5</td>
<td>Components of an effective rapid response system</td>
<td>347</td>
</tr>
<tr>
<td>6</td>
<td>Strategies for managing maize disease outbreaks</td>
<td>352</td>
</tr>
<tr>
<td>7</td>
<td>The emergence of MLN in Eastern Africa</td>
<td>356</td>
</tr>
<tr>
<td>8</td>
<td>Responding to the MLN outbreak and minimizing its impact</td>
<td>359</td>
</tr>
<tr>
<td>9</td>
<td>Conclusions</td>
<td>363</td>
</tr>
<tr>
<td>10</td>
<td>Where to look for further information</td>
<td>364</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>11 Acknowledgements</td>
<td>364</td>
<td></td>
</tr>
<tr>
<td>12 References</td>
<td>364</td>
<td></td>
</tr>
<tr>
<td>17 Controlling aflatoxins in maize in Africa: strategies, challenges</td>
<td>371</td>
<td></td>
</tr>
<tr>
<td>and opportunities for improvement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amare Ayalew and Martin Kimanya, Partnership for Aflatoxin Control in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethiopia; Limbikani Matumba, Lilongwe University of Agriculture and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Resources, Malawi; Ranajit Bandyopadhayay and Abebe Menkir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Institute of Tropical Agriculture (IITA), Nigeria; and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peter Cotty, USDA-ARS, USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>371</td>
<td></td>
</tr>
<tr>
<td>2 Aflatoxin contamination in maize</td>
<td>372</td>
<td></td>
</tr>
<tr>
<td>3 Pre-harvest aflatoxin control</td>
<td>373</td>
<td></td>
</tr>
<tr>
<td>4 Preventing post-harvest aflatoxin contamination</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>5 Removing aflatoxin contamination</td>
<td>381</td>
<td></td>
</tr>
<tr>
<td>6 Detoxification</td>
<td>383</td>
<td></td>
</tr>
<tr>
<td>7 Role of policy and public awareness in aflatoxin control</td>
<td>384</td>
<td></td>
</tr>
<tr>
<td>8 Conclusion and future trends</td>
<td>385</td>
<td></td>
</tr>
<tr>
<td>9 Where to look for further information</td>
<td>386</td>
<td></td>
</tr>
<tr>
<td>10 References</td>
<td>387</td>
<td></td>
</tr>
<tr>
<td>18 Integrated weed management in maize cultivation: an overview</td>
<td>395</td>
<td></td>
</tr>
<tr>
<td>Khawar Jabran, Duzce University, Turkey; Mubshar Hussain, Bahauddin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zakariya University, Pakistan; and Bhagirath Singh Chauhan, The</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Queensland, Australia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>395</td>
<td></td>
</tr>
<tr>
<td>2 Weeds and their impact on maize cultivation</td>
<td>396</td>
<td></td>
</tr>
<tr>
<td>3 The use of herbicides</td>
<td>404</td>
<td></td>
</tr>
<tr>
<td>4 Integrated weed management</td>
<td>406</td>
<td></td>
</tr>
<tr>
<td>5 IWM techniques: land preparation, cultivars, planting, cultivation</td>
<td>406</td>
<td></td>
</tr>
<tr>
<td>and allelopathy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 IWM techniques: herbicide tolerant cultivars, rotations, allelopathy</td>
<td>407</td>
<td></td>
</tr>
<tr>
<td>intercropping and cover crops</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 IWM techniques: mechanical control and flame weeding</td>
<td>408</td>
<td></td>
</tr>
<tr>
<td>8 Conclusions and future trends</td>
<td>409</td>
<td></td>
</tr>
<tr>
<td>9 Where to look for further information</td>
<td>409</td>
<td></td>
</tr>
<tr>
<td>10 References</td>
<td>409</td>
<td></td>
</tr>
<tr>
<td>19 Weed management of maize grown under temperate conditions: the</td>
<td>415</td>
<td></td>
</tr>
<tr>
<td>case of Europe and the United States</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vasileios P. Vasileiadis and Maurizio Sattin, National Research Council</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CNR), Institute of Agro-Environmental and Forest Biology, Italy;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Per Kudsk, Aarhus University, Department of Agroecology, Denmark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>415</td>
<td></td>
</tr>
<tr>
<td>2 Maize cropping systems and weed flora in the United States and</td>
<td>417</td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Weed management in maize cropping systems in the United States and</td>
<td>418</td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Decision-support tools and bottlenecks hindering IWM implementation</td>
<td>425</td>
<td></td>
</tr>
</tbody>
</table>

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
Contents

5 Case study: IWM tools as evaluated in three European maize production regions 427
6 Summary and future trends 430
7 Where to look for further information 431
8 References 431

Index 439
Introduction

Maize is one of the most widely-grown crops in the world, both for food and livestock feed, biofuels and other uses. Cultivated on 184 million hectares globally, maize is cultivated in 160 countries throughout the continents of America, Europe, Oceania, Africa, and Asia. Maize is fundamental to global food and economic security, providing up to 30% of total calorie intake in some developing countries. It has been estimated that maize yields need to increase by 60% by 2050 in the context of increasing competition for land, water, energy and labour. Maize production is currently held back by factors such as: lack of available improved cultivars or failure to take up new improved varieties, inadequate crop management and storage, poor soil quality, the impact of pests and diseases, and more extreme weather related to climate change. Research needs to focus on supporting more productive, sustainable and nutritionally-valuable maize cultivation, particularly for smallholders in the developing world.

The two volumes of Achieving sustainable cultivation of maize summarise key research addressing these challenges. This volume looks at ways of improving maize cultivation as well as the management of pests and diseases. Volume 1 focuses on breeding, improving nutritional quality and ways of supporting smallholders.

Part 1 Maize cultivation techniques

Crop models both help to identify opportunities for yield improvement and to predict the effects of factors such as changing weather patterns. Chapter 1 reviews the principles and development of existing crop models for maize. It then focuses on the problem of drought stress which is likely to increase in range and severity with climate change. Robust crop models are needed to predict likely drought impacts on maize production. The chapter reviews current research on predicting plant responses under drought and heat stress, particularly biomass production and grain yield formation. These models provide the foundation for assessing what interventions, whether in terms of breeding or cultivation practices, may be needed to maintain yields and grain quality.

To be sustainable maize production must meet a number of objectives. These range from producing a good quality product, optimising yields and ensuring a livelihood for the farmer to protecting the natural resource base in such areas as soil health and the broader environment. Good agricultural practices (GAP) allow farmers to achieve these objectives. However, the gap between potential and actual yields can make it complex to set realistic and achievable yield goals. In addition implementation of GAP will vary according to the demands of different production conditions. Chapter 2 addresses ways setting targets, establishing the right mix of cultivation practices and measuring performance. It includes case studies of practical GAP implementation in three different situations: irrigated production in Nebraska, smallholder rainfed production in the semi-arid Central Rift Valley of Ethiopia (CRVE), and rainfed maize in the Pampas of Argentina.

New maize varieties will not be effective if they are not properly disseminated and adopted by local farmers. Chapter 3 reviews the development and effectiveness of the collaborative drought and low nitrogen maize breeding program initiated by the International Maize and Wheat Improvement Centre (CIMMYT) to increase yields
in low input and drought prone environments in southern Africa. Reflecting themes discussed in Volume 1, it describes initiatives such as CIMMYT's use of mother-baby trial (MBTs), an innovative farmer participatory evaluation scheme that evaluates farmer responses to new maize varieties in their own environmental conditions. This approach has accelerated the development and dissemination of new stress tolerant and high yielding open pollinated varieties (OPVs) and hybrids in southern Africa. The chapter also highlights the development and selection of maize germplasm resistant to a range of biotic and abiotic stresses, and the role of the seed industry in disseminating improved maize germplasm.

Maize is the most important staple food crop for over 300 million people in Sub-Saharan Africa but poor management practices and problems related to climate and soil quality mean that yields regularly fall below what is needed to feed the population. Chapter 3 begins by describing the effect on maize yields of poor soil fertility, drought and weeds (especially Striga hermonthica). Building in particular on Chapter 2, it then identifies good agricultural practices (GAP) to address these problems. These techniques include targeted nutrient management to improve soil health and techniques for weed management. The chapter also examines ways of dealing with the challenge of drought, including improved irrigation methods and development of drought-resistant maize varieties.

Chapter 5 builds on Chapter 4 by focussing on the role of zero-till cultivation of maize. This technique aims to reduce erosion, improve soil structure and nutrient composition, decrease costs, and improve long-term sustainability of maize cultivation. However, it is important to understand what factors determine whether the technique is effective or not. The chapter reviews current research on the effects of zero till cultivation in such areas as reduced soil erosion and nutrient losses, water infiltration and soil organic matter. This chapter discusses suggestions for best management of zero-till maize systems.

Zero-till cultivation is one element in a broader set of practices known as ‘conservation agriculture’ (CA). CA emphasises practices designed to improve soil health such as: zero or reduced tillage; retention of adequate levels of crop residues and soil surface cover to improve water productivity and to enhance soil physical, chemical and biological properties; and use of crop rotations to help control weeds and pests, improve soil health and provide more diverse sources of income for farmers. Based on long-term experimental sites managed by CIMMYT, Chapter 6 provides an authoritative review of the effectiveness of CA in such areas as physical soil quality (including reducing erosion), soil chemical and biological quality, and weed management. As it shows, forty years of research show that conservation agriculture has proved the better choice in providing continuously higher and more stable yields for both wheat and maize when compared to traditional practices in rainfed conditions. The chapter discusses the future potential of CA in maize cultivation and, specifically, its further development in Latin America.

As Chapter 7 points out, information and communication technologies are transforming the way maize is cultivated around the world by providing farmers with a suite of novel tools and techniques for improving crop production, enhancing input use efficiency, and increasing profitability while achieving environmental sustainability. Chapter 7 provides an overview of the current state of precision maize cultivation techniques at different stages of maize cultivation. A section on pre-planting assesses current knowledge on the spatial variability of soil properties and how it influences precision maize cultivation techniques. Subsequent sections address planting and the current state of variable-rate seeding, nutrition and various approaches for site-specific fertilizer management. The chapter also reviews developments in precision irrigation, different aspects of precision pest control
and weed management, as well as the opportunities enabled by digital yield maps and big data management.

Sustainable cultivation requires more efficient resource use, including in the use of fertilisers. Chapter 8 looks at the various ways of improving nutrient management in maize cultivation. It includes a range of case studies from South Asia, Sub-Saharan Africa, Latin America as well as the use of the Nutrient Expert® tool in China. As an example, in the case of Sub-Saharan Africa, the chapter reviews ways of targeting fertilisers according to different soil conditions, establishing optimum nitrogen application rates and more effective timing of nitrogen application (depending on prevailing rainfall) as well as more targeted, site-specific fertilizer application. It shows for example that, when combined with mineral nitrogen fertilizers, manure resulted in better crop yields than fertilizer treatments alone. The chapter also demonstrates the success of more flexible systems of fertilization, in which optimum rates of P, K and S fertilizers are applied based on yield potential in an average rainfall season, while N is applied as a series of split applications, which are adjusted according to the evolving rainfall pattern in any one season.

Modern agriculture has led to a simplification of maize-based cropping systems and the extensive practice of monoculture maize. This has led to problems such as yield reduction and soil quality degradation. Meanwhile, as pointed out in Chapter 8, the overuse of inorganic fertilizer to increase yields comes with a high environmental cost. As suggested in Chapter 6, maize grown in rotation with grain or forage legume crops often yields more and requires less application of synthetic chemicals (fertilizers, pesticides, herbicides, etc.) than continuous monoculture maize. Rotations in tandem with the application of farmyard or dairy manure or other organic wastes has proved an environmentally-friendly strategy for sustainable agriculture development. Chapter 9 summarizes recent research on yield enhancement in maize-based rotation systems, as well as the impact of crop rotation on soil quality, fertility and nutrient use efficiency.

Chapter 10 reviews the existing evidence on the productivity and resource use efficiency of maize–legume intercropping systems compared to the use of single crops. Findings indicate that system productivity in intercropping systems is more resource-use efficient and productive, particularly in low-yielding environments and production systems where soil quality is poor and rainfall low. As the level of resource availability increases, the differences between intercropping and sole cropping are reduced, though intercropping still presents advantages over sole cropping in some cases.

Climate change, and the likelihood of hotter, drier conditions in many parts of the world, presents a particular threat to rainfed maize cultivation. Chapter 11 assesses the vulnerability of rainfed maize cultivation to changing conditions and the risk of rainfall variability. Supporting farmers to identify and manage risks and opportunities in these challenging conditions is essential. The chapter summarises recent research on risk management strategies for smallholder maize cropping. It concludes with a case study exploring practical options for the sustainable intensification of rainfed maize cropping in Mozambique.

Part 2 Maize pests, diseases and weeds

Maize yields in many countries are negatively affected by damage from insect pests. Chapter 13 describes the main pests of maize. These include below-ground pests such as
Introduction

various types of corn rootworm, above-ground pests such as the corn leaf aphid, as well as pests of stored maize products such as the larger grain borer. The chapter also includes a detailed case study of the European corn borer in the USA, assessing its life cycle and what this means for control using integrated pest management (IPM) techniques. Finally, the chapter assesses potential future directions for research in this area.

Plant-feeding, or plant-parasitic, nematodes are ubiquitous in soils that support plant growth. The effects of phytophagous nematodes are, however, notoriously difficult to test and measure, and depend upon many factors associated with the plant, its environment, and the nematodes themselves. This chapter begins with an introduction to soil and plant nematodes, covering their general characteristics, identification and an overview of our current knowledge of their effects on maize. Subsequent sections review various types of nematodes, with particular focus on those which are highly likely to cause yield losses and other damage to maize crops such as lesion, root-knot and vermillorm nematodes.

Rodents cause significant damage at the sowing, seedling and maturity stage of maize. Rodent management programs in regions such as Sub-Saharan Africa have traditionally been reactive and most suited to managing low-density local rodent populations. More effective rodent management requires a more proactive and integrated approach. Chapter 15 describes the range of cultural, chemical and biological methods of control that make up an integrated rodent management programme. It also looks at improvements in surveillance and early warning systems.

Emerging plant diseases (EPDs) can cause significant losses to maize and other crops. Chapter 16 reviews research on factors influencing the origins and spread of EPDs affecting maize. Effective control of EPDs relies on rapid detection, accurate diagnosis, as well as speedy deployment of preventive and containment measures to prevent the spread of disease. The efficiency of a response also depends on networking and collaboration among all the stakeholders, including intergovernmental and nongovernmental organizations and specialized agencies in developed and developing countries. The chapter reviews strategies for mitigating risks from emerging maize diseases, components of an effective rapid response system and strategies for managing maize disease outbreaks. These include effective models to predict the likely spread of disease, quarantine procedures, effective seed systems, integrated disease management and pre-emptive breeding measures. The chapter includes a case study of how procedures worked in practice with the emergence of maize lethal necrosis (MLN) in eastern Africa, reviewing how effective various agencies were in responding to the MLN outbreak and minimizing its impact.

Maize is subject to pre- and post-harvest contamination with aflatoxins, which are acutely toxic and carcinogenic compounds. This chapter describes in detail mechanisms of aflatoxin contamination in maize. It also reviews the current strategies employed for aflatoxin control and the challenges associated with them, including pre- and post-harvest methods of control and prevention. The chapter also addresses the detoxification of aflatoxin-affected maize as well as suggesting lines of future research in this area.

Weeds are one of the major constraints on maize productivity. Chapter 18 discusses the impact of weeds on maize cultivation and methods of control. It focuses on integrated weed management (IWM) techniques which reduce the need for herbicides. IWM techniques include methods of cultural control such as: land preparation, choice of cultivars, planting schemes and methods of cultivation. They also include cropping systems such as rotations, intercropping and cover crops, as well as physical methods of control. The development of herbicide-tolerant maize cultivars and image-based site specific herbicide applications are expected to contribute significantly in improving weed management in maize.
Chapter 18 is complemented by Chapter 19 which reviews the types of maize cropping systems used to grow maize under temperate conditions, with a particular focus on the situation in the US and Europe. After reviewing weed flora in these regions, it discusses current weed management systems and the herbicide resistance issues that have developed through the continuous use of herbicides. Echoing Chapter 18, it emphasises the importance of integrated weed management (IWM) techniques in achieving more sustainable maize production. The chapter concludes with IWM case studies in three European maize production regions.
Abutilon theophrasti 421
Acidity 89
Actellic Super 253, 256
Adoption process
 conservation agriculture 99
 good agricultural practices 25–26
 of modern maize varieties 44–45
Aeolus spp., 268–269
Aflatoxin contamination 371–373
 detoxification
 ammoniation 384
 heating 383
 nixtamalization 384
 policy and public awareness 384–385
 post-harvest aflatoxin control
 fungal growth control in storage 381
 proper storage 380–381
 timing of harvest and drying 380
 pre-harvest aflatoxin control
 biological control 377–380
 crop rotation 373–374
 host plant resistance 374–375
 seed vigour 376–377
 soil nutrient supply 376
 tillage 374
 timely planting 375
 water stress management 375–376
 removing
 dry milling 382–383
 solvent extraction 383
 sorting 381–382
 wet milling 383
Africa, MLN outbreak in 362–363
African giant rat 330
African pink stem borer. see Sesamia calamistis
African Union Commission (AUC) 385
Aglaia odorata Lour. 407
Agricultura Sostenible Basada en la Siembra Directa (ASOSID) 82
Agriculture, and climate change 94
Agriotes spp., 268–269
Agro-ecological zones 34
Air temperature 194
Allelopathy, and integrated weed management 406–408
Alliance for Green Revolution (AGRA) 45
Alternaria alternata 424
Amaranthus
 A. retroflexus 403
 A. rudis 420
Ambrosia artimisiifolia L. 403
Ammoniation 384
Anthesis-silking interval (ASI) 7
Apparent electrical conductivity (ECₐ) 113–116
APSIM-Maize 3–7
Aquifer protection 15
Argentina
 nutrient management 154–155
 yield gaps 19–22
Arthrobacter spp., 405
Arthropods, precision maize cultivation 129
Arvicanthis spp. 318
Asian corn borer. see Ostrinia furnacalis
ASOSID. see Agricultura Sostenible Basada en la Siembra Directa (ASOSID)
Aspergillus 377
 A. flavus 249, 371, 374
 A. parasiticus 371
AUC. see African Union Commission (AUC)
Awl nematodes. see Dolichodorus spp.
Bacillus subtilis 377
Banded leaf 350
Belonolaimus spp. 302–304
Bidens pilosa 190
Biodiversity, and ecological services 193–194
Biological control
 European corn borer 286
 of weeds 423–424
Biological soil quality 89–92
Biomass production 7
Bio-physical determinants 159–160
Biophysical factors, emerging plant diseases
 agricultural policies 346
 agronomic practices 343–344
 change in cropping systems 344–345
 climate change 345–346
 institutional factors 346
 prevention and control 346
 travel, migration and trade 344
Bipolaris maydis L. 74
Breeding programme 39
British Agricultural Revolution 182
Brown stripe downy mildew 350
Burrowing nematodes. see Radopholus spp.
Busseola fusca 281–282
CA. see Conservation agriculture (CA)
Cane rat 330
Canola (Brassica napus L.) 187
Capsicum chinense 328
Carbon sequestration 72
Catholic Relief Services (CRS) 253
Central Mexico, rainfed systems in 83–85
Central Rift Valley of Ethiopia (CRVE)
 labour productivity 23
 livelihood security 25–26
 rain-fed maize 21
Cercospora zeae-maydis \(L. \) 74, 343
Cereal leaf beetle. see Oulema melanopa
CERES-Maize 3–8, 54
Chemical control of weeds 424–425
Chemical soil quality 87–89
Chenopodium
C. album 405, 418, 428
C. polyspermum 428
Chilo partellus 279–280
China
Nutrient Expert® 170
nutrient management 155–156
Cicadulina
C. mbila 269–270
C. parazae 269–270
C. storeyi 269–270
CIMMYT. see International Maize and Wheat Improvement Centre (CIMMYT)
Cirsium arvense 424
Climate change
adapting to 27–28
agriculture and 94
conservation agriculture 94–96
and emerging plant diseases 345–346
and insect pests 285–286
Climate risk management
development 241–242
Mozambique 239–240
endowed farmers 241
subsistence farming 240–241
rainfall variability 233–234
rainfed maize cultivation,
sensitivity of 230–233
smallholder maize cropping 235–238
whole farm level 238
Cochliobolus heterostrophus 340, 343
Cold soils, and zero-tillage cultivation 73
Conoderus spp. 268–269
Conservation agriculture (CA) 82–83
adoption rates 99
on biological soil quality 89–92
on chemical soil quality 87–89
CIMMYT’s long-term experimental sites 83–85
and climate change 94–96
implementation
innovation hub concept 97–99
limiting factors 96
residue trade-off 96–97
on physical soil quality 85–87
on productivity 93–94
systems 61–62
weed management under 92–93
Conventionally tilled beds (CTBs) 87
Convolvulus arvensis L. 408
Corn earworm. see Helicoverpa zea
Corn flea beetle. see Chaetocnema pulicaria
Corn leaf aphid. see Rhopalosiphum maidis
Corn stunt complex 350
Cotton bollworm. see Helicoverpa armigera
Cover crops 75, 407–408
CPWC. see Critical period for weed control (CPWC)
Crested porcupine 330
Criconemella ornata 308
C. sphaerocephala 308
CRISPR/Cas9, 285
Critical period for weed control (CPWC) 406, 416
Crop canopy sensing 121–123
Crop development, under drought and heat stress 4–7
Crop health care system 351
Crop modelling 3, 4
Crop-nutrient response function 24
Crop physiological models 3
Cropping systems
simplification of 182–184
in United States and Europe 417–418
Crop residues
management 75
retention 83, 91
Crop rotation 75
biodiversity and ecological services 193–194
on control of diseases, insects and weeds 192–193
economic benefit of 194–195
and integrated weed management 407–408
on nutrient use efficiency 189–192
pre-harvest aflatoxin control 373–374
on soil fertility 189–192
on soil quality 188–189
use of 83
yield benefit 182
CRS. see Catholic Relief Services (CRS)
Cry1Ab 273, 276, 282, 284
Cry1F 277, 284
CSIRO-Mk3.0, 8
CTBs. see Conventionally tilled beds (CTBs)
Cultivars 293, 406–407
Cultivation
history of 107
and integrated weed management 406–407
inter-row cultivation 423
stages of 108
in United States, Ethiopia and Argentina 19–28
and water availability 3
Cyperus
C. esculentus L., 408
C. rotundus L., 408
Cyst nematodes 305–306
Dagger nematodes. see Xiphinema spp.

Dalbulus maydis 345, 346
Decision-aid methods (DSS) 425–426
Decision support system (DSS) 121, 125

Delia platura 267–268
Deoxynivalenol (DON) 250

Desmodium uncinatum 408
Detoxification 383–384
Diabrotica
D. barberi 264–267
D. virgifera virgifera 264–267, 361

Diatraea spp. 274
D. grandiosella 274
D. saccharalis 274

Diseases, crop rotation on control of 192–193

Ditylenchus dipsaci 309

Diversification 344

Dolichodorus spp., 305
DON. see Deoxynivalenol (DON)

Drip irrigation 127

Drought stress
biomass production 7
climate change and 8
crop development 4–7
grain yield formation 7–8
RUE reduction by 7
soil fertility and effects 50–51

Drought Tolerant Maize for Africa (DTMA) Project 39, 55

Dry milling 382–383

DSS. see Decision-aid methods (DSS); Decision support system (DSS)

DTMA. see Drought Tolerant Maize for Africa (DTMA) Project

Eastern Africa
MLN in 356–359
seed supply and need 38

Echinochloa
E. crus-galli 403, 404, 425, 428
E. muricata 404

Ecological services, biodiversity and 193–194

Ecological zones for maize production 51

Economic
benefit of crop rotation 194–195
loss 249
zero-tillage cultivation 70–71

Eco-physiology 235

Electrical conductivity (EC.) 113–116

Emerging plant diseases (EPDs) 339–342
biophysical factors
agricultural policies 346
agronomic practices 343–344
change in cropping systems 344–345
climate change 345–346
institutional factors 346
prevention and control 346
tavel, migration and trade 344
disease monitoring 352–353
drivers of 342
eyearly detection
diagnostic networks 347–348
research 348–349
training 349
economic losses from 341
factors influencing 342–343
forecasting 352–353
host–pathogen interaction 353
host plant resistance 354–355
integrated management 355
mitigating risks from 347
MLN (see Maize lethal necrosis (MLN)) networking 356
pre-emptive breeding 355
preliminary risk assessments 349–351
quarantine system and regulatory framework 352
rapid response 351–352
seed-based solutions 355–356
surveillance 352–353

Environmental challenges 181–182

Eoreuma loftini 274

EPDs. see Emerging plant diseases (EPDs)

Ethiopia
cultivation in 19–28
maize yield trend 22

EU Project PURE 427
EU projects ENDURE 427

Europe
maize cropping systems and weed flora 417–418
weed management in 418–420

European corn borer. see Ostrinia nubilalis
Exserohilum turcicum L., 74

Fall armyworm. see Spodoptera frugiperda
Farmer-participatory research 43

Farmers
livelihood security 25–26
profitability 24–25

Farmers’ fertilization practices (FFP) 158
Farming 194

Farming manure (FYM) 156

Farm yields 150

Fertilizer 25
levels of 43
micro-dosing technology 165
spot application of 165–166

Fertilizer management 95, 422
Fertilizer replacement value (FRV) 192

FFP. see Farmers’ fertilization practices (FFP)

Flame weeding 408–409

Food security 250–251

4R Nutrient Stewardship
Principles 156–157, 171

Frankliniella williamsi 361
FRV. see Fertilizer replacement value (FRV)
Functional diversity 90
Fungi, post-harvest losses 249–250
Furrow irrigation 85
Fusarium spp., 249, 272
 F. graminearum 300
 F. moniliforme 300
 F. root rot 91
 F. scribneri 300
 F. verticillioides 300
Fusion of information 123–124
FYM. see Farmyard manure (FYM)
GAP. see Good agricultural practices (GAP)
Genetically modified herbicide-tolerant (GMHT) crops 416–419, 421, 423–425
Genomics 285
Geographical positioning system (GPS) 405
Geographic information systems (GIS) 108
Geometric mean diameter (GMD) values 188
Geo-statistics 108
Gerbilliscus spp. 318
 G. vicinus 319
Gerbils 330
Germplasm, biotic and abiotic stresses resistance 39
GHG emission. see Greenhouse gas (GHG) emission
GIS. see Geographic information systems (GIS)
Gliricidia sepium 328
Global food demand 181–182
Globalization of agriculture 344
Global positioning systems (GPS) 108
Global warming 193, 345
Global warming potential (GWP) 94
GLS. see Grey leaf spot (GLS)
Glyphosate-resistant (GR) weeds 416
GMD values. see Geometric mean diameter (GMD) values
GMHT crops. see Genetically modified herbicide-tolerant (GMHT) crops
GMP. see Good manufacturing practices (GMP)
Good agricultural practices (GAP) 373
 adoption of 25–26
 aquifer protection 15
 climate change, adapting to 27–28
 farmer profitability 24–25
 farmers and local communities, livelihood security for 25–26
 natural resources and environment 26–27
 nutrient losses 15–16
 resource productivity 22–23
 soil management 14–15
 targets and measuring performance 16–19
 in West Africa
 nutrient management 52–54
 soil fertility 50–51
 soil moisture stress 55
 weed competition with maize 51–52
 weed management 54–55
 worker safety 16
Good manufacturing practices (GMP) 373
GPS. see Geographical positioning system (GPS); Global positioning systems (GPS)
Gracilacus 307
Grain-filling period 51
GrainPro 254
Grain yield formation 7–8
Greenhouse gas (GHG) emission 16, 82
Green Revolution 20
GreenSeeker 123, 124
Grey leaf spot (GLS) 74, 343, 350
Grid soil sampling 109
Ground squirrels 330
GR weeds. see Glyphosate-resistant (GR) weeds
GWP. see Global warming potential (GWP)
HACCP. see Hazard Analysis Critical Control Point (HACCP)
Hadroplontus litura 424
Haemoparasites 331
Harvest yield maps 130–132
Hazard Analysis Critical Control Point (HACCP) 373
Heat stress
 biomass production 7
 climate change and 8
 crop development 4–7
 grain yield formation 7–8
 RUE reduction by 7
Helicotylenchus 304, 308–309
 H. digonicus 309
 H. pseudorobustus 308–309
Helicoverpa
 H. armigera 276–277, 284
 H. zea 274–276, 284
Herbicide-resistant (HR) weed populations 416
Herbicides
 application 128
 tolerant cultivars 407–408
 use of 404–405
 weed management 416, 424–425
Herbivores 293
Hermetic bagging 254
Heterodera
 H. avenae 305
 H. cajani 306
 H. delvii 306
 H. gambiensis 306
 H. oryzae 306
 H. sorghi 306
 H. zeae 305
High-dose refuge (HDR) strategy 284
High plains diseases 350
Hoplolaimus spp., 306–307
 H. magnistylus 307

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
Index

Host–pathogen interaction 353
Host plant resistance 374–375
HR weed populations. see Herbicide-resistant (HR) weed populations
Hybrid breeding 41
Hybrid/cultivar selection 75
Hybrid-Maize 5–7
Hydraulic conductivity 85–86

ICRISAT. see International Crop Research Institute for Semi-Arid Tropics (ICRISAT)
IITA. see International Institute of Tropical Agriculture (IITA)

India
Helicoverpa armigera 277
maize validation trials in 158

Infiltration
and run-off 86
and zero-tillage cultivation 69–70

Insect pests
Aeolus spp. 268–269
Agriotes spp. 268–269
Busseola fusca 281–282
challenges 285–286
Chilo partellus 279–280
Conoderus spp. 268–269
Delia platura 267–268
Diabrotica barberi 264–267
Diabrotica virgifera virgifera 264–267
Helicoverpa armigera 276–277
Helicoverpa zea 274–276
Limonius spp. 268–269
maize leafhoppers 269–270
Melanotus spp. 268–269
Ostrinia furnacalis 273
Ostrinia nubilalis 270–273, 283–285
Rhopalosiphum maidis 269, 270
Sesamia calamistis 282–283
south-western com borer 274
Spodoptera frugiperda 278–279
stored products pests 283
Striacosta albicosta 277–278

Insects
crop rotation on control of 192–193
post-harvest losses 249–250

Integrated pest management (IPM) 15, 271, 419
Integrated rodent management (IPM) 329–330
Integrated soil fertility management (ISFM) 53, 170
Integrated Striga control (ISC) 54–55
Integrated systems 137
Integrated weed management (IWM) 406–409
biological control 423–424
chemical control 424–425
implementation 419–420
decision-aid methods 425–426

in European maize production regions 427–430
lack of 426–427
preventive and cultural methods 420–422
tillage and mechanical weed control 422–423

Intensification 344

Intercropping
component crops of 204
and integrated weed management 407–408
maize–legumes intercropping
competition and complementary interactions in 213–217
evaluation 217–220
and moisture conditions 204–206
and nitrogen supply 206–207
productivity 203
resource capture 207–213
use efficiency 207–213

International Crop Research Institute for Semi-Arid Tropics (ICRISAT) 108

International Institute of Tropical Agriculture (IITA) 53

International Maize and Wheat Improvement Centre (CIMMYT)
with Kenyan Agricultural Research Institute 46
long-term experimental sites 83–85
long-term trials 89
Sustainable intensification strategy 98

Internet of things (IoT) 136

Inter-row cultivation 423
Invasive species 285
IoT. see Internet of things (IoT)

IPM. see Integrated pest management (IPM);
Integrated rodent management (IPM)

Irrigation
in arid north-western Mexico 95–96
for maize cultivation 55
in north-western Mexico 85
precision maize cultivation 127–128
ISC. see Integrated Striga control (ISC)

ISFM. see Integrated soil fertility management (ISFM)

IWM. see Integrated weed management (IWM)

Jatropha curcas 328
Java downy mildew 350

Kenyan Agricultural Research Institute 46

Labour productivity 23
Lance nematodes. see Hoplolaimus spp.
Land equivalent ratio (LER) 204–207, 214–219
Land preparation, and integrated weed management 406–407
Landscape ecology 285
Larger grain borer (LGB) 249
Latin America
agriculture challenges 81–82
conservation agriculture (CA) in 82–83
adaptation rates 99
on biological soil quality 89–92
on chemical soil quality 87–89
CIMMYT's long-term experimental sites 83–85
and climate change 94–96
implementation 96–99
on physical soil quality 85–87
on productivity 93–94
weed management under 92–93
Latin America–Southern Cone
micronutrient deficiencies 168
nitrogen for early and late-season maize 166–167
N, P and S nutrient efficiency and effectiveness 169
research priorities 172–173
soil phosphorus tests 167
sulphur diagnosis 167–168
variable nutrient management 169
LER. see Land equivalent ratio (LER)
Lesion nematodes. see Pratylenchus spp.
LGB. see Larger grain borer (LGB)
Light-limited biomass accumulation 7
Limonius spp. 268–269
Livelihood security, for farmers and local communities 25–26
Local communities, livelihood security for 25–26
Longidorus spp., 302–304
L. breviannulatus 303
Maize–alfalfa rotation 189
Maize-based cropping systems (MBCS) 417–418
Maize chlorotic dwarf virus (MCDV) 350
Maize chlorotic mottle virus (MCMV) 344–345, 350
diagnostic methods 348
global occurrence and reports 357
initial observation for 358–359
occurrence in Africa 358
transmission 360–361
Maize leafhoppers 269–270
Maize–legume rotation 54, 189
benefits of 192–195
biodiversity and ecological services 193–194
control of diseases, insects and weeds 192–193
economic benefit of 194–195
environmental costs, reducing 193
yield enhancement in 184–188
Maize–legumes intercropping
competition and complementary interactions in 213–217
evaluation 217–220
Maize lethal necrosis (MLN)
in Africa 362–363
distribution 358
in Eastern Africa 356–359
global occurrence and reports 357
host resistance, developing 361–362
information dissemination 360
initial observation for 358
phytosanitary measures and regulations 360
prevention and control 359
research efforts in region 362
Tanzania maize field affected by transmission 360–361
Maize Rayado fino virus (MRFV) 350
Maize stalk borer. see Busseola fusca
Maize streak virus (MSV) 39, 345, 350
MAIZSIM 5–7
Malawi
adoption rate 44–45
maize revolution 36
MH17 and MH18 36–37
Mal del Río Cuarto 350
Management zones 112–115
Management Zones Analyst (MZA) 120
MasAgro project 96, 98
Mastomys natalensis
breeding 318, 326
feeding behaviour 321
in irrigated rice fields 320
population density 325
seed damage reduction 328
survival 329
in Tanzania 330
MBCS. see Maize-based cropping systems (MBCS)
MCDV. see Maize chlorotic dwarf virus (MCDV)
MCMV. see Maize chlorotic mottle virus (MCMV)
Mean weight diameter (MWD) 188–189
Mechanical control, and integrated weed management 408–409
Melanotus spp. 268–269
Meloidogyne spp. 300–302
M. arenaria 301
M. chitwoodi 302
M. incognita 301
M. javanica 301
Merlinius 309
Mexico
agricultural development 98
semi-arid highlands of 94–95
MH17 and MH18 36–37
Microbial community structure 90–91
Micro-elements 126
Micronutrient deficiencies 168
Micro-topography 117
Index

MIROC 3.2 8
MLN. see Maize lethal necrosis (MLN)
MM. see Mono-cropping maize (MM)
Modern maize varieties 44–45
Moisture
intercropping and 204–206
requirement of maize 51
Mole rat 330
Mono-cropping maize (MM) 182–184
Mother-baby trial (MBT) design 39, 41–43
Mozambique
climate risk management
eduodned farmers 241
household description 239–240
subsistence farming 240–241
rainfed maize cropping
eduodned farmers 241
households 239–240
subsistence farming 240–241
sustainable intensification 239
MRFV. see Maize Rayado fino virus (MRFV)
MSV. see Maize streak virus (MSV)
MWD. see Mean weight diameter (MWD)
MZA. see Management Zones Analyst (MZA)

Nanotechnology 136
National Agricultural Research Systems (NARS) 39
National Maize Breeding Program of Malawi 36
National Seed Authorities 44
Natural resources, and environment 26–27
Nebraska
aquifer protection in 15
livelihood security 25
nitrogen response curves 23
rain-fed and irrigated fields in 27
yield gaps 19
yield trends 22
Nematodes
awl nematodes 305
burrowing nematodes 305
cyst nematodes 305–306
dagger nematodes 306
lance nematodes 306–307
lesion nematodes 297–300
pin nematodes 307
reniform nematodes 307–308
ring nematodes 308
root-knot nematodes 300–302
soil and plant nematodes 294–297
spiral nematodes 308–309
stem and bulb nematode 309
stunt nematodes 309–310
vermiform nematodes 302–304
Niger seed oil 256
Nile rat 330
Nitrogen 88
crop productivity and economic returns 162–164
for early and late-season maize 166–167
fertilizer efficiency 16
lack of 50
losses reduction 67–68
management
crop canopy sensing 121–123
decision support systems 125
fusion of information 123–124
management zones 119–120
proximal soil sensing 120–121
recommendations, extrapolating 53–54
supply, intercropping and 206–207
Nitrogen nutrition index (NNI) 211–212
Nitrogen physiological efficiency (NPE) 209–210
Nitrogen recovery efficiency (NRE) 209–210
Nitrogen-use efficiency (NUE) 190, 209–212
Nitxamalization 384
NNI. see Nitrogen nutrition index (NNI)
Norfolk four-crop rotation 182
Northern corn rootworm. see Diabrotica barberi
Northern leaf blight 74
North-western Mexico, irrigated conditions in 85
No-tillage production systems 374
NPE. see Nitrogen physiological efficiency (NPE)
NRE. see Nitrogen recovery efficiency (NRE)
NUE. see Nitrogen-use efficiency (NUE)
Nutrient availability 88–89
Nutrient Expert® (NE) 158–159
Nutrient losses
from agricultural land 15–16
reduction in zero-tillage cultivation 67–69
Nutrient management 52–54
bio-physical and socio-economic determinants 159–160
China 155–156
improvement 156–157
inter-and intra-seasonal rainfall 164–165
Latin America 154–155
micronutrient deficiencies 168
nitrogen for early and late-season maize 166–167
efficiency and effectiveness 169
rates 162–164
research priorities 170–173
soil fertility variability 160–162
soil P tests 167
South Asia 151–152
spot application of fertilizer 165–166
Sub-Saharan Africa 152–154
sulphur diagnosis 167–168
using fertilizer decision support tool 158–159
variable nutrient management 169

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
Nutrient use efficiency, crop rotation on 189–192
Nutrition, precision maize cultivation nitrogen management 119–126
temporal synchrony 126–127

Old World Bollworm. see Helicoverpa armigera
On-farm biodiversity 194
On-farm field trials 137
On-the-go soil sensors 120–121
Open-pollinated varieties (OPVs) 36–37, 39, 41, 44, 263

Ostrinia
O. furnacalis 273
O. nubilalis 270–273, 283–285

Oulema melanopa 361

PACA. see Partnership for Aflatoxin Control in Africa (PACA)
Paratrichodorus spp., 302–304
P. minor 303
Parthenium hysterophorus L., 402
Partial factor productivity (PFP) 153, 155
Partial nutrient balance (PNB) 155
Partnership for Aflatoxin Control in Africa (PACA) 384–385
PARUE. see Photosynthetically active radiation use efficiency (PARUE)
PBs. see Permanent beds (PBs)
Permanent beds (PBs) 85–89, 95
Pest biology 285
Pesticides
in Nebraska 15
precision maize cultivation arthropods 129
soil applied pesticide degradation 129–130
weeds 128–129
PFP. see Partial factor productivity (PFP)
Phalaris minor 92
Philippine downy mildew 350
PHLs. see Post-harvest losses (PHLs)
Phosphorus
efficiency and effectiveness 169
losses reduction 68–69
nitrogen management 126
soil phosphorus tests 167
Phosphorus use efficiency (PUE) 166
Phostoxin 253
Photosynthetically active radiation use efficiency (PARUE) 212–213
Phyllochron 4–5
Physical soil quality 85–87
PICS bags. see Purdue Improved Crop Storage (PICS) bags
Pin nematodes 307
Plant available water 86–87
Plant disease 74

Planting
and integrated weed management 406–407
precision maize cultivation 117–119
pre-harvest aflatoxin control 375
time 232–233

Plant-parasitic nematodes 296–297
PMC techniques. see Precision maize cultivation (PMC) techniques
PNB. see Partial nutrient balance (PNB)
Poaceae 293
Post-emergence herbicides 404, 424
Post-harvest aflatoxin control
fungal growth control in storage 381
proper storage 380–381
timing of harvest and drying 380
Post-harvest insect control 286
Post-harvest losses (PHLs)
food security 250–251
incidence and significance 248
insects and fungi 249–250
institutional factors impacting 251
reducing through technological interventions 251–256
storage structures 250–251
types and causes 248–249
Post-harvest management 247.
see also Post-harvest losses (PHLs)
Potential yields 150
Phytotoxicus spp., 297–300, 307
P. brachyurus 299, 300
P. coffeae 299
P. crenatus 299
P. hexincisus 299, 300, 307
P. microdorus 307
P. neglectus 299
P. penetrans 299
P. scribneri 299
P. thornei 299
P. vulnus 299
P. zeae 299, 300

Precision maize cultivation (PMC) techniques 108
data analysis
big data 132–133
economics 133–135
harvest yield maps 130–132
integrated systems 137
internet of things 136
irrigation 127–128
nanotechnology 136
nutrition
nitrogen management 119–126
temporal synchrony 126–127
on-farm field trials 137
pesticides
arthropods 129

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
Rotylenchus 304, 308
RS. see Remote sensing (RS)

Salinity 89
SCAN system. see Soil, Crops and Atmosphere for Nitrogen (SCAN) system
SCLB. see Southern corn leaf blight (SCLB)
SCMV. see Sugarcane mosaic virus (SCMV)
Scutellonema 308
SDC. see Swiss Development Cooperation (SDC)
Seed-based solutions 355–356
Seed corn maggot. see Delia platura
Seeding equipment 75
Seedling emergence 73
Seed systems in Southern Africa agro-ecological zones of 34
air temperature 35
average maize yields in 34
challenges 46
climate predictions 34
development 43–44
maize variety development in 36–37
on-farm experiments 40
production distribution by environment 35–36
rainfall 34–35
seed industries 37–43
seed supply and need 38
stress-tolerant varieties in 39
trends in average maize production 35
Seed vigour, pre-harvest aflatoxin control 376–377
Semi-arid CRVE 23
Semi-variograms 109–110
Sensor-based irrigation scheduling 127
Sensor fusion 135
Sesamia spp., 282–283
S. calamistis 282–283
Sheath blight 350
Silent Spring (Carson) 15
SilicoSec 256
Site-specific herbicide applications 405
Site-specific weed control 405
Sitophilus zeamais 283
Slash–mulch system 82
Smallholder farmers 24, 49
intercropping 218
maize genetic improvement for 39
risk management 235–238
in southern Africa 34, 35, 37
Small-scale farmers, and conservation agriculture 96
Smart delivery system 136
Smart sampling. see Stratified soil sampling
SMB. see Soil microbial biomass (SMB)
SOC. see Soil organic carbon (SOC)
Socio-economic determinants 159–160
Sodicity 89
Soil and plant nematodes characteristics of 294–295
identification 295–296
stages 294
Soil applied pesticide degradation 129–130
Soil-borne diseases 91–92
Soil compaction 73–74
Soil, Crops and Atmosphere for Nitrogen (SCAN) system 125
Soil erosion 87
control 15
reduction in zero-tillage cultivation 65–67
Soil fertility 50–51
crop rotation on 189–192
variability 160–162
Soil meso-and macrofauna 92
Soil microbial biomass (SMB) 88, 90
Soil microbiome 136–137
Soil microfauna and-flora 89–90
Soil moisture stress 55
Soil nitrogen 53
Soil nutrient supply 376
Soil organic carbon (SOC) 72, 87, 188
Soil organic matter (SOM) 15, 26, 156
Soil phosphorus tests 167
Soil quality 188–189
Soil sampling
precision maize cultivation 109–112
rule of thumb 112
Soil spatial variability 117
Soil structure and aggregation 85
Soil surface cover 83
Soil temperature 87, 95, 233
Soil water content 86–87
Soil water deficits 23
Solvent extraction 383
SOM. see Soil organic matter (SOM)
Sorghum halepense 425
South America, zero-tillage cultivation 62, 64–65
South Asia
bio-physical and socio-economic determinants 159–160
nutrient management 151–152
research priorities 170–172
using fertilizer decision support tool 158–159
Southern Africa Drought and Low Fertility (SADLF) programme 39, 41
Southern African Development Community (SADC) 44
Southern Africa, seed systems in agro-ecological zones of 34
air temperature 35
average maize yields in 34
challenges 46
climate predictions 34

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
development 43–44
maize variety development in 36–37
on-farm experiments 40
production distribution by environment 35–36
rainfall 34–35
seed industries 37–43
seed supply and need 38
stress-tolerant varieties in 39
trends in average maize production 35
Southern corn leaf blight (SCLB) 340
Southern leaf blight 74
South-western corn borer 274
Spatial analysis approaches 172
Spine mice 330
Spiral nematodes 308–309
Spiroplasma kunkelii 346
Split-hoe tool 408
Spodoptera frugiperda 278–279, 284
Spoon feeding maize 127
Spot-spraying weeds 128–129
Spotted stalk borer. see Chilo partellus
Sprayer boom-mounted sensors 121–122
Spray irrigation 127
SR52, 36
SSA. see Sub-Saharan Africa (SSA)
State recommendations (SR) 158
Stem and bulb nematode. see Ditylenchus dipsaci
Stewart's wilt 350
Storage structures 250–251
Stored products pests 283
Stratified soil sampling 112
Stress environments 231
Striacosta albicosta 277–278, 284
Striga hermonthica 50–52, 407–408
Striga-resistant maize 55
Stripped grass mouse 330
Stunt nematodes 309–310
Sub-Saharan Africa (SSA)
inter-and intra-seasonal rainfall 164–165
nitrogen rates 162–164
poverty line in 49
research priorities 172
soil fertility variability 160–162
spot application of fertilizer 165–166
yield in 20
zero-tillage maize in 62
Subsistence farming 240–241
Sugarcane downy mildew 350
Sugarcane mosaic virus (SCMV) 346, 348
Sulphur
efficiency and effectiveness 169
nutrient management 167–168
SuperGrain II™, 254, 255
Sustainability metrics 19
problems for 182–184
Sustainable crop production defining 13–14
targets and measuring performance 16–19
Sustainable intensification 203
Sustainable soil management long-term experiments 83
need for 81–83
Swiss Development Cooperation (SDC) 253
Tar spot complex 350
Temporal synchrony 126–127
Tephrosia vogelii 328
TFI. see Treatment frequency index (TFI)
Topography, precision maize cultivation 116–117
Toxigenic fungi 372
Tractor roof-mounted sensors 122
Transgenic 285
Treatment frequency index (TFI) 429
Trianthema portulacastrum 408
Trichoderma 378
Trichodorus spp. 302–304
Tylenchorhynchus 309
T. claytoni 310
T. maximus 310
T. zambiensis 310
Tylenchulus 309
UAVs. see Unmanned aerial vehicles (UAVs)
Uganda
crop-nutrient choices 25
rain-fed maize in 23
Uniformity and stability (DUS) 44
United States
cultivation in 19–28
European corn borer in 283–285
maize cropping systems and weed flora 417–418
weed management in 418–420
zero-tillage cultivation 63–64
United States Agency for International Development (USAID) 100
Unmanned aerial vehicles (UAVs) 135
USAID. see United States Agency for International Development (USAID)
USDA's Agricultural Resource Management Survey 134
Value for cultivation and use (VCU) 44
Variable-rate seeding 118
VCGs. see Vegetative compatibility groups (VCGs)
Vegetative compatibility groups (VCGs) 378
Vegetative stages 6
Vermiform nematodes 302–304
Virtual reference strip 123
© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
Vittatidera zeaphila 306

Water
 activity and aflatoxin 372
 deficit biomass accumulation 7
 erosion 15
 extraction 214
 holding capacity 85–86
 productivity 23
 stress management 375–376
 stress, yield under 72
 supply
 yield gap and 20
 yield potential 17
Water-use efficiency (WUE) 71, 207–213
WCA. see West and Central Africa (WCA)
Weed 51
 control 72–73
 crop rotation on control of 192–193
 impact on maize cultivation 396–403
 precision maize cultivation 128–129
 seedbank 417
 yield losses by 403
Weed flora, in United States and Europe 417–418
Weed management
 biological control 423–424
 chemical control 424–425
 under conservation agriculture 92–93
 for maize cultivation 54–55
 preventive and cultural methods 420–422
 tillage and mechanical weed control 422–423
 in United States and Europe 418–420
Weight loss (WL) 249
Well-fertilized maize 186–187
West Africa, good agricultural practices in
 nutrient management 52–54
 soil fertility 50–51
 soil moisture stress 55
 weed competition with maize 51–52
 weed management 54–55
West and Central Africa (WCA) 50
Western bean cutworm. see Striacosta albicosta
Western corn rootworm. see Diabrotica virgifera virgifera

Xanthium strumarium 403
Xiphinema spp., 306
 X. americanum 306
 X. chambersi 306
 X. rivesi 306

Yaqui Valley 85
YE. see Yield/agronomic efficiency (YE)
Yield/agronomic efficiency (YE) 209–210
Yield enhancement 184–188
Yield gain rate 20, 22
Yield gap (Yg) 17–22, 150
Yield goals 18–19
Yield losses
due to nematodes 91
by weeds 403
Yield maps
 harvest 130–132
 precision maize cultivation 116
Yield potential (Yp) 16–17
Yield, under water stress 72

Zambia
 adoption rate 44–45
 large-scale industrial agriculture crop 36
 Zamseed Research Institute 37
Zero tillage (ZT) 85, 86
Zero-tillage cultivation
 advantages
 carbon sequestration 72
 economics 70–71
 infiltration 69–70
 nutrient losses reduction 67–69
 soil erosion reduction 65–67
 soil organic matter 72
 water use efficiency 71
 yield under water stress 72
 disadvantages
 cold soils 73
 compaction 73–74
 decreased emergence 73
 equipment 75
 plant disease 74
 weed control 72–73
 history of 61–62
 and integrated weed management 407
 soils and climate 75
 South America 62, 64–65
 transition planning 75
 USA 63–64
 variable and machinery cost 71
 ZM309 42
 ZM421 42
 ZM521 42
 ZM523 42
 ZM623 42
ZT. see Zero tillage (ZT)