Achieving sustainable production of milk

Volume 3: Dairy herd management and welfare

Edited by Emeritus Professor John Webster
University of Bristol, UK
Contents

Series list xii
Preface xvi
Introduction xx

Part 1 Welfare of dairy cattle

1 Understanding the behaviour of dairy cattle
 C. J. C. Phillips, University of Queensland, Australia
 1 Introduction 3
 2 Studying the preferences of cattle: an overview 5
 3 Cattle perception 6
 4 Social, nutritional and reproductive behaviour 7
 5 Locomotion and resting 11
 6 Behaviour during transport and slaughter 13
 7 Conclusions 14
 8 Future trends 14
 9 Where to look for further information 15
 10 References 17

2 Key issues in the welfare of dairy cattle
 Jan Hultgren, Swedish University of Agricultural Sciences, Sweden
 1 Introduction: an overview of interest in and determinants of animal welfare in dairy farming 21
 2 Husbandry practices in dairy farming: housing, handling and farming procedures 25
 3 Husbandry practices in dairy farming: health, productivity and breeding 31
 4 Applying different perspectives on animal welfare to the case of dairy farming 34
 5 Recommendations for improving animal welfare in dairy farming in the light of expected future developments 38
 6 Summary 41
 7 Where to look for further information 41
 8 Acknowledgements 42
 9 References 43

3 Housing and the welfare of dairy cattle
 Jeffrey Rushen, University of British Columbia, Canada
 1 Introduction 53
 2 Types of housing system 54
 3 Stall design 57
 4 Flooring and locomotion 62
 5 Social competition, social dominance and overstocking 64
 6 Group versus individual housing for un-weaned calves: effects on health, locomotion and rest 68
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Group versus individual housing for un-weaned calves: behaviour and weight gain</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Reflections on housing un-weaned calves individually, in groups and with cows</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Conclusions</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Where to look for further information</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Genetic selection for dairy cow welfare and resilience to climate change</td>
<td>Jennie E. Pryce, Agriculture Victoria and La Trobe University, Australia; and Yvette de Haas, Wageningen UR, The Netherlands</td>
</tr>
<tr>
<td>5</td>
<td>Ensuring the welfare of culled dairy cows during transport and slaughter</td>
<td>Carmen Gallo and Ana Strappini, Animal Welfare Programme, Faculty of Veterinary Science, Universidad Austral de Chile, Chile</td>
</tr>
<tr>
<td>6</td>
<td>Ensuring the health and welfare of dairy calves and heifers</td>
<td>Emily Miller-Cushon, University of Florida, USA; Ken Leslie, University of Guelph, Canada; and Trevor DeVries, University of Guelph, Canada</td>
</tr>
</tbody>
</table>

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
Part 2 Nutrition of dairy cattle

7 The rumen microbiota and its role in dairy cow production and health
 Anusha Bulumulla, Mi Zhou and Le Luo Guan, University of Alberta, Canada
 1 Introduction 157
 2 Diversity and function of rumen microbiota 158
 3 Factors influencing composition of rumen microbiota 161
 4 Current trends and innovations in studying the rumen microbiome: ‘omics’ approaches 163
 5 Current trends and innovations in studying the rumen microbiota: linkage with host phenotypes 165
 6 Altering rumen function by manipulating microbiota 168
 7 Knowledge gaps and future directions 169
 8 Conclusions 171
 9 Where to look for further information 171
 10 References 172

8 Biochemical and physiological determinants of feed efficiency in dairy cattle
 John McNamara, Washington State University, USA
 1 Introduction 181
 2 The physiological and biochemical makeup of a dairy animal 182
 3 Development of the research field: a brief overview 186
 4 A case study on the biochemical determinants of feed efficiency 188
 5 Mechanisms and effects of simple genetic variation 193
 6 Summary and conclusions 195
 7 Future trends in research 196
 8 Where to look for further information 196
 9 References 197

9 Feed evaluation and formulation to maximise nutritional efficiency in dairy cattle
 Pekka Huhtanen, Swedish University of Agricultural Sciences, Sweden
 1 Introduction 199
 2 Evaluation of feed energy value 200
 3 Alternative methods to predict digestibility and energy value 201
 4 Discounts of digestibility and associative effects 205
 5 Conversion of digestible nutrients to metabolisable energy and net energy concentration 206
 6 Evaluation of feed protein value 207
 7 Estimation of microbial protein 208
 8 Determination of rumen undegraded protein (RUP) 210
 9 Evaluation of feed protein systems 213
 10 Summary and future perspectives 215
 11 Where to look for further information 216
 12 References 216

10 Sustainable nutrition management of dairy cattle in intensive systems
 Michel A. Wattiaux, Matias A. Aguerre and Sanjeewa D. Ranathunga, University of Wisconsin-Madison, USA
 1 Introduction 223
 2 Phosphorus issues 224

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
11 Nutrition management of grazing dairy cows in temperate environments

J. R. Roche, DairyNZ, New Zealand

1 Introduction 251
2 Economic factors affecting grazing system design 252
3 Using supplementary feed to manage pasture 253
4 Nutrition of grazing dairy cows: pasture as a feed 255
5 Choosing the right supplementary feed 260
6 Choosing the right genetics for a grazing system 262
7 Supplement effects on milk production 263
8 Practical nutrition management on the farm 265
9 Conclusions and implications 267
10 Where to look for further information 268
11 References 268

12 The use and abuse of cereals, legumes and crop residues in rations for dairy cattle

Michael Blümmel, International Livestock Research Institute (ILRI), Ethiopia; A. Muller, Research Institute of Organic Agriculture (FiBL), and ETH Zürich Switzerland; C. Schader, Research Institute of Organic Agriculture (FiBL), Switzerland; M. Herrero, Commonwealth Scientific and Industrial Research Organization, Australia; and M. R. Garg, National Dairy Development Board (NDDB), India

1 Introduction 273
2 Current and future levels of animal sourced food (ASF) production 274
3 Dairy ration compositions and current and projected feed demand and supply 276
4 Context specificity of feed demand and supply 282
5 Ration composition and ceilings to milk productivity 284
6 Optimizing the feed–animal interface: ration balancing in intensive and extensive dairy systems 286
7 Summary 290
8 Where to look for further information 290
9 References 291

13 Feed supplements for dairy cattle

C. Jamie Newbold, Aberystwyth University, UK

1 Introduction 295
2 Dietary buffers to control rumen acidity 297
3 Antibiotics for improved production 298
4 Fat supplementation 300
5 Immunological control of the rumen microbial population 303
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Plant extracts to manipulate rumen fermentation, boost production</td>
<td>304</td>
</tr>
<tr>
<td></td>
<td>and decrease emissions</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Direct-fed microbials, probiotics and exogenous fibrolytic enzymes</td>
<td>308</td>
</tr>
<tr>
<td>8</td>
<td>Other supplements to control GHG emissions</td>
<td>311</td>
</tr>
<tr>
<td>9</td>
<td>Conclusion</td>
<td>311</td>
</tr>
<tr>
<td>10</td>
<td>Where to look for further information</td>
<td>312</td>
</tr>
<tr>
<td>11</td>
<td>References</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td>Part 3 Health of dairy cattle</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Disorder of digestion and metabolism in dairy cattle: the case of</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>subacute rumen acidosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gregory B. Penner, University of Saskatchewan, Canada</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Introduction</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>2 Prevalence, aetiology and biological consequences of ruminal</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>acidosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Regulation of ruminal pH</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>4 The dogma of ruminal acidosis</td>
<td>341</td>
</tr>
<tr>
<td></td>
<td>5 Case study: SARA risk in the post-partum phase of the transition</td>
<td>341</td>
</tr>
<tr>
<td></td>
<td>period</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 Other examples of SARA risk induced by low feed intake</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>7 Conclusion and future trends</td>
<td>346</td>
</tr>
<tr>
<td></td>
<td>8 Where to look for further information</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>9 References</td>
<td>347</td>
</tr>
<tr>
<td>15</td>
<td>Management of dairy cows in transition and at calving</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>Kenneth Nordlund, University of Wisconsin-Madison, USA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Introduction</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>2 Problems with using disease events to monitor herd transition</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Alternative data sources for monitoring herd transition management</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>4 Introduction to management factors that influence transition</td>
<td>358</td>
</tr>
<tr>
<td></td>
<td>outcomes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 Cow-level factors</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>6 Housing and environmental factors</td>
<td>364</td>
</tr>
<tr>
<td></td>
<td>7 Factors related to the decisions and actions of human caretakers</td>
<td>368</td>
</tr>
<tr>
<td></td>
<td>8 Case study: use of the transition cow risk assessment instrument</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>9 Summary and future trends</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>10 Where to look for further information</td>
<td>376</td>
</tr>
<tr>
<td></td>
<td>11 References</td>
<td>377</td>
</tr>
<tr>
<td>16</td>
<td>Causes, prevention and management of infertility in dairy cows</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>*Alexander C. O. Evans, University College Dublin, Ireland; and Shenming</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zeng, China Agriculture University, China</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Introduction</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>2 Bovine parturition and uterine health</td>
<td>386</td>
</tr>
<tr>
<td></td>
<td>3 Bovine post-partum metabolic environment and ovarian activity</td>
<td>387</td>
</tr>
<tr>
<td></td>
<td>4 Oestrus in dairy cows</td>
<td>388</td>
</tr>
<tr>
<td></td>
<td>5 Establishing pregnancy in dairy cows</td>
<td>389</td>
</tr>
<tr>
<td></td>
<td>6 Heat stress and bovine fertility</td>
<td>391</td>
</tr>
<tr>
<td></td>
<td>7 Heifer fertility</td>
<td>392</td>
</tr>
</tbody>
</table>
8 Genetics and bovine fertility 393
9 Future trends and conclusion 393
10 Where to look for further information 393
11 References 394

17 Aetiology, diagnosis and control of mastitis in dairy herds 399
P. Moroni, Cornell University, USA and Università degli Studi di Milano, Italy;
F. Welcome, Cornell University, USA; and M.F. Addis, Porto Conte Ricerche, Italy
1 Introduction 399
2 Indicators of mastitis: somatic cell count 401
3 Indicators of mastitis: non-cell inflammation markers 403
4 Contagious pathogens causing mastitis 404
5 Environmental pathogens: Escherichia coli, Klebsiella and environmental streptococci 407
6 Other pathogens: Prototheca, coagulase-negative staphylococci and other microorganisms 410
7 Management and control of mastitis 413
8 Dry cow therapy 414
9 The use of antibiotics 416
10 Where to look for further information 418
11 References 419

18 Preventing and managing lameness in dairy cows 431
Nick Bell, The Royal Veterinary College, UK
1 Introduction 431
2 Lameness in dairy cows: associated pain, prevalence and incidence 432
3 Recording causes and ensuring prompt and effective treatment 437
4 Lesion aetiology and categories of risk for the four main causes of lameness in dairy cows 443
5 Risk assessments and cost-effective interventions 446
6 Conclusions: how assessment, evaluation and facilitation is driving improvement 448
7 Where to look for further information 449
8 References 450

19 Control of infectious diseases in dairy cattle 457
Wendela Wapenaar, Simon Archer and John Remnant, University of Nottingham, UK; and Alan Murphy, Minster Veterinary Practice, UK
1 Introduction 457
2 The impact of infectious diseases 458
3 Principles of risk analysis and management 463
4 Hazard and risk identification 464
5 Risk assessment and evaluation 466
6 Risk management 471
7 Risk communication 475
8 Ensuring effective implementation 478
9 Trends in infectious disease control strategies 481
10 Conclusion 482
Contents

11 Where to look for further information 483
12 Abbreviations 483
13 References 484

20 Prevention and control of parasitic helminths in dairy cattle: key issues and challenges 487
Jacqueline B. Matthews, Moredun Research Institute, UK
1 Introduction 487
2 Helminth threats to grazing dairy cattle 488
3 Anthelmintic resistance 489
4 Progress in the development of evidence-based control programmes to reduce selection pressure for anthelmintic resistance 492
5 The development of robust diagnostics to support evidence-based control 493
6 Vaccine development 497
7 Future trends in research: contributions to enhanced and sustainable production 499
8 Concluding remarks 500
9 Where to look for further information 501
10 References 502

21 Genetic variation in immunity and disease resistance in dairy cows and other livestock 509
Michael Stear, Karen Fairlie-Claarke and Nicholas Jonsson, University of Glasgow, UK; Bonnie Mallard, University of Guelph, Canada; and David Groth, Curtin University, Australia
1 Introduction 509
2 Genetic variation in resistance to disease 512
3 The sources of genetic variation in resistance to disease 513
4 Strategies for breeding to increase resistance to disease 517
5 Case study 1: resistance to cattle tick infestation 520
6 Case study 2: mastitis in cattle 521
7 Case study 3: bovine respiratory disease (BRD) complex 522
8 Case study 4: additive and non-additive genetic variation 524
9 Conclusions 525
10 Where to look for further information 525
11 References 525

22 Responsible and sustainable use of medicines in dairy herd health 533
David C. Barrett, Kristen K. Reyher, Andrea Turner and David A. Tisdall, University of Bristol, UK
1 Introduction 533
2 Antimicrobial resistance 536
3 Inappropriate behaviours and practices 538
4 Making progress towards change 541
5 Delivering results 545
6 Future trends and conclusion 548
7 Where to look for further information 548

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>9</td>
</tr>
<tr>
<td>23 Dairy herd health management: an overview</td>
<td>551</td>
</tr>
<tr>
<td>Jonathan Statham, Bishopton Veterinary Group and RAFT Solutions Ltd, UK</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>551</td>
</tr>
<tr>
<td>2 The development of dairy herd health management (HHM)</td>
<td>552</td>
</tr>
<tr>
<td>3 Motivation for implementing HHM</td>
<td>554</td>
</tr>
<tr>
<td>4 Measuring: data for HHM</td>
<td>555</td>
</tr>
<tr>
<td>5 Monitoring: approaches to monitoring in HHM</td>
<td>561</td>
</tr>
<tr>
<td>6 Managing: delivering progress in HHM through planning, training and support for schemes</td>
<td>563</td>
</tr>
<tr>
<td>7 The potential benefits of HHM</td>
<td>565</td>
</tr>
<tr>
<td>8 Conclusions</td>
<td>567</td>
</tr>
<tr>
<td>9 Where to look for further information</td>
<td>567</td>
</tr>
<tr>
<td>10 References</td>
<td>568</td>
</tr>
</tbody>
</table>

Index | 571 |
Preface

‘If you want to run a successful business, you have to look after your workers.’ These words were spoken by the director of a conspicuously successful dairy enterprise while standing among his workers, handsome, healthy, robust Friesian cows at pasture in the South West of England. The three volumes in this collection review the science that underpins the successful management of successful and sustainable dairy production. Volume 1 reviews research on milk composition, genetics and breeding. Volume 2 discusses safety, quality and sustainability. Volume 3 reviews our scientific understanding underpinning the nutrition, health and welfare of all cattle in the dairy herd. In essence, Volumes 1 and 2 are about milk, Volume 3 is about cows.

As I have written elsewhere (almost), ‘Understanding the dairy cow is a matter of heart and mind. It is essential to examine her scientifically as a complex and elegant machine for the production of milk, the nearest thing in nature to a complete food. It is equally essential to recognize her as a sentient creature with rights to a reasonable standard of living and a gentle death. In both senses of the word, this understanding is not static. The more we study the workings of the dairy cow, the more efficiently we can exploit her capacity to provide milk from grasses, cereals and an enormous range of plant by-products that we cannot or choose not to eat ourselves. The more we study her nutrition, health, behaviour and environmental requirements the better we can ensure her welfare and sustained performance’ (Webster 1993).

The selection of chapters and specific topics for this book has been based on the central principle that efficient, quality milk production depends on healthy, contented cows, which further implies that good welfare requires a sense of wellbeing that is both physical and mental. If we are to promote this sense of wellbeing, we need at the outset, a proper understanding of cow behaviour and the motivations that govern behaviour. We need then to address each of the key elements of welfare by ensuring the necessary provisions. These are perhaps, most clearly and succinctly expressed by the ‘Five Freedoms and Provisions’ of the UK Farm Animal Welfare Council (FAWC 1993).

1 Freedom from thirst, hunger and malnutrition – by ready access to fresh water and a diet to maintain full health and vigour.
2 Freedom from discomfort – by providing a suitable environment including shelter and a comfortable resting area.
3 Freedom from pain, injury and disease – by prevention or rapid diagnosis and treatment.
4 Freedom to express normal behaviour - by providing sufficient space, proper facilities and the company of the animal’s own kind.
5 Freedom from fear and distress – by ensuring conditions that avoid mental suffering.

Part I – Welfare of dairy cattle reviews our understanding of cow behaviour and considers their welfare needs in terms of housing and management as adults in the dairy herd, during development as young calves and heifers and in the special circumstances of transport and slaughter. A critically important chapter also examines the consequences of genetic selection with special emphasis on traits relating to soundness and sustainability: fertility, disease resistance and environmental impact. This complements the section in Volume 1 that considers genetics primarily in the context of productivity.
The spectacular increase in milk production achieved through genetic selection has greatly increased demands on the modern intensively managed dairy cow. Indeed, it may reasonably be claimed that, in these circumstances, the capacity of the mammary gland to produce milk conspicuously exceeds the upstream capacity of the cow to provide it with nutrients. Part 2 – Nutrition of dairy cattle therefore places special emphasis on the new science that addresses the special problems associated with driving the digestive and metabolic processes at high speed. We review the Improved understanding of the nature of microbial digestion in the rumen that has led to the development of improved diets and feed additives designed to optimise nutrient supply and minimise the risk of disorders of digestion and metabolism. Special attention is given to management of high yielding cows in intensive systems to minimise two of the most important risks; rumen acidosis in lactating cows consuming large quantities of concentrate feed and the multiple physiological stresses associated with the transition period from late pregnancy to the onset of the next lactation.

Part 3 – Health of dairy cattle deals first and at greatest length with the big three causes of ill health, poor welfare and impaired performance in dairy cows: infertility, mastitis and lameness. All of these should rightly be considered as production diseases, since their prevalence is irrefutably linked to management practices. Chapters in this section explore how the management of these conditions can be (and has been) improved through a combination of treatments based on new science, better understanding of aetiology and improved management through education and the implementation of well-designed herd health programmes. Applications of new science to the control of infectious and parasitic diseases include genetic selection for specific and non-specific elements of immunity and alternatives to antibiotics.

We have it on reliable authority that new wine should not be put into old bottles. It may be equally unwise to invite an old scientist to review and edit new research. If this had been a book on the applications of molecular genetics, I would have been quite lost. However, it is all about living dairy cows: organisms that are highly complex but which have remained fundamentally the same for a long time. Over the last 50 years I have witnessed big shifts in fashion in dairy science. For many years, the emphasis was on increased milk production. Breeding for increased production per se has been very successful, though at significant cost in terms of infertility and productive life span. Attempts to increase performance through hormonal and other forms of biochemical manipulation have had little impact, partly through failure to anticipate public opinion and partly through failure to understand homeostasis. Research directed towards improved nutrition and digestive health has been, and continues to be, of enormous benefit to the health of dairy industry and the cows themselves. The reason for this is almost too obvious to mention. Whereas the metabolism of an individual animal operates within strictly controlled limits, the potential for manipulating feeds and feed mixtures to optimise nutrient supply while ensuring healthy digestion is almost limitless.

The campaign for good health can never be entirely won. The most newsworthy problems arise from the appearance of new or re-emergent epidemics such as Foot and Mouth disease, but over time these do not begin to compare with the big three: infertility, mastitis and lameness. Here we have needed the best of science simply to hold the line in the face of increasing challenges arising from the environment and management. Most recently, scientists have been presented with new problems associated with the impact of dairy production systems on the sustainability of the living environment, in particular those associated with high output of carbon (especially methane) and nitrogenous compounds.
They receive proper attention here. However, in our enthusiasm for this new science, we should never overlook the fact that these are two of the key elements of life. The poison is only in the dose.

John Webster

References

Introduction

Cow’s milk is one of the world’s most important agricultural food products. Its importance in the diet is widely acknowledged as a source of calcium, protein, vitamins and minerals. It is an essential ingredient in a wide range of foods. Demand is increasing, particularly in developing countries as a result of growing populations, increasing urbanisation and income levels as well as changes in diet.

In meeting demand, more intensive dairying systems in developed countries face a range of challenges such as maintaining high standards of safety in the face of the continuing threat from zoonoses and contaminants entering the food chain, whilst continuing to improve nutritional and sensory quality. At the same time farms need to become more efficient and sustainable by using fewer inputs and reducing greenhouse gas emissions. It is essential that farming must also meet higher standards of animal health and welfare. Smallholder systems in developing countries face problems such as poor nutrition for cattle, low productivity and vulnerability to disease which impact on safety, quality, sustainability and animal welfare.

Drawing on a range of international expertise, the three volumes of Achieving sustainable production of milk review key research addressing these challenges. Volumes 1 and 2 review research on the quality and safety of milk, genetics and sustainability. This volume reviews the current state of our scientific understanding of the nutrition, health and welfare of cattle in the dairy herd.

Part 1 Welfare of dairy cattle

In recent years we have developed the necessary tools to gain a much deeper understanding of cow behaviour in intensive management systems. This improved understanding can facilitate the design of new, sustainable management systems which promote cattle welfare. Chapter 1 summarises current research on cattle preferences and behaviour. It considers the importance of understanding the perceptual world of cows, and then how the preferences and emotions of cows are revealed through their social, nutritional and reproductive behaviour, their movements (locomotion and resting) as well as their responses during transport and slaughter. Research to identify cows’ emotional responses to increasingly artificial environments facilitates the identification of systems that are more conducive to high levels of welfare.

Building on Chapter 1, Chapter 2 provides an overview of key issues in the welfare of dairy cattle, providing a context for the following chapters in Part 1. These issues include: housing (with potential problems of confinement and restricted movement, for example), the consequences of a unilateral focus on milk yield in areas such as breeding (with implications for health), poor handling of cattle (for example in transport and slaughter), as well as disrupted social structures (for example in the treatment of heifers and calves). It reviews controversies about reconciling what we know about the natural social behaviour of cattle with the demands of more intensive production systems, and suggests priorities for future research.

In modern dairy farming, lactating cows and un-weaned calves are often housed indoors, in a restricted space, at high density, and/or separate from other animals. Such
housing conditions affect the welfare of the animals by creating risks of illness and injuries and placing restrictions on behaviour. Picking up from Chapter 2, Chapter 3 examines the physical and social aspects of dairy cattle housing. It focuses on the different housing systems available for lactating cows, and the advantages and disadvantages of these alternatives. Topics discussed include stall design, flooring and stocking densities in relation to social competition and dominance within herds. The chapter then reviews the issue of housing for un-weaned calves. It discusses how housing affects weight gain, health and aspects of behaviour such as locomotion and rest, as well as the implications of housing un-weaned calves individually, in groups or with their mothers.

As identified in Chapter 2, narrow breeding goals focussed on milk production traits have been detrimental to the reproductive performance and health of dairy cattle. There is therefore a need to develop breeding strategies which allow production and non-production traits to be balanced against each other. Chapter 4 discusses the principles behind multi-trait selection. It reviews practices of selecting for milk production, energy balance and fertility, and then consider ways of incorporating newer breeding objectives such as health traits, feed efficiency and reduction of methane emissions, as well improving heat tolerance in cattle in the face of a changing climate. The chapter concludes by discussing the use of modern genomic selection and gene editing techniques. As the chapter points out, while genomic selection has been implemented for many traits (such as fertility and longevity), there are still obstacles to overcome in applying it to other traits of interest, associated with the heritability of the trait, the number of animals in reference populations and the cost of phenotyping. These provide priorities for future research.

Each year, some cows are culled from dairy herds. Most of these cows are culled due to sickness or lameness, meaning that they are likely to experience pain and distress during marketing, transport and slaughter. Chapter 5 reviews strategies for ensuring the welfare of these cows both before and during transport as well as slaughter. The chapter summarises the legislation and codes of practice surrounding the transport and slaughter of cows, considers important pre-transport conditions which can affect the welfare of cows during transport and at the slaughterhouse. It also discusses causes and signs of distress as well as strategies to avoid welfare problems.

National survey results suggest that approximately 1 out of every 10 dairy heifers in the United States die before weaning. Such statistics highlight the potential for improvements in the rearing of young dairy calves. Chapter 6 reviews strategies for managing calving, improving calf vitality and successful colostrum feeding. It also assesses prevention of neonatal disease, alleviation of pain during common procedures and provision of optimal housing. Finally, it discusses execution of accelerated feeding programs, stress-free weaning, and maintenance of efficient rearing by optimal nutrition and housing of post-weaned dairy heifers. In each case, the chapter both identifies key advances in improving calf health and welfare, as well as remaining hurdles to achieving meaningful improvements in the success of heifer rearing programs, particularly as they relate to calf welfare.

Part 2 Nutrition of dairy cattle

Nutrition is a key element in the efficiency and sustainability of milk production as well as in cow health and welfare. This is the subject of the chapters in Part 2. Ruminants are characterized by their capacity for pre-gastric anaerobic fermentation in the rumen.
(foregut), which harbors a variety of microbes including bacteria, archaea, protozoa and fungi. The complex association of different microbes acts synergistically for the conversion of cellulosic feed into volatile fatty acids (VFAs) and proteins that fulfill the nutrient requirements of the animals. Chapter 7 summarizes current knowledge about rumen microbial diversity, ecology, function, and relationships with host phenotypes. It also reviews research on factors influencing composition of rumen microbiota and how this understanding can be used to alter microbiota to improve rumen function. As it points out, advanced sequencing-based technologies have led to the detailed identification of rumen microbiota/microbiotome at both taxonomic and functional levels, providing new insights into the role of the rumen in ruminant production and health.

A range of biochemical and physiological factors affects feed efficiency in dairy cattle. Chapter 8 provides an overview of the physiology and biochemistry of the cow, and then focuses on what we know about the biology of lactation, with particular emphasis on the effects of genetic variation on nutrient intake metabolism. The chapter shows the role of biochemical metabolic models in exploring the effect of genetic selection or genetic variance on feed efficiencies. The chapter also includes a case study looking at the mechanisms and effects of simple genetic variations which have been shown to have a significant impact on feed efficiency.

The models described in Chapter 8 play a role in accurate assessment of the nutritional value of feeds, which is essential in the formulation of diets and evaluation of different feeds. Chapter 9 discusses different methods of estimating digestibility, energy and protein value of dairy cattle feed formulations. Topics include evaluation of feed energy value and methods to predict digestibility and its effect on energy value. The chapter then assesses discounts of digestibility and associative effects and ways of calculating metabolisable energy (ME) and net energy concentration (NE). The chapter also reviews ways of evaluating protein value, including estimation of microbial protein and rumen undegraded protein (RUP). The chapter summarises the advantages and weaknesses of static empirical models and dynamic mechanistic models, emphasizing the need to evaluate models using large datasets from productions studies to improve the accuracy of predictions of nutrient efficiency.

Managing dairy herd nutrition must not only meet the nutrient requirements of the animals but also contribute to the overall sustainability of dairy farm operations. As Chapter 10 points out, research to reduce enteric methane emission through feeding strategies is an important element in improving the efficiency of conversion of feed to milk, particularly with the use of a wider range of by-products such as distiller’s grain in dairy rations. Chapter 10 discusses the use and importance of phosphorus and nitrogen in cow nutrition, their broader environmental impact, and a range of sustainable solutions to reducing that impact. The chapter also explores the overall carbon footprint associated with dairy farming. It includes a case study of using nutrient management to reduce enteric methane emissions in intensive dairy production systems in California and Wisconsin.

Chapter 11 reviews pasture-based systems for dairy production. When properly managed, grass-legume mixes can provide well balanced nutrition able to sustain good levels of milk production in dairy cattle so that cows need only be fed non-pasture feeds when there is insufficient pasture. To achieve good nutrition management in grazing systems, it is essential to identify genuine feed deficits to optimise pasture use and minimise reliance on supplementary feeds. As Chapter 11 points out, getting this balance right can have more impact on costs than deciding on the type of supplement to be fed. The chapter reviews the factors which must be taken into account when deciding
whether and how to supplement pasture with additional feed, as well as choosing the right supplementary feed to use.

The production of animal feed requires a significant use of resources which reduces the sustainability of dairy farming operations. When choosing feed sources and feeding methods, it is therefore essential to consider context-specific trade-off analyses, and to take into account the relationships between use of natural resources, feed products and the livestock in question. Chapter 12 reviews key elements in trade-off analysis in making better use of existing feed resources and producing more feed biomass of higher fodder quality. It looks at current and future levels of animal sourced food (ASF) production, the relationship between feed ration composition and milk productivity, and methods of ration balancing in intensive and extensive dairy systems.

The manipulation of ruminal fermentation to maximize the efficiency of feed utilization and increase ruminant productivity is of great commercial interest. Building on Chapter 7, Chapter 13 reviews the ways of manipulating rumen fermentation in dairy cattle. It considers a wide variety of approaches, looking in each case at potential benefits and limitations. Approaches include the use of dietary buffers, antibiotics and fat supplements as well as immunological control of the rumen microbial population. It also discusses the use of plant extracts to manipulate rumen fermentation, boost production and decrease emissions. Finally, it summarises research on direct fed microbials, probiotics and exogenous fibrolytic enzymes.

Part 3 Health of dairy cattle

The final group of chapters looks at key aspects of the health of dairy cattle. Picking up on the discussion of nutrition in Part 2, Chapter 14 starts by considering one of the main disorders of digestion and metabolism in dairy cattle: subacute rumen acidosis (SARA). Given the high milk yields required of current dairy cattle, feeding energy dense diets is necessary to meet nutrient requirements. Typically, this entails the use of diets that are highly fermentable. However, excessive fermentation in the rumen decreases ruminal pH and leads to the onset of ruminal acidosis. The chapter explores current research on the nature, causes and prevention of SARA. As the chapter points out, management strategies that ensure adequate and consistent dry matter intake (DMI), while balancing fermentability of the diet, are most likely to ensure high milk yield while mitigating undue risk for SARA.

An essential event in dairying is the birth of a calf and the transition of the mother cow from gestation and into lactation. While the transition can proceed without incident, it is also a period of substantial risk for many cows. As Chapter 15 points out, most of the clinical disease events in a dairy cow’s life occur during the transition period. It is believed that almost all cows experience some immune dysfunction during the peripartum period, and that this combined with nutritional and other issues leads to a variety of metabolic and infectious disease events. Chapter 15 addresses the best way to monitor the health and management of cows during the transition period. It discusses a number of factors which can affect herd transition health, including the intrinsic characteristics of the cows, limitations and challenges associated with the housing and environment in which cows are placed, and the role of husbandry. The chapter concludes with a case study on the use of transition cow risk assessment (TCRA) techniques in a dairy operation.
Reproduction and fertility are central components to successful dairy enterprises and the appropriate management and understanding of the physiological events needed for fertility is crucial to sustainable dairy farming. Chapter 16 discusses the physiology of the main impediments to fertility as well as the management issues that need to be addressed in order to ensure good fertility of dairy cows. It deals with parturition and uterine health, the importance of the post-partum environment and the role of oestrus, as well as methods of establishing pregnancy and the effect of heat stress on cows’ fertility. The chapter also examines fertility of heifers and the impact of genetics on fertility.

Mastitis is one of the most economically important diseases in dairy production. Associated costs include treatment, culling, decreased milk production and quality. Cow welfare is also compromised. Chapter 17 reviews the indicators of mastitis and the contagious and environmental pathogens which cause it, including Escherichia coli, Klebsiella, streptococci, Prototheca, Coagulase-negative staphylococci and other pathogens. It then discusses how mastitis can be managed and controlled on dairy farms, including good farming practices to management the cattle environment (such as appropriate bedding to minimize contamination and spread of disease). There is a particular focus on the use dry cow therapy and the appropriate use of antibiotics.

Lameness in dairy cows is a major economic and welfare problem worldwide. Despite its importance, there are still significant gaps in research, particularly in disease pathogenesis, treatment and herd interventions. However, appropriate surveillance can make a substantial difference to ensuring prompt and effective treatment. Key methods include quantifying lameness levels, analysing recorded lesions causing lameness, evaluating risk factors and prioritising interventions. Chapter 18 reviews what we know about lesion aetiology and categories of risk for the main causes of lameness in dairy cows. It also assesses the evidence underpinning what makes effective control programmes for the prevention and management of lameness in dairy cows.

Chapter 19 describes developments in infectious disease control in the dairy cattle industry. A risk analysis approach is presented as a framework for managing infectious disease at both global and farm level. The chapter introduces the principles of risk assessment and management, discusses hazard and risk identification as well as risk assessment and evaluation. It then considers methods of risk management and risk communication. The chapter highlights the importance of issues such disease detection, the use of diagnostic tests and their appropriate interpretation. The range of impacts of infectious disease on the dairy industry is described as well as ways to evaluate the risks they present. The chapter also discusses key challenges in successful implementation and effective communication of risk management on dairy farms.

Parasitic helminth infections are one of the most important causes of production loss in livestock worldwide. Grazing dairy cattle are exposed to various worm species, all of which can impact health, welfare and productivity to varying degrees. For several decades, helminth control relied primarily on the frequent use of broad spectrum anthelmintics. However, the use of such treatments needs to be moderated in order to avoid selection pressure for anthelmintic resistance. Chapter 20 describes the likely helminth threats to grazing dairy cattle, with particular emphasis on the issue of anthelmintic resistance. It then offers a review of progress in developing evidence-based control programmes to reduce selection pressure for anthelmintic resistance. Finally, it reviews progress in the development of anti-helminth vaccines. Such vaccines are a long way off commercial availability, but recent progress suggests that these could form part of a sustainable solution to helminth control on dairy farms.
There is considerable variation in resistance to disease in livestock that enables the effective selection of healthier and more productive animals in breeding. Chapter 21 reviews what we know about the sources of variation in resistance to disease in cattle. It then considers three strategies for selecting for resistance. The first approach is by selecting for resistance to particular diseases. A second technique is selecting for animals with strong innate and or adaptive immune responses to achieve a broad-based disease resistance. A final approach is selecting for animals that perform well in an environment in which disease is endemic. The chapter illustrates these differing approaches with three case studies looking at improving resistance to cattle tick infestation, mastitis and bovine respiratory disease (BRD). The chapter also reviews additive and non-additive genetic variation, as well as new technologies such as high density SNP chips and techniques like genome-wide association studies (GWAS).

As well as having an obligation to safeguard animal health and welfare, veterinarians and dairy producers also have responsibilities to protect human health from the risk of antimicrobial resistance and the food chain from medicine residues. Chapter 22 describes typical regulatory controls for veterinary medicines and current antimicrobial use in dairy production. Echoing themes in Chapters 18, 20 and 23, it argues for the need for change in the way we view and use medicines. The chapter proposes how medicine prescribing practices might be changed in the dairy industry. As an example, integrating a detailed review of actual medicine use on-farm into health planning is an effective way of reducing the numbers of animals treated, as well as ensuring that when treatments are required they are applied appropriately. This approach can greatly enhance the farmer-veterinarian working relationship, whilst making preventive medicine a reality. It enhances animal health while reducing both medicine costs and the risk of antimicrobial resistance. Using this kind of approach, the chapter also shows how key antimicrobials could be phased out over a relatively short period of time, whilst simultaneously improving animal health, welfare and milk production.

The importance of ensuring animal welfare and food security, of combating antimicrobial resistance (AMR), and of increasing food production, all contribute to the need for preventative medicine. Herd health management (HHM) involves the delivery of a more co-ordinated approach where management interventions are prioritized and the veterinary surgeon acts as a central hub for the farm team. Chapter 23 reviews the principles and development of HHM. It then discusses the key steps in effective implementation, starting with data collection and measurement. It then summaries monitoring techniques before looking at management, including planning, training and support HHM for schemes. Finally, the chapter looks at the benefits of HHM in improving animal health whilst reducing costs and reliance on antibiotics.
Index

AHWS, see Animal Health and Welfare Strategy (AHWS)
Alternative cell count traits 86–88
Ammonia production, and feed supplements 296
Anaerobic fungi 160
Animal health, and feed supplements 296–297
Animal Health and Welfare Strategy (AHWS) 552
Animal sourced food (ASF)
ceilings to milk productivity 284–286
description of 274–275
feed demand and supply
context specificity of 282–284
dairy ration compositions 276–282
overview 273–274
ration balancing 286–290
ration composition 284–286
Anthelmintic resistance
evidence-based control
programmes 492–493
in nematodes 490–491
in trematodes 491–492
Antibiotics, and feed supplements 298–300
Antibody-based tests 496–497
Aspergillus oryzae 310
Bacterial additives, and feed supplements 308–309
BCVA. see British Cattle Veterinary Association (BCVA)
Biochemical and physiological determinants
case study on 188–193
description 182–186
development of 186–188
and genetic variation 193–195
overview 181–182
Body condition score 359
Bovine fertility
and genetic selection 393
heat stress and 391–392
Bovine parturition and uterine health 386–387
Bovine post-partum metabolic environment 387–388
Bovine respiratory disease (BRD) 522–524
BRD. see Bovine respiratory disease (BRD)
Breed cattle, with rumen microbiota 170
Breeding goals/objectives
dairy cows and climate change
greenhouse gas (GHG) emissions 91
heat tolerance 92
energy balance 84–85
and fertility 85–86
and gene editing
cholesterol deficiency 95–96
polled gene 95
slick gene 96
and general disease resistance 90
and genomic selection 92–93
and inbreeding 94
and lameness 89
mastitis
alternative cell count traits 86–88
recovery from 88–89
and metabolic diseases 89–90
and mid-infrared spectral data 90
overview 81–82
selection for milk production 83–84
and selection indices 82–83
and welfare 32–33
British Cattle Veterinary Association (BCVA) 553
Calf vitality
assessment of newborn 126–127
characteristics of impaired 125–126
management of improving 124–125
methods to improve 127–129
Calves and heifers, health and welfare
colostrum management 129–130
feeding management
milk 139–140
solid feed to pre-weaned calves 140–141
weaning calves from milk 141–142
health management
genetic approaches 136
morbidity and mortality 132–134
pain 131–132
sickness behaviour 135–136
housing considerations
housing environment 138–139
social housing 137–138
managing weaned calves
amount of feed 143–144
feeding delivery methods 142–143
feed space availability 144–145
overview 123
vitality
assessment of newborn 126–127
characteristics of impaired 125–126
Index

Dairy ration compositions 276–282
Digestibility, and feed energy value
 iNDF method 204
 mechanistic dynamic models 205
 predicting from chemical composition 201–202
 summative equations 202–203
 in vitro methods 203–204
 in vivo methods 200–201
Dry cow therapy 414–416

Embryo mortality 389–390
Energy balance, and breeding objectives 84–85
Environmental mastitis pathogens
 environmental streptococci 408–410
 Escherichia coli 407–408
 Klebsiella 407–408
Environmental streptococci 408–410
EO, see Essential oils (EO)
 Escherichia coli 407–408
Essential oils (EO) 305–307
Evidence-based control programmes 492–493
Exogenous fibrolytic enzymes 310–311
Faecal egg count test 494–495
Farm Health Planning (FHP) 553
Fat supplementation
 and hydrolysable fats 302–303
 and inert/bypass fats 301–302
Feed demand and supply
 context specificity of 282–284
 dairy ration compositions 276–282
Feed efficiency, and rumen microbiota 165–166
Feed energy value
 digestibility
 iNDF method 204
 mechanistic dynamic models 205
 predicting from chemical composition 201–202
 summative equations 202–203
 in vitro methods 203–204
 in vivo methods 200–201
discounts and associative effects 205
 and feed protein systems 213–215
 and feed protein value
 metabolisable protein 207–208
 in ruminant diet 207
metabolisable energy and net energy concentration 206–207
and microbial protein estimation 208–210
overview 199–200
Feeding management
 milk 139–140
 solid feed to pre-weaned calves 140–141
 weaning calves from milk 141–142
Feeding space per cow 364–365
Feed protein systems 213–215
Feed protein value
 metabolisable protein 207–208
 in ruminant diet 207
Feed space availability 144–145
Feed supplements
 and animal health 296–297
 and antibiotics 298–300
 and Aspergillus oryzae 310
 and bacterial additives 308–309
to control GHG emissions 311
and dietary buffers to control rumen acidity 297–298
and essential oils (EO) 305–307
and exogenous fibrolytic enzymes 310–311
fat supplementation
 and hydrolysable fats 302–303
 and inert/bypass fats 301–302
and GHG production 297
and human health 297
microbial fibre degradation 296
and organosulphur compounds 304–305
overview 295
protein degradation and ammonia production 296
and rumen microbial population 303–304
and saponins 307–308
and tannins 307
volatile fatty acids (VFAs) 296
and yeast culture 309–310
Fertility/fertilization. see Reproduction and fertility, in dairy cows
FHP. see Farm Health Planning (FHP)
Fixed-time artificial insemination, and synchronization 388–389
Flooring 11–13, 62–63
FMD. see Foot-and-mouth disease (FMD)
Foetal mortality, in dairy cows 391
Foot-and-mouth disease (FMD) 552
Gene editing
 cholesterol deficiency 95–96
 polled gene 95
 slick gene 96

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
General disease resistance 90
Genetic load 514
Genetic selection/genomic selection and bovine fertility 393
and breeding goals/objectives 92–93
Genetic variation and disease resistance
description 512–513
overview 509–512
sources of
balancing selection 514
coevolution 516
genetic load 514
immunopathology 516
influence of nutrition 515–516
precision of statistical estimation 513–514
susceptibility to multiple diseases 515
trade-offs 514
strategies to increase
additive and non-additive genetic variation 524–525
bovine respiratory disease (BRD) 522–524
cattle tick infestation 520–521
direct selection 517–518
and improved immune responses 518–519
mastitis in cattle 521–522
performance traits 519–520
GHG emissions. see Greenhouse gas (GHG) emissions
Great Britain Farm Assurance 553
Greenhouse gas (GHG) emissions and dairy cows 91
and feed supplements 311
Group and individual housing 73–74
Hazard and risk identification 464–466
Health management
genetic approaches 136
morbidity and mortality 132–134
pain 131–132
sickness behaviour 135–136
Heat and shade abatement 366–367
Heat stress, and bovine fertility 391–392
Heifer fertility, in dairy cows 392
Herd health management (HHM)
data for 555–561
development of 552–554
managing 563–565
monitoring 561–563
motivation for implementing 554–555
overview 551–552
potential benefits of 565–567
Herd health plan (HHP) 552
Herd Health & Production Management (HH&PM) 554
HHP. see Herd health plan (HHP)
HH&PM. see Herd Health & Production Management (HH&PM)
Housing system
abnormal behaviour and aggression 72–73
for calf and cow together 74
for calves and heifers
housing environment 138–139
social housing 137–138
and environmental factors
feeding space per cow 364–365
maternity pens 367–368
shade and heat abatement 366–367
short-day lighting/photoperiod manipulation 368
stall size 366
surface cushion 365–366
feeder space 67–68
feeding behaviour and weight gain 73
flooring 62–63
group and individual housing 73–74
health effects 69–70
locomotion 63–64, 70–71
overview 53
sleep and rest 71
and social behaviour 72
stall design
location 61–62
overview 57–58
size and configuration 60–61
surface and bedding 58–60
stocking density 64–67
types of 54–57
Human caretakers, and transition
calving assistance 369
moving cows in imminent labour 368–369
screening cows for illness and medical attention 369–370
Human health, and feed supplements 297
Husbandry practices, and welfare
and breeding goals 32–33
diseases 33–34
high milk yield 31–32
and reproductive management practices 32–33
Hydrolysable fats 302–303
Immunopathology 516
Inbreeding, and breeding objectives 94
INDF method 204
Index

Inert/bypass fats 301–302
Infectious diseases
 effective implementation 478–481
 hazard and risk identification 464–466
 impact of 458–463
 overview 457–458
 risk assessment and evaluation
 detection 466–467
 estimation and evaluation 470–471
 surveillance 468–469
 risk communication 475–478
 risk management and analysis 463–464
 controlling risk 474–475
 preventive measures 471–474
 trends in control strategies 481–482
In situ method, for RUP 211–212
In vitro methods
 and feed energy value 203–204
 rumen undegraded protein (RUP) 212–213
In vivo methods, for feed energy value 200–201
KE. see Knowledge exchange (KE)
Key performance indicators (KPIs) 560
Klebsiella 407–408
Knowledge exchange (KE) 563–564
KPIs. see Key performance indicators (KPIs)
Lameness
 associated pain 432–434
 and breeding goals/objectives 89
 causes of
 cost-effective interventions 446–448
 digital dermatitis 445–446
 interdigital phlegmon 446
 risk assessment 446
 sole ulcer 443–444
 white line 444–445
 overview 431–432
 prevalence and incidence 432–434
 prompt and effective treatment of 440–443
 recording conditions that cause 437–440
Late embryo and foetal mortality 391
LCA. see Life cycle assessment (LCA)
Leaching, and nitrate runoffs 233
Life cycle assessment (LCA) 565
Livestock markets, and culled dairy cows
 welfare 111–113
Locomotion 11–13, 63–64, 70–71
 scores 359–360
MACC. see Marginal abatement cost curves (MACC)
Marginal abatement cost curves (MACC) 565
Masititis
 breeding goals/objectives
 alternative cell count traits 86–88
 recovery from 88–89
 coagulase-negative staphylococci (CNS) 411
 contagious pathogens
 Mycoplasma species 406–407
 Staphylococcus aureus 405–406
 Streptococcus agalactiae 404–405
 dry cow therapy 414–416
 environmental pathogens
 environmental streptococci 408–410
 Escherichia coli 407–408
 Klebsiella 407–408
 genetic variation and disease resistance 521–522
 indicators
 non-cell inflammation markers 401–403
 somatic cell count (SCC) 401–402
 management and control of 413
 Nocardia asteroides 412
 overview 399–401
 Prototheca 410–411
 Pseudomonas aeruginosa 411–412
 Serratia 412
 Trueperella pyogenes 412
 use of antibiotics 416–418
Maternity pens 367–368
Mechanistic dynamic models 205
Medicines, in dairy herd health
 antimicrobial resistance (AMR) 536–538
 behaviours and practices 538–540
 collaborative participation 544
 cultural change and strong leadership 543
 delivering results 545–547
 medicine auditing and clinical governance 544
 overview 533–536
 SMART (specific, measurable, achievable, relevant and time-bound) objectives 543
 sustainability 544–545
 widespread involvement 544
Metabolic diseases 89–90
Metabolisable energy, and net energy concentration 206–207
Metabolisable protein 207–208
Methane emission, and rumen microbiota 166
Microbial diversity, rumen anaerobic fungi 160
Index

Ciliated protozoa 159–160
Rumen archaea 159
Rumen bacteria 159
Ruminal viruses 160
Microbial fibre degradation 296
Microbial protein estimation 208–210
Mid-infrared spectral data 90
Milk feeding management 139–140
Milk productivity ceiling, and ASF 284–286
Milk urea nitrogen (MUN) 235–237
Morbidity, and health management 132–134
Mortality
 embryo 389–390
 and health management 132–134
MUN. see Milk urea nitrogen (MUN)
Mycoplasma species 406–407
Nematodes 490–491
Net energy concentration 206–207
Nitrate runoffs, and leaching 233
Nitrogen issues, and sustainable nutrition
 management
 ammonia emission 231–232
 impact on cow performance 228–231
 milk urea nitrogen (MUN) 235–237
 nitrate runoffs and leaching 233
 nitrous oxide emission 232–233
 ration formulation 233–235
 whole-farm N balance 237
Nitrous oxide emission 232–233
Nocardia asteroides 412
Non-cell inflammation markers 401–403
Non-steroidal anti-inflammatory drugs (NSAIDs) 559
NSAIDs. see Non-steroidal anti-inflammatory drugs (NSAIDs)
Nutritional behaviour, of dairy cattle 9–10
Nutrition of grazing dairy cows
 cascade of nutritional limitations 260–261
 economic factors affecting 252–253
 overview 251–252
 pasture as feed
 carbohydrate composition 255–256
 dietary crude protein 256
 dry matter intake 258–260
 effective fibre 256–258
 using supplementary feed 253–254
Oestrus
 expression and detection of 388
 synchronization and fixed-time artificial insemination 388–389
 ‘Omics’ approaches 163–165
Organosulphur compounds, and feed supplements 304–305
Ovarian activity 387–388
Pain management 131–132
Parasitic helminth infections
 anthelmintic resistance
 evidence-based control programmes 492–493
 in nematodes 490–491
 in trematodes 491–492
 antibody-based tests 496–497
 faecal egg count test 494–495
 overview 487–488
 reduction test 495–496
 threats to grazing dairy cattle 488–489
 vaccine development 497–499
Phosphorus issues, and sustainable nutrition management
 environmental concern 225–226
 impact on cow performance 224–225
 ration formulation 226–228
 sustainable solutions 226
 whole-farm P balance 228
Photoperiod manipulation/short-day lighting 368
Polled gene 95
Pregnancy, in dairy cows
 embryo mortality 389–390
 fertilization 389
 late embryo and foetal mortality 391
 and progesterone 390–391
Pre-transport conditions, and culling 106–107
Prior lactation milk yield 360
Protein degradation, and feed supplements 296
Prototheca 410–411
Pseudomonas aeruginosa 411–412
Ration balancing, and ASF 286–289
Ration composition, and ASF 284–286
Ration formulation
 and nitrogen issues 233–235
 and phosphorus issues 226–228
Reduction test 495–496
Reproduction and fertility, in dairy cows
 bovine parturition and uterine health 386–387
 bovine post-partum metabolic environment and ovarian activity 387–388
 and breeding goals/objectives 85–86

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
in dairy cows 389
establishing pregnancy
 embryo mortality 389–390
 fertilization 389
 late embryo and foetal mortality 391
 and progesterone 390–391
embryos and bovine fertility 393
heat stress and bovine fertility 391–392
heifer fertility 392
oestrus
 expression and detection of 388
 synchronization and fixed-time artificial insemination 388–389
overview 385–386
reproductive behaviour 10–11
and welfare 32–33
Resting. see Flooring
Risk assessment and evaluation, of infectious diseases
detection 466–467
estimation and evaluation 470–471
surveillance 468–469
Risk management
 and analysis 463–464
 controlling risk 474–475
 preventive measures 471–474
Rumen archaea 159
Rumen bacteria 159
Rumen microbial population 303–304
Rumen microbiota
 altering rumen function by 168–169
 breed cattle with desirable 170
 causes or consequences 170–171
factors influencing composition of
 effect of age and physiological condition 162
 effect of diet, feed intake 162
 effect of host genotype 162–163
 effects of geography, season and host adaptations 163
feed efficiency 165–166
function of 160–161
methane emission 166
microbial diversity
 anaerobic fungi 160
 ciliated protozoa 159–160
 rumen archaea 159
 rumen bacteria 159
ruminal viruses 160
‘omics’ approaches 163–165
overview 157–158
quality and safety of animal products 167–168
ruminal acidosis 166–167
Rumen undegraded protein (RUP)
 in situ method 211–212
 in vitro methods 212–213
Ruminal acidosis
dogma of 341
overview 329–330
prevalence, aetiology and biological consequences of 330–333
rumen microbiota 166–167
ruminal pH
 absorption and stabilization of 337–338
 acute-phase proteins as biomarker 340–341
 as diagnostic for ruminal acidosis 338–340
 mechanisms of SCFA absorption 334–335
 pathway of SCFA absorption 336–337
 ruminal temperature to predict 340
SARA risk in post-partum phase
 by low feed intake 345–346
 potential metabolic effects of 343–344
 reducing 344–345
 reduction in DMI as parturition approaches 342–343
 summary of 345
Ruminal viruses 160
Ruminant diet, feed protein value in 207
RUP. see Rumen undegraded protein (RUP)
Rural Development Programme for England (RDPE) 564
Saponins, and feed supplements 307–308
SCC. see Somatic cell count (SCC)
Selection indices, and breeding objectives 82–83
Serratia mastitis 412
Shade and heat abatement 366–367
Short-day lighting/photoperiod manipulation 368
Sickness behaviour 135–136
Slaughter plant, culled dairy cows welfare at arrival and unloading 114
dairy cattle behaviour during 13–14
lairage duration and conditions 115–116
stunning and slaughter 116–117
Slick gene 96
SMART. see Specific Measurable Achievable Realistic Time Bound (SMART)
Social behaviour
 of dairy cattle 7–9
 and housing system 72
Social housing, for calves and heifers 137–138
Solid feed, to pre-weaned calves 140–141
Somatic cell count (SCC) 534
mastitis 401–402
Specific Measurable Achievable Realistic Time Bound (SMART) 554
Stall design
location 61–62
overview 57–58
size and configuration 60–61
surface and bedding 58–60
Stall size transition, and calving 366
Staphylococcus aureus 405–406
Stockmanship 30–31
Streptococcus agalactiae 404–405
Summative equations, and feed energy value 202–203
Surface cushion, and calving 365–366
Sustainable nutrition management and enteric methane emissions
carbon footprint 242–243
GHG mitigation 243–244
methodology 239–240
overview 238–239
performance of dairy cows 242
results and discussion 240–242
nitrogen issues
ammonia emission 231–232
impact on cow performance 228–231
milk urea nitrogen (MUN) 235–237
nitrate runoffs and leaching 233
nitrous oxide emission 232–233
ration formulation 233–235
whole-farm N balance 237
overview 223–224
phosphorus issues
environmental concern 225–226
impact on cow performance 224–225
ration formulation 226–228
sustainable solutions 226
whole-farm P balance 228
Synchronization and fixed-time artificial insemination 388–389
Tannins, and feed supplements 307
TCITM. see Transition Cow IndexTM (TCITM)
TCRA. see Transition cow risk assessment (TCRA)
Transition, and calving
alternative data sources for monitoring 355–358
cow-level factors
body condition score 359
locomotion scores 359–360
prior lactation milk yield 360
disease events to monitor 355
housing and environmental factors
feeding space per cow 364–365
maternity pens 367–368
shade and heat abatement 366–367
short-day lighting/photoperiod manipulation 368
stall size 366
surface cushion 365–366
and human caretakers
calving assistance 369
moving cows in imminent labour 368–369
screening cows for illness and medical attention 369–370
management factors 358–359
overview 353–354
regroupings/dominance/subordination/primiparous versus multiparous groupings and dry period length 363
and immune status 362–363
physical fitness 363
and unfamiliarity 361–362
Transition Cow IndexTM (TCITM) 357–358
transition cow risk assessment (TCRA)
changes in herd performance 374–375
example dairy 371–372
improvement plans 373–374
opportunities to improve 375
overview 370–371
summary of 372–373
Transportation, and culled dairy cows
causes of stress 110–111
dairy cattle behaviour during 13–14
indicators of stress 108–110
overview 107–108
Trematodes 491–492
Trueperella pyogenes 412
Uterine health and bovine parturition 386–387
Vaccine development 497–499
VFAs. see Volatile fatty acids (VFAs)
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile fatty acids (VFAs)</td>
<td>296</td>
</tr>
<tr>
<td>Weaned calves, managing</td>
<td></td>
</tr>
<tr>
<td>amount of feed</td>
<td>143–144</td>
</tr>
<tr>
<td>feeding delivery methods</td>
<td>142–143</td>
</tr>
<tr>
<td>feed space availability</td>
<td>144–145</td>
</tr>
<tr>
<td>Whole-farm N balance</td>
<td>237</td>
</tr>
<tr>
<td>Whole-farm P balance</td>
<td>228</td>
</tr>
<tr>
<td>Yeast culture, and feed supplements</td>
<td>309–310</td>
</tr>
</tbody>
</table>