Achieving sustainable cultivation of mangoes

Edited by Dr Víctor Galán Saúco, Instituto Canario de Investigaciones Agrarias (ICIA), Spain
Dr Ping Lu, Research Institute for the Environment and Livelihoods, Charles Darwin University, Australia
Contents

Series list xi
Acknowledgements xv
Introduction xvi

Part 1 Genetic improvement and plant physiology

1 Exploiting the mango genome: molecular markers 3
 V. Pérez and J. I. Hormaza, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM La Mayora – CSIC – UMA), Spain
 1 Introduction 3
 2 Biochemical markers 4
 3 DNA markers 5
 4 Other molecular markers 8
 5 Next-generation sequencing technologies 9
 6 Genetic linkage maps 9
 7 Other ‘omics’ 10
 8 Future trends and conclusion 11
 9 Where to look for further information 11
 10 Acknowledgements 12
 11 References 12

2 The genetic diversity of mangoes 21
 Noris Ledesma, Fairchild Tropical Botanic Garden, USA
 1 Introduction 21
 2 Description of the principal mango cultivars 22
 3 Photographs of the principal mango cultivars 23
 4 Acknowledgements 23
 5 References 23
 6 Appendix 1: list of the principal mango cultivars 25
 7 Appendix 2: photos of principal mango cultivars 34

3 Advances in understanding mango tree growth and canopy development 87
 Frédéric Normand, CIRAD, France; and Pierre-Éric Lauri, INRA, France
 1 Introduction 87
 2 Mango tree architecture 88
 3 Morphology of the mango growth unit 91
 4 Growth and development of the mango growth unit 97
 5 From the growth unit to the current-year branch 102
 6 Interactions between vegetative growth and reproduction 109
 7 Conclusion 115
 8 Where to look for further information 115
 9 References 117
4 Advances in understanding flowering, pollination and fruit development in mangoes

Maria Hilda Pérez-Barraza and Jorge Alberto Osuna-Gracia, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Mexico

1 Introduction 121
2 Vegetative shoot development 122
3 Induction, initiation and floral differentiation 124
4 Genes related to the flowering process 129
5 Pollination and fertilisation 131
6 Fruit set and growth 133
7 Conclusion 138
8 Future trends 139
9 Where to look for further information 139
10 References 139

Part 2 Cultivation techniques

5 Mango cultivation practices in the tropics: good agricultural practices to maximize sustainable yields

Sisir Mitra, International Society for Horticultural Science, India; and A. Bhagwan, Fruit Research Station, India

1 Introduction 149
2 Constraints and strategies: soil 151
3 Constraints and strategies: climate 153
4 Constraints and strategies: orchard management 155
5 Constraints and strategies: irrigation and nutrition 158
6 Conclusion 160
7 References 161

6 Mango cultivation practices for the subtropics

Víctor Galán Saúco, Instituto Canario de Investigaciones Agrarias, Spain

1 Introduction 165
2 Tropical versus subtropical mango cultivation: climatic considerations 166
3 Exploiting genetic variation among mango cultivars 170
4 Cultural techniques: planting density, spacing and out-of-season production 172
5 Cultural techniques: control of growth and flowering 174
6 Conclusion 180
7 Where to look for further information 180
8 References 181

7 Mango cultivation in greenhouses

John Y. Yonemoto, Japan Tropical Fruit Association, Japan

1 Introduction 185
2 Training and pruning 187
3 Control of flowering 191
4 Care of fruit 193
5 Cultivation practices 197
6 Disease and pest control 202
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Future trends and conclusion</td>
<td>203</td>
</tr>
<tr>
<td>8</td>
<td>Where to look for further information</td>
<td>203</td>
</tr>
<tr>
<td>9</td>
<td>References</td>
<td>203</td>
</tr>
<tr>
<td>8</td>
<td>Management of an ultra-high-density mango orchard and benefits of the small-tree system</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Steven A. Oosthuysen, HortResearch SA, South Africa</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>205</td>
</tr>
<tr>
<td>2</td>
<td>Orchard establishment</td>
<td>206</td>
</tr>
<tr>
<td>3</td>
<td>Basis for increased productivity</td>
<td>209</td>
</tr>
<tr>
<td>4</td>
<td>Observations relating to flushing and pruning practices</td>
<td>212</td>
</tr>
<tr>
<td>5</td>
<td>Observations concerning flowering</td>
<td>216</td>
</tr>
<tr>
<td>6</td>
<td>Cultivar and environment attributes suiting ultra-high-density planting</td>
<td>218</td>
</tr>
<tr>
<td>7</td>
<td>Additional benefits and their significance</td>
<td>220</td>
</tr>
<tr>
<td>8</td>
<td>System adoption to date</td>
<td>224</td>
</tr>
<tr>
<td>9</td>
<td>Conclusion and future trends</td>
<td>225</td>
</tr>
<tr>
<td>10</td>
<td>Where to look for further information</td>
<td>226</td>
</tr>
<tr>
<td>11</td>
<td>Acknowledgements</td>
<td>226</td>
</tr>
<tr>
<td>12</td>
<td>References</td>
<td>226</td>
</tr>
<tr>
<td>9</td>
<td>Organic mango production: a review</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>Víctor Manuel Medina-Urrutia, Jaime Eduardo Reyes-Hernández,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gil Virgen-Calleros and Enrique Pimienta-Barrios, Universidad de</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guadalajara, Mexico; and Marciano Manuel Robles-González, Campo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Experimental Tecomán, Mexico</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>229</td>
</tr>
<tr>
<td>2</td>
<td>Climate and soil selection</td>
<td>230</td>
</tr>
<tr>
<td>3</td>
<td>Cultivars and rootstocks</td>
<td>231</td>
</tr>
<tr>
<td>4</td>
<td>Soil preparation and planting</td>
<td>233</td>
</tr>
<tr>
<td>5</td>
<td>High density, pruning and shading</td>
<td>235</td>
</tr>
<tr>
<td>6</td>
<td>Management of established mango orchards</td>
<td>236</td>
</tr>
<tr>
<td>7</td>
<td>Weed control</td>
<td>239</td>
</tr>
<tr>
<td>8</td>
<td>Irrigation</td>
<td>241</td>
</tr>
<tr>
<td>9</td>
<td>Flowering habit and induction</td>
<td>243</td>
</tr>
<tr>
<td>10</td>
<td>Pest and disease management</td>
<td>245</td>
</tr>
<tr>
<td>11</td>
<td>Comparing organic and conventional systems</td>
<td>257</td>
</tr>
<tr>
<td>12</td>
<td>Conclusion</td>
<td>258</td>
</tr>
<tr>
<td>13</td>
<td>References</td>
<td>259</td>
</tr>
<tr>
<td>10</td>
<td>Improving fertilizer and water-use efficiency in mango cultivation</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>A. G. Levin, Supplant Ltd, Israel</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>269</td>
</tr>
<tr>
<td>2</td>
<td>Assessing water requirements of mango trees</td>
<td>273</td>
</tr>
<tr>
<td>3</td>
<td>Evaluation of main mango irrigation strategies</td>
<td>279</td>
</tr>
<tr>
<td>4</td>
<td>Impact of water quality on mango productivity</td>
<td>286</td>
</tr>
<tr>
<td>5</td>
<td>Technologies for more efficient water management</td>
<td>287</td>
</tr>
<tr>
<td>6</td>
<td>Fertilization</td>
<td>289</td>
</tr>
<tr>
<td>7</td>
<td>Case study</td>
<td>293</td>
</tr>
</tbody>
</table>
Part 3 Post-harvest management

11 Monitoring fruit quality and quantity in mangoes
Kerry Walsh and Zhenglin Wang, Central Queensland University, Australia

1. Introduction
2. Monitoring harvest maturity: making the decision to pick
3. Monitoring quantity
4. Monitoring ripeness
5. Decision support systems
6. Future trends and conclusion
7. Where to look for further information
8. Acknowledgements
9. References

12 Understanding post-harvest deterioration in mangoes
Apiradee Uthairatanakij and Pongphen Jitareerat, King Mongkut’s University of Technology Thonburi, Thailand; and Robert E. Paull, University of Hawaii at Manoa, USA

1. Introduction
2. Ripening-related changes
3. Pre-harvest handling, environment and deterioration
4. In-harvest handling, environment and deterioration
5. Post-harvest handling, environment and deterioration
6. Mango modification
7. Future trends and conclusion
8. References

13 Post-harvest storage management of mango fruit
Noam Alkan, Agricultural Research Organization (ARO), Volcani Center, Israel; and Anirudh Kumar, Agricultural Research Organization (ARO), Volcani Center, Israel and Indira Gandhi National Tribal University (IGNTU), India

1. Introduction: the mango fruit
2. Harvest operations
3. Post-harvest operations: managing mango fruit diseases
4. Post-harvest operations: use of ethylene, 1-MCP, modified and controlled atmospheres, waxes and edible coatings
5. Post-harvest operations: quarantine treatments
6. Preparing fruit for market
7. Conclusions
8. Where to look for further information
9. Abbreviations
10. References
14 The nutritional and nutraceutical/functional properties of mangoes
Laurent Urban, University of Avignon, France; Mônica Maria de Almeida Lopes and Maria Raquel Alcântara de Miranda, Federal University of Ceará, Brazil

1 Introduction 403
2 Health benefits of mango fruits 404
3 Increasing phytochemical concentrations in mango fruits 412
4 Pre- and post-harvest factors influencing bioactive compounds of mango fruits 415
5 Case study: low fluence PL to enhance mango phytochemical content 417
6 Future trends and conclusion 420
7 Where to look for further information 420
8 References 421

15 Life cycle assessment of mango systems
Claudine Basset-Mens, Sandra Payen, Henri Vannière, Angela Braun and Yannick Biard, CIRAD, France

1 Introduction 429
2 Life cycle assessment 430
3 LCA of fruits 434
4 LCA case study: exports of mango from the Rio São Francisco Valley in Brazil 438
5 Environmental challenges 448
6 Future trends and conclusion 450
7 Where to look for further information 451
8 References 452

Part 4 Diseases and pests

16 Integrated disease management in mango cultivation
Randy C. Ploetz, University of Florida, USA

1 Introduction 459
2 Fruit diseases: anthracnose 460
3 Fruit diseases: bacterial black spot (black canker) 467
4 Other fruit diseases 470
5 Foliar and floral diseases: algal leaf spot, apical necrosis and decline disorders 476
6 Foliar and floral diseases: galls, scaly bark and powdery mildew 480
7 Foliar and floral diseases: malformation 483
8 Foliar and floral diseases: seca and sudden decline 489
9 Soil-borne diseases 492
10 Summary 495
11 Where to look for further information 496
12 Acknowledgements 496
13 References 496
Introduction

Native to Southeast Asia, mangoes are now one of the most widely cultivated fruits, grown in over 100 countries across Asia, Africa and the Americas as well as Southern Europe. Mangoes are mainly consumed as fresh fruit, but also used widely in juices and in cooking, and are valued for their nutritional and nutraceutical properties. Drawing on an international range of expertise, this book focuses on ways of improving the cultivation of mango as a food crop at each step in the value chain, from breeding through to post-harvest storage. Part 1 discusses advances in understanding tree growth, flowering, pollination and fruit development, as well as developments in marker-assisted breeding. Part 2 reviews improvements in cultivation practices, including organic and greenhouse cultivation. Part 3 covers post-harvest management and quality, whilst Part 4 of the book assesses disease and pest management.

Part 1 Genetic improvement and plant physiology

Chapter 1 focuses on the development of molecular tools to improve understanding of the biology of mango and many other crops. This chapter reviews advances made in mango genetics using different molecular tools, including biochemical markers and DNA research employing restriction fragment length polymorphism (RFLP), randomly amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP). The chapter looks ahead to current and future developments in the field, including next-generation sequencing technologies and localization of genes of interest for breeding purposes. The chapter also offers suggestions for further reading on the subject.

Chapter 2, entitled ‘The genetic diversity of mangoes’, consists of a table listing over 100 mango cultivars selected on the basis of their local and global importance. The description of cultivars is based on over thirty years of research conducted by Fairchild Tropical Botanic Garden in Miami, Florida. The table lists cultivar name, tree size, fruit characteristics and fruiting season as well as additional information such as origin. The table is accompanied by colour photos of these Mangifera indica cultivars.

Chapter 3 makes clear the mango tree canopy is a carbohydrate factory, via photosynthesis, and a support for reproduction; it is also the place where vegetative growth occurs and the tree develops. The spatial and temporal proximity of vegetative and reproductive growth in the mango canopy leads to complex interactions. This chapter reviews the current state of knowledge of vegetative growth and deciphers these interactions, in order to inform more efficiently managed cultivation practices and future research. The chapter presents the architectural model of the mango tree. The basic structural entity, the growth unit, is defined and its morphology, growth and development are reviewed. The chapter then discusses the relationships between the growth unit and canopy development, along with the effects of environmental and endogenous factors on tree phenology. Finally, the interactions between vegetative growth and reproduction are described.

Chapter 4 addresses flowering, pollination and fruit development, beginning with vegetative shoot formation and then the plant’s induction, initiation and floral differentiation. The number of fruits will depend upon the success of the pollination, fertilization and fruit
set processes. The chapter also analyses the genes governing flower development and the processes of pollination and fertilization. It suggests future research trends in this area and recommends further reading on the subject.

Part 2 Cultivation techniques

Chapter 5 focuses on the fact that mango is grown in more than 100 countries, and is a commercially important fruit for many countries in the tropics. However, mango cultivation faces various problems which require urgent attention if sustainable production is to be achieved. This chapter reviews the factors and constraints that affect mango productivity in the tropics. The constraints related to soil, climate (including temperature, altitude and climate change), orchard management (from new mango orchards to high-density orchards), irrigation and nutrition, are discussed. In each case, strategies are presented to address these constraints and promote sustainable mango cultivation.

Chapter 6 builds on Chapter 5 by pointing out that although mango is well adapted to hot, tropical climates, it can also be grown in the subtropics with mild winters. Under such conditions, the cooler winter temperatures compared to tropical winter temperatures, improve flower induction and cause early bearing and lower annual growth rates, which help to control size and favour high-density plantings. There are also disadvantages to growing mango in the subtropics: cold spells and low temperatures can damage vulnerable young trees or areas of young growth, or can induce flowering of very young trees in the nursery, causing premature aging of inadequately managed plants. This chapter reviews the differences between mango cultivation in tropical and subtropical climates, including out-of-season production, and explores the factors necessary for successful subtropical cultivation.

As Chapter 7 points out, in countries such as Japan, Spain and Portugal, mangoes are cultivated in greenhouses. Specific techniques are used to maximize production and quality and to ensure efficient summer and winter harvesting. This chapter describes greenhouse practices of mango cultivation, including the control of flowering, care of fruit and pest control. Specific techniques include training and pruning, fertilization and irrigation, fruit thinning and bagging as well as harvesting and tree replacement.

Chapter 8 makes clear that there are many advantages to establishing high-density mango hedgerows using small trees. This method of cultivation means the terminal-shoots, inflorescences and fruits on such trees are within easy reach of farmworkers. The fruits, as well as branches and new shoots, can be specifically targeted for fungicide or pesticide application. This chapter describes the stages of a 3 m x 1 m Tommy Atkins mango orchard, from the time of its establishment to the time the trees fill their space in the orchard row and are fully bearing. It gives an account of management actions required for sustained maximal production, describing the benefits of the reduced time from planting until the trees attain optimal canopy cover and maximum fruit production. The chapter assesses the extent of small tree-growing systems to date.

Chapter 9 discusses the fact that in recent years the demand for organic mango has increased. Few technologies are currently available to support organic mango production systems in the main mango-growing regions. This chapter explains current technologies for sustainable organic mango production in the field and post-harvest processing. The chapter describes the importance of climate and soil selection, selection of cultivars and
rootstocks, and soil preparation and planting. The chapter also addresses issues arising from the management of established mango orchards including weed control, irrigation, and pest and disease management. Finally, the chapter compares organic and conventional systems of mango production.

Chapter 10 highlights that the irrigation requirements of mango have not been adequately investigated, and very few studies have been conducted on regulated deficit irrigation (RDI) strategies at different phenological stages. The chapter suggests how research in the field of irrigation and fertilization can help solve the challenges faced by the mango industry and be translated into practical outcomes for farmers by making mango production more sustainable. In order to achieve this goal, based on an extensive and detailed review of the most relevant research on these topics, the chapter identifies potential areas for applied research that can significantly contribute to more sustainable mango agriculture in small, medium and large mango farms in developed and developing countries. The chapter also includes a detailed case study.

Part 3 Post-harvest management

Chapter 11 explores mango fruit quality from the perspectives of the grower, the packer, the retailer and the consumer. The chapter examines specifications for fruit at harvest maturity and at commercial maturity (eating stage), as well as technologies for monitoring relevant attributes, including machine vision estimation of canopy flowering, temperature logging for heat sum fruit maturation models, and tools for the estimation of fruit size, colour and dry matter content. The chapter discusses the use of dry matter content as an eating quality specification for guiding harvest decisions. The chapter also addresses the use of machine vision in the context of estimating fruit number and fruit size in the orchard and estimating fruit surface defects in the packhouse. Finally, the chapter discusses post-harvest tools to monitor fruit ripeness including the measurement of temperature, colour, firmness, ethylene and CO₂. The chapter includes an example decision support system that uses heat sums and dry matter levels to guide the decision to harvest.

Chapter 12 focuses on the fact that post-harvest deterioration in the quality of mangoes is largely determined by pre-harvest factors, ranging from the cultivar grown to orchard management and harvest practices. This chapter describes mango fruit anatomy and development, and the changes related to ripening in mangoes and the pre-harvest, in-harvest and post-harvest practices that can lead to deterioration or damage. The chapter also addresses measures that can be taken to reduce the risk of fruit deterioration and damage, including fruit thinning and individual fruit bagging or netting. The chapter discusses viable and cost-effective solutions to mango damage and deterioration and looks ahead to future trends in this area. Building on Chapter 12, Chapter 13 reviews current research on the preservation of fruit quality. It also looks at ways of reducing post-harvest damage and loss by employing suitable technologies and knowledge during post-harvest operations, storage management, transportation and marketing of mango fruit.

Chapter 14 highlights that mangoes can be considered a major source of bioactive compounds, notably vitamin C, phenolics (mainly gallic acid) and carotenoids. This chapter reviews the health benefits associated with the antioxidant properties of these compounds, which potentially offer protection against cardiovascular diseases, metabolic diseases and cancers. The chapter examines specific cell, animal and clinical studies that
suggest mango pulp, juice and extract are effective against metabolic diseases and certain forms of cancer. The chapter considers approaches that can be used to increase bioactive compounds in mangoes either before or after harvest, and includes a case study on the use of pulsed light to increase concentrations of vitamin C, carotenoids and phenolics.

Chapter 15 focuses on the fact that mango production systems have seldom been studied using the technique of Life Cycle Assessment (LCA), which is an international standard for evaluating the environmental impacts of agri-food value chains. Important challenges are associated with the application of LCA to the environmental evaluation of fruit systems in general and mango in particular. This chapter describes the core principles of LCA methodology, the state of the art of LCA for fruits and associated key challenges. The chapter makes up-to-date recommendations for the use of LCA. The chapter then presents and discusses the first complete LCA case study for mango exported from Brazil. Finally, the chapter analyses the environmental challenges faced by mango systems across the world, highlighting the great potential of LCA to achieve more eco-friendly production and consumption of mango.

Part 4 Diseases and pests

Chapter 16 highlights that mango is affected by a great number of fruit, foliar, stem and root diseases. This chapter covers diseases that seriously impact the crop. Their significance, geographical distribution and history are outlined, and the symptoms, causal agent(s) and epidemiology of each are detailed with emphasis on their management.

Chapter 17 builds on Chapter 16 by providing an overview of Integrated Pest Management (IPM) in mango cultivation. IPM is the compatible use of various methods to control pests, which include biological, cultural and chemical control. Biological control is based on using predators, parasitoids and pathogens to reduce pest populations. Cultural control is based on management practices, for example, pruning to create an environment non-conducive to pests and to improve spray coverage. Chemical control should be used as a last resort and should be restricted to selective and less disruptive insecticides. Regular pest and beneficial insect monitoring is an integral component of IPM with interventions only applied when pest numbers reach a certain threshold. Four case studies are included to illustrate how IPM works in practice.
Index

AFLP, see amplified fragment length polymorphism (AFLP)
Algal leaf spot 476–477
Alternaria diseases 470–471
Amplified fragment length polymorphism (AFLP) 6–7
Anthracnose
aetiology 461–462
biological control 467
disease forecasting 464
epidemiology 462–463
fungicides 464–465
heat 467
induced resistance 466
management 463–467
non-fungicidal measures 466–467
resistance 466
symptoms 460–461
Apical necrosis 477–478
Bacterial black spot (BBS)
aetiology 469–470
epidemiology and management 470
overview 467–468
symptoms 468–469
BBS. see bacterial black spot (BBS)
Biochemical markers 4–5
Biocontrol
postharvest diseases 255–256
Bio-fertilizers 239
Biological control 386, 516–518
mango planthopper (Colgaroides acuminata) 528–531
of mango scale 522–528
Black canker. see bacterial black spot (BBS)
Black mildew
aetiology 472
epidemiology and management 473
overview 471–472
Canopy management 518–519
orchard management 155–156
Chemical control 384–385, 520–521
Cold storage/cold-chain management 392
Compost and green manure 238
Cover crops 240
and soil incorporation 234
Crop cultivars 231–232
and ultra-high-density planting 218
Cultivation, in greenhouses
disease and pest control 202–203
fertiliser application 198
and flowering
floral initiation 191
flower panicle hanging 192
pollination 192–193
fruit care
bagging 195
fruit thinning and hanging 194–195
harvesting and shipping 195–197
minimising resin 193–194
irrigation 198–200
key tasks 201–202
overview 185–187
pruning 190–191
summer and winter harvesting 197–198
training 187–189
tree replacement 200–201
Cultivation, in subtropics
climatic considerations 166–170
cultural techniques
control of growth and flowering 174–180
out-of-season production 173–174
planting density and spacing 172–173
 genetic variation 170–172
overview 165–166
Cultivation, in tropics
and altitude 153
and climate change 153–155
constraints on mango production 150–151
factors affecting productivity 150
irrigation in relation to productivity 158–159
nutrition 159–160
and orchard management
canopy management 155–156
high-density orchards 157–158
mango-bearing orchards 157
new mango orchards 156–157
orchards rejuvenation 157
overview 149–150
salinity and sodicity 151–152
suitable soil conditions 152–153
and temperature 153
Cultural control
canopy management 518–519
of growth and flowering 174–180
out-of-season production 173–174
physical barriers 519–520
planting density and spacing 172–173
resistant varieties 519
Damping off and root rot 493–494
Decision support systems 332–335
Decline disorders 478–480
Disease and pest control 202–203
Disease management 381–383
organic mango production
biocontrol 251–253
cultural practices 250–251
resistant cultivars 249–250

© Burleigh Dodds Science Publishing Limited, 2018. All rights reserved.
safety of fungicides and biofungicides 254

DNA markers
amplified fragment length polymorphism (AFLP) 6–7
inter simple sequence repeats (ISSRs) 7
randomly amplified polymorphic DNA (RAPD) 6
restriction fragment length polymorphism (RFLP) 5
simple sequence repeats (SSRs) 7–8

Established mango orchards management
basic considerations 236
bio-fertilizers 239
compost and green manure 238
production strategies 237
site selection 236
soil health and nutrient management 237–239
vermicompost 238–239

Ethylene and 1-MCP 386–387
Ethylene response (1-MCP) 387

Farm-wide fruit fly management 533–536
Fertilization
nutrient requirements 289–291
organic 291–293
Fertilizers
bio- 239
cultivation, in greenhouses 198
and production 271
and water-use efficiency 271–272

Flowering habit and induction
after flowering 244
before flowering 243–244
flowering induction 244–245
Flushing and pruning 212–216

Foliar and floral diseases
algal leaf spot 476–477
apical necrosis 477–478
decline disorders 478–480
galls and scaly bark 480–481
malformation 483–489
powdery mildew 481–483
seca and sudden decline 489–492

Fresh-cut mango 391
Fruit care
bagging 195
fruit thinning and hanging 194–195
harvesting and shipping 195–197
minimising resin 193–194

Fruit cracking 348
Fruit drop 136
Fruit quality and quantity
decision support systems 332–335
definition 314
harvest maturity specification 318–319
maturity and ripeness 314–316
monitoring harvest maturity
flowering 319–320
manipulating DM 327–328
monitoring DM 326–327
monitoring internal colour 325–326
monitoring size and external appearance 322–324
monitoring time and field temperature 320–322
monitoring quantity
on-tree monitoring 328–330
in packhouse monitoring 330–331
monitoring ripeness
monitoring colour 331
monitoring ethylene and CO₂ 332
monitoring firmness 331–332
monitoring temperature 331

overview 313
ripening specification 319
taste specification 316–318
Fruit sanitizers 384
Fruit setting 285
Fruit set and growth
factors affecting 136–138
fruit drop 136
overview 133–134
parthenocarpy 134–135
use of hormones 138
Genetic diversity of mangoes

Galls and scaly bark 480–481

© Burleigh Dodds Science Publishing Limited, 2018. All rights reserved.
overview 21–22
principal mango cultivars
description 22–23
photographs of 23, 34–86
types of 24–33
Genetic linkage maps 9–10
Grading and sorting 390–391
Green manure 238
Growth unit morphology 91–94
endogenous factors affecting 106–108
environmental factors affecting 104–106
factors affecting 94–97
growing cycle 102–104
Harvest maturity specification 318–319
Harvest operations
maturity and harvest parameters 379–381
sapburn 381
transport to packing house 381
Health benefits
bioaccessibility and bioavailability 408–410
cell studies 411
clinical studies 411–412
mango antioxidants 406–408
of mango phytochemicals 405–406
studies on animals 411
Heat treatments 389–390
High-density orchards 157–158
In-harvest handling
lenticel spotting 351–352
mechanical injury 349–350
sap injury 350–351
Integrated disease management
Alternaria diseases 470–471
anthracnose
aetiology 461–462
biological control 467
disease forecasting 464
epidemiology 462–463
fungicides 464–465
heat 467
induced resistance 466
management 463–467
non-fungicidal measures 466–467
resistance 466
symptoms 460–461
bacterial black spot (BBS)
aetiology 469–470
epidemiology and management 470
overview 467–468
symptoms 468–469
black mildew
aetiology 472
epidemiology and management 473
overview 471–472
foliar and floral diseases
algal leaf spot 476–477
apical necrosis 477–478
decline disorders 478–480
galls and scaly bark 480–481
malformation 483–489
powdery mildew 481–483
seca and sudden decline 489–492
overview 459–460
soil-borne diseases
Phytophthora palmivora (Oomycota) diseases 492–493
root rot and damping off 493–494
Sclerotium rot 494
Verticillium wilt 494–495
sooty blotch and sooty mould
aetiology 472
epidemiology and management 473
overview 471–472
stem-end rot
aetiology 474–475
management 475–476
symptoms 473–474
Integrated pest management (IPM)
biological control 516–518
mango planthopper (Colgaroides acuminata) 528–531
of mango scale 522–528
chemical control 520–521
cultural control
canopy management 518–519
physical barriers 519–520
resistant varieties 519
farm-wide fruit fly management 533–536
mango pests 513–514
overview 511–512
in Queensland Australia 521–522
shelter and food for beneficial insects 531–533
Intercrops and rotations 240–241
Internal breakdown 347–348
Inter simple sequence repeats (ISSRs) 7
Interstocks 233
IPM. see integrated pest management (IPM)
Irradiation 357–358, 389
postharvest diseases 255
Irrigation 241–243. see also water management
cultivation, in greenhouses 198–200
scheduling 274–278
ISSRs. see inter simple sequence repeats (ISSRs)
LCA. see life cycle assessment (LCA)
Lentical spotting 351–352
Life cycle assessment (LCA)
in agri-food sector 433
conceptual framework 431–433
of fruits
brief history of 434
choice of FU and system boundaries 435
diversity and complexity 436

© Burleigh Dodds Science Publishing Limited, 2018. All rights reserved.
guidelines for applying 438
important impacts 437
modelling of all field emissions 436–437
studies on 434–435
methodology 430–431
overview 429–430
Lumpy tissue 348

Malformation 483–489
Mango-bearing orchards 157
Mango fruit
anatomy and development 340
composition and quality attributes 378–379
origins and global production 377–378

Mango genome
biochemical markers 4–5
DNA markers
amplified fragment length polymorphism (AFLP) 6–7
inter simple sequence repeats (ISSRs) 7
randomly amplified polymorphic DNA (RAPD) 6
restriction fragment length polymorphism (RFLP) 5
simple sequence repeats (SSRs) 7–8
 genetic linkage maps 9–10
next-generation sequencing (NGS) 9
other molecular markers 8–9
other ‘omics’ 10–11
overview 3–4

Mango modification
chemical treatments 358–359
ethylene response (1-MCP) 357
irradiation 357–358
post-harvest light treatment 359
waxing and wraps 357
Mango pests 513–514
Mango planthopper (Colgaroides acuminata) 528–531

Mango productivity, and water quality 286–287
Mango scale, biological control of 522–528
Mango tree growth
architecture 88–91
canopy complexity 114–115
combining growth and development 101–102
current-year branch leaf area and dry mass 108–109
flowering and fruiting 112–114
growth unit development 99–101
growth unit morphology 91–94
endogenous factors affecting 106–108
environmental factors affecting 104–106
factors affecting 94–97
growing cycle 102–104
overview 87–88
and reproduction 109–111
 effects of 111–112
stem and leaves growth 97–99

Modified and controlled atmospheres 387–388
Monitoring harvest maturity
flowering 319–320
manipulating DM 327–328
monitoring DM 326–327
monitoring internal colour 325–326
monitoring size and external appearance 322–324
monitoring time and field temperature 320–322
Monitoring quantity
on-tree monitoring 328–330
in packhouse monitoring 330–331
Monitoring ripeness
monitoring colour 331
monitoring ethylene and CO₂ 332
monitoring firmness 331–332
monitoring temperature 331

Mowing and mulching 241

Next-generation sequencing (NGS) 9
NGS. see next-generation sequencing (NGS)

Nutritional and nutraceutical/functional properties
case study 417–420
health benefits
bioaccessibility and bioavailability 408–410
cell studies 411
clinical studies 411–412
mango antioxidants 406–408
of mango phytochemicals 405–406
studies on animals 411
overview 403–404
phytochemical concentrations
 genetic factors and fruit-to-fruit variability 413
harvesting stage 413–414
stress as lever 414–415
pre- and post-harvest factors
post-harvest handling 416
ripening after harvest 415–416

Orchard management
canopy management 155–156
high-density orchards 157–158
mango-bearing orchards 157
new mango orchards 156–157
orchards rejuvenation 157
Orchards rejuvenation 157
Organic fertilization 291–293
Organic mango production
climate and soil selection 230–231
and conventional systems 257–258
cultivars 231–232
disease management
biocontrol 251–253
cultural practices 250–251
resistant cultivars 249–250

© Burleigh Dodds Science Publishing Limited, 2018. All rights reserved.
safety of fungicides and biofungicides 254
established mango orchards management
basic considerations 236
bio-fertilizers 239
compost and green manure 238
production strategies 237
site selection 236
soil health and nutrient management 237–239
vermicompost 238–239
flowering habit and induction
after flowering 244
before flowering 243–244
flowering induction 244–245
high density, pruning and shading 235–236
interstocks 233
mycorrhizal and plant growth–promoting rhizobacteria (PGPR) 256–257
overview 229–230
pest monitoring
biological control 247–248
cultural practices 245–247
natural insecticides 247
postharvest diseases
biocontrol 255–256
hot water 254
irradiation 255
rootstocks 232–233
soil preparation and planting
cover crops and soil incorporation 234
planting certified trees 234–235
weed control
cover crops 240
intercrops and rotations 240–241
mowing and mulching 241
overview 239–240

Packaging 353–354
Parthenocarpy 134–135
Pest monitoring
biological control 247–248
cultural practices 245–247
natural insecticides 247
Physical control 385–386
Phytochemical concentrations
gene factors and fruit-to-fruit variability 413
harvesting stage 413–414
stress as lever 414–415
Phytophthora palmivora (Oomycota) diseases 492–493
Pollination and fertilisation
factors affecting 132–133
floral biology 131–132
by insects 133
Post-harvest deterioration
in-harvest handling
lenticel spotting 351–352
mechanical injury 349–350
sap injury 350–351
mango fruit anatomy and development 340
mango modification
chemical treatments 358–359
ethylene response (1-MCP) 357
irradiation 357–358
post-harvest light treatment 359
waxing and wraps 357
overview 339–340
post-harvest handling
diseases 354–357
packaging 353–354
relative humidity 353
storage atmosphere 353
temperature 352–353
pre-harvest handling
fruit cracking 348
fruit thinning and bagging 349
internal breakdown 347–348
lumpy tissue 348
source sink relationships 349
sunlight and sunburn 348–349
ripening-related changes
aroma and flavour 345–346
fruit texture and cell wall changes 343
phenols and terpenes 346–347
respiration and ethylene 341–343
skin degreening and carotenoid synthesis 344–345
sugar accumulation and acid metabolism 343–344
varietal differences 341
Postharvest diseases
biocontrol 255–256
hot water 254
irradiation 255
Post-harvest handling
biological control 386
chemical control 384–385
disease management 381–383
diseases 354–357
ethylene and 1-MCP 386–387
fruit sanitizers 384
modified and controlled atmospheres 387–388
packaging 353–354
physical control 385–386
pre-harvest control measures 384
relative humidity 353
storage atmosphere 353
temperature 352–353
waxing and coating 388
Post-harvest light treatment 359
Post-harvest storage management
cold storage/cold-chain management 392
fresh-cut mango 391
harvest operations
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>maturity and harvest parameters</td>
<td>379–381</td>
</tr>
<tr>
<td>sap burn</td>
<td>381</td>
</tr>
<tr>
<td>mango fruit</td>
<td></td>
</tr>
<tr>
<td>composition and quality attributes</td>
<td>378–379</td>
</tr>
<tr>
<td>origins and global production</td>
<td>377–378</td>
</tr>
<tr>
<td>packaging</td>
<td>391–392</td>
</tr>
<tr>
<td>post-harvest-handling</td>
<td>386</td>
</tr>
<tr>
<td>biological control</td>
<td>384–385</td>
</tr>
<tr>
<td>disease management</td>
<td>381–383</td>
</tr>
<tr>
<td>ethylene and 1-MCP</td>
<td>386–387</td>
</tr>
<tr>
<td>fruit sanitizers</td>
<td>384</td>
</tr>
<tr>
<td>modified and controlled atmospheres</td>
<td>387–388</td>
</tr>
<tr>
<td>physical control</td>
<td>385–386</td>
</tr>
<tr>
<td>pre-harvest control measures</td>
<td>384</td>
</tr>
<tr>
<td>waxing and coating</td>
<td>388</td>
</tr>
<tr>
<td>quarantine treatments</td>
<td></td>
</tr>
<tr>
<td>heat treatments</td>
<td>389–390</td>
</tr>
<tr>
<td>irradiation</td>
<td>389</td>
</tr>
<tr>
<td>overview</td>
<td>388–389</td>
</tr>
<tr>
<td>sorting and grading</td>
<td>390–391</td>
</tr>
<tr>
<td>transport</td>
<td>392</td>
</tr>
<tr>
<td>Post-harvest vegetative growth</td>
<td>283–284</td>
</tr>
<tr>
<td>Powdery mildew</td>
<td>481–483</td>
</tr>
<tr>
<td>Pre- and post-harvest factors</td>
<td></td>
</tr>
<tr>
<td>post-harvest handling</td>
<td>416</td>
</tr>
<tr>
<td>ripening after harvest</td>
<td>415–416</td>
</tr>
<tr>
<td>Pre-harvest control measures</td>
<td>384</td>
</tr>
<tr>
<td>Pre-harvest handling</td>
<td></td>
</tr>
<tr>
<td>fruit cracking</td>
<td>348</td>
</tr>
<tr>
<td>fruit thinning and bagging</td>
<td>349</td>
</tr>
<tr>
<td>internal breakdown</td>
<td>347–348</td>
</tr>
<tr>
<td>lumpy tissue</td>
<td>348</td>
</tr>
<tr>
<td>source sink relationships</td>
<td>349</td>
</tr>
<tr>
<td>sunlight and sunburn</td>
<td>348–349</td>
</tr>
<tr>
<td>Pruning</td>
<td></td>
</tr>
<tr>
<td>cultivation, in greenhouses</td>
<td>190–191</td>
</tr>
<tr>
<td>and flushing</td>
<td>212–216</td>
</tr>
<tr>
<td>Quarantine treatments</td>
<td></td>
</tr>
<tr>
<td>heat treatments</td>
<td>389–390</td>
</tr>
<tr>
<td>irradiation</td>
<td>389</td>
</tr>
<tr>
<td>overview</td>
<td>388–389</td>
</tr>
<tr>
<td>Randomly amplified polymorphic DNA (RAPD)</td>
<td>6</td>
</tr>
<tr>
<td>RAPD. see randomly amplified polymorphic DNA (RAPD)</td>
<td></td>
</tr>
<tr>
<td>RDI, PRD and SDI</td>
<td>280–283</td>
</tr>
<tr>
<td>FFG period</td>
<td>285–286</td>
</tr>
<tr>
<td>fruit set</td>
<td>285</td>
</tr>
<tr>
<td>post-harvest vegetative growth</td>
<td>283–284</td>
</tr>
<tr>
<td>pre-flowering to flowering</td>
<td>284–285</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>353</td>
</tr>
<tr>
<td>Resistant varieties, and cultural control</td>
<td>519</td>
</tr>
<tr>
<td>Restriction fragment length polymorphism (RFLP)</td>
<td>5</td>
</tr>
<tr>
<td>RFLP. see restriction fragment length polymorphism (RFLP)</td>
<td></td>
</tr>
<tr>
<td>Ripening-related changes</td>
<td></td>
</tr>
<tr>
<td>aroma and flavour</td>
<td>345–346</td>
</tr>
<tr>
<td>fruit texture and cell wall changes</td>
<td>343</td>
</tr>
<tr>
<td>phenols and terpenes</td>
<td>346–347</td>
</tr>
<tr>
<td>respiration and ethylene</td>
<td>341–343</td>
</tr>
<tr>
<td>skin degreening and carotenoid synthesis</td>
<td>344–345</td>
</tr>
<tr>
<td>sugar accumulation and acid metabolism</td>
<td>343–344</td>
</tr>
<tr>
<td>Ripening specification</td>
<td>319</td>
</tr>
<tr>
<td>Root rot and damping off</td>
<td>493–494</td>
</tr>
<tr>
<td>Salinity and sodicity</td>
<td>151–152</td>
</tr>
<tr>
<td>Sap injury</td>
<td>350–351</td>
</tr>
<tr>
<td>Scaly bark and galls</td>
<td>480–481</td>
</tr>
<tr>
<td>Sclerotium rot</td>
<td>494</td>
</tr>
<tr>
<td>Seca and sudden decline</td>
<td>489–492</td>
</tr>
<tr>
<td>Simple sequence repeats (SSRs)</td>
<td>7–8</td>
</tr>
<tr>
<td>Sodicity and salinity</td>
<td>151–152</td>
</tr>
<tr>
<td>Soil-borne diseases</td>
<td></td>
</tr>
<tr>
<td>Phytophthora palmivora (Oomycota)</td>
<td>492–493</td>
</tr>
<tr>
<td>root rot and damping off</td>
<td>493–494</td>
</tr>
<tr>
<td>Sclerotium rot</td>
<td>494</td>
</tr>
<tr>
<td>Verticillium wilt</td>
<td>494–495</td>
</tr>
<tr>
<td>Soil health and nutrient management</td>
<td>237–239</td>
</tr>
<tr>
<td>Soil preparation and planting</td>
<td></td>
</tr>
<tr>
<td>organic mango production</td>
<td></td>
</tr>
<tr>
<td>cover crops and soil incorporation</td>
<td>234</td>
</tr>
<tr>
<td>planting certified trees</td>
<td>234–235</td>
</tr>
<tr>
<td>Sooty blotch and sooty mould</td>
<td></td>
</tr>
<tr>
<td>aetiology</td>
<td>472</td>
</tr>
<tr>
<td>epidemiology and management</td>
<td>473</td>
</tr>
<tr>
<td>overview</td>
<td>471–472</td>
</tr>
<tr>
<td>Sorting and grading</td>
<td>390–391</td>
</tr>
<tr>
<td>Source sink relationships</td>
<td>349</td>
</tr>
<tr>
<td>SSRs. see simple sequence repeats (SSRs)</td>
<td></td>
</tr>
<tr>
<td>Stem-end rot</td>
<td></td>
</tr>
<tr>
<td>aetiology</td>
<td>474–475</td>
</tr>
<tr>
<td>management</td>
<td>475–476</td>
</tr>
<tr>
<td>symptoms</td>
<td>473–474</td>
</tr>
<tr>
<td>Storage atmosphere</td>
<td>353</td>
</tr>
<tr>
<td>Subtropics, cultivation for climatic considerations</td>
<td>166–170</td>
</tr>
<tr>
<td>cultural techniques</td>
<td></td>
</tr>
<tr>
<td>control of growth and flowering</td>
<td>174–180</td>
</tr>
<tr>
<td>out-of-season production</td>
<td>173–174</td>
</tr>
<tr>
<td>planting density and spacing</td>
<td>172–173</td>
</tr>
<tr>
<td>genetic variation</td>
<td>170–172</td>
</tr>
<tr>
<td>overview</td>
<td>165–166</td>
</tr>
<tr>
<td>Summer harvesting</td>
<td>197–198</td>
</tr>
<tr>
<td>Sunlight and sunburn</td>
<td>348–349</td>
</tr>
<tr>
<td>Taste specification</td>
<td>316–318</td>
</tr>
<tr>
<td>Tree replacement</td>
<td>200–201</td>
</tr>
<tr>
<td>Tropics, cultivation in and altitude</td>
<td>153</td>
</tr>
</tbody>
</table>
Index

and climate change 153–155
constraints on mango production 150–151
factors affecting productivity 150
irrigation in relation to productivity 158–159
nutrition 159–160
and orchard management
canopy management 155–156
high-density orchards 157–158
mango-bearing orchards 157
new mango orchards 156–157
orchards rejuvenation 157
overview 149–150
salinity and sodicity 151–152
suitable soil conditions 152–153
and temperature 153

Ultra-high-density planting
basis for increased productivity 209–212
benefits of 220–224
and cultivar 218
and flowering 216–218
flushing and pruning practices 212–216
growing environment 218–220
orchard establishment 206–208
overview 205–206
system adoption 224–225

Vegetative shoot development 122–124
Vermicompost 238–239
Verticillium wilt 494–495

Water management
and fertilization
nutrient requirements 289–291
organic 291–293
fertilizer and production 271
and water-use efficiency 271–272
overview 269–270
production and technology 272–273
production and water 270
RDI, PRD and SDI 280–283
FFG period 285–286
fruit set 285
post-harvest vegetative growth 283–284
pre-flowering to flowering 284–285
technologies for 287–289
water quality 272
mango productivity 286–287
water requirements
crop coefficient (Kc) 278–279
irrigation scheduling 274–278
when to irrigate 273–274
Water quality 272
mango productivity 286–287
Water requirements
crop coefficient (Kc) 278–279
irrigation scheduling 274–278
when to irrigate 273–274
Water-use efficiency 271–272
Waxing
and coating 388
and wraps 357
Weed control
organic mango production
cover crops 240
intercrops and rotations 240–241
mowing and mulching 241
overview 239–240
Winter harvesting 197–198