Achieving sustainable production of pig meat

Volume 1: Safety, quality and sustainability

Edited by Professor Alan Mathew, Purdue University, USA
Contents

Series list
ix

Introduction
xiii

Part 1 Safety

1. **Zoonoses associated with pigs**
 - *Peter R. Davies, University of Minnesota, USA*
 - 1 Introduction 3
 - 2 Overview of zoonotic hazards associated with pigs 4
 - 3 Classical zoonoses: leptospirosis, brucellosis and tuberculosis 6
 - 4 Emerging zoonoses: influenza A viruses and *Streptococcus suis* 12
 - 5 Emerging zoonoses: livestock-associated *Staphylococcus aureus* 16
 - 6 Emerging zoonoses: hepatitis E and novel paramyxoviruses 18
 - 7 Foodborne pathogens 21
 - 8 Summary 26
 - 9 Where to look for further information 26
 - 10 References 26

2. **Salmonella control in pig production**
 - *Jan Dahl, Danish Agriculture and Food Council (DAFC), Denmark*
 - 1 Introduction 39
 - 2 The production system 40
 - 3 Surveillance and monitoring 41
 - 4 Feed 41
 - 5 The environment 43
 - 6 Replacement animals 43
 - 7 Finisher herds 44
 - 8 Vaccination as a reduction strategy 44
 - 9 The slaughterhouse 44
 - 10 *Salmonella* reduction in Danish pig and pork production: a case story 46
 - 11 Conclusion 48
 - 12 Where to look for further information 49
 - 13 References 49

3. **Dealing with the challenge of antibiotic resistance in pig production**
 - *Paul D. Ebner and Yingying Hong, Purdue University, USA*
 - 1 Introduction 51
 - 2 Historical background 52
 - 3 Unintended consequences of antibiotic use 52
 - 4 Changes in antibiotic use and availability 54
 - 5 Antibiotic alternatives 55
 - 6 Case study: phage therapy 59
 - 7 Future trends and conclusion 61

© Burleigh Dodds Science Publishing Limited, 2018. All rights reserved.
8 Where to look for further information 61
9 References 62

4 Detecting veterinary drug residues in pork 67
Amy-Lynn Hall, United States Food and Drug Administration, USA
1 Introduction 67
2 Human food safety evaluation of new animal drugs 68
3 Human food safety evaluation of carcinogens 73
4 Violative residues exceeding established tolerances 74
5 Future trends: judicious use of medically important antimicrobial drugs in food-producing animals 75
6 Where to find further information 75
7 References 76

Part 2 Quality

5 Producing consistent quality meat from the modern pig 81
R. D. Warner and F. R. Dunshea, University of Melbourne, Australia; and H. A. Channon, University of Melbourne and Australian Pork Limited, Australia
1 Introduction 81
2 Issues/challenges for control of pig meat quality 83
3 Influencing factors for the challenges 89
4 Recommendations for overcoming challenges 100
5 Case study: pork quality in Australia 103
6 Conclusion and future trends 108
7 Where to look for further information 109
8 References 109

6 Factors affecting pork flavour 119
Mingyang Huang and Yu Wang, University of Florida, USA; and Chi-Tang Ho, Rutgers University, USA
1 Introduction 119
2 Essential aroma compounds and processing effects 120
3 Bacon 124
4 Sausage 132
5 Ham 136
6 Conclusion 141
7 Where to look for further information 143
8 References 143

7 Factors affecting the colour and texture of pig meat 151
Xin Sun and Eric Berg, North Dakota State University, USA
1 Introduction 151
2 Physicochemical factors effecting the conversion of muscle to meat 152
3 Ante-mortem factors affecting pork colour 156
4 Post-mortem factors affecting pork colour 159
5 Factors affecting pork texture 162
6 Measurement of meat colour and texture 163

© Burleigh Dodds Science Publishing Limited, 2018. All rights reserved.
Contents

7 Summary of recent research: assessment of pork colour and texture using imaging technology 167
8 Conclusion 169
9 Where to look for further information 169
10 References 170

8 Nutritional composition and the value of pig meat 175
Lauren E. O’Connor and Wayne W. Campbell, Purdue University, USA
1 Introduction 175
2 Nutritional content of pork 176
3 Pork consumption and dietary guidance in the US 179
4 Studying the influence of nutrition on human health 182
5 Effects of pork consumption on weight control and body composition 183
6 Effects of pork consumption on cardiometabolic health 186
7 Effects of pork consumption on other indices of human health 189
8 Summary and conclusions 191
9 Where to look for further information 192
10 References 192

Part 3 Sustainability

9 Assessing the environmental impact of swine production 201
G. J. Thoma, University of Arkansas, USA
1 Introduction 201
2 Environmental emissions and impacts at farm level: GHG emissions 203
3 Environmental emissions and impacts at farm level: emissions to water and air 206
4 Environmental emissions and impacts at farm level: pathogenic microbes, antibiotic resistance and pharmaceuticals 209
5 Environmental emissions throughout the life cycle 211
6 Case studies 211
7 Summary and future trends 217
8 Where to look for further information 218
9 References 218

10 Nutritional strategies to reduce emissions from waste in pig production 227
Phung Lê Đình, Hue University of Agriculture and Forestry, Hue University, Vietnam; and André J. A. Aarnink, Wageningen University and Research, The Netherlands
1 Introduction 227
2 Nutrition and ammonia emissions 228
3 Nutrition and odour emissions 234
4 Nutrition and greenhouse gas emissions 238
5 Effectiveness of dietary solutions for reduction of gaseous emissions 240
6 Conclusion 241
7 Future trends 241
8 Where to look for further information 242
9 References 242
Contents

11 Organic pig production systems, welfare and sustainability 249
Sandra Edwards, University of Newcastle, UK; and Christine Leeb, University of Natural Resources and Life Sciences, Austria

1 Introduction 249
2 Standards for organic pig production 250
3 Current organic production 253
4 Animal welfare in organic pig production 257
5 Environmental impact of organic pig production 261
6 Conclusion 265
7 Future trends in research 266
8 Where to look for further information 266
9 References 267

Index 271
Introduction

Pig meat is the most widely-consumed meat in the world. Previous growth in production has relied, in part, on more intensive systems, but in meeting rising demand, these systems face challenges such as the ongoing threat of zoonotic diseases, the need to improve feed efficiency in the face of rising costs, the need to reduce the environmental impact of pig production and increasing concerns about animal welfare. These challenges are addressed by the three volumes of *Achieving sustainable production of pig meat*:

- Volume 1: Safety, quality and sustainability
- Volume 2: Animal breeding and nutrition
- Volume 3: Animal health and welfare

This volume, Volume 1, reviews the latest research on controlling pathogenic and non-pathogenic safety risks associated with pig meat. It then surveys the latest research on aspects of meat quality such as flavour, colour, texture and nutritional quality. Finally, it assesses ways of monitoring and reducing the environmental impact of pig production.

Part 1 Safety

The first part of the volume deals with safety issues associated with the production of pig meat. The focus of Chapter 1 is on zoonoses affecting pigs. Zoonoses are defined as diseases and infections that are transmitted between vertebrate animals and humans. Major food animal species occupy a special position within the framework of zoonotic disease. This is particularly the case in developed societies, where direct livestock contact has become relatively rare, and where for much of the population the food supply has become the predominant route of exposure to livestock-associated pathogens. The chapter provides a broad overview of the zoonotic hazards associated with pigs, including leptospirosis, tuberculosis, brucellosis, influenza A viruses (IAV) and *Streptococcus suis*. The chapter examines emerging zoonoses such as livestock-associated *Staphylococcus aureus*, hepatitis E and novel paramyxoviruses, as well as foodborne pathogens. The chapter concentrates on the agents and pathways which most contribute to zoonotic risk, and looks at how these risks may be modulated by changing conditions at the human-swine interface.

Complementing the preceding chapter’s focus on the main zoonoses affecting pigs, Chapter 2 examines the challenge of effective control of zoonoses in pig production. *Salmonella* infections of zoonotic origin are one of the most frequent causes of zoonotic infections worldwide, and there are clear indications that, at least in some countries, pork is an important source of human salmonellosis. The chapter describes the epidemiology of *Salmonella* and possible interventions in the pig and pork production chain. The chapter addresses animal surveillance and monitoring, control of feed and environment, and the role of replacement animals and finisher herds. The chapter also considers vaccination as a reduction strategy and measures that can be adopted at the slaughterhouse stage. The chapter also includes a detailed case study on *Salmonella* reduction in Danish pig and pork production.
Moving from the challenge of controlling disease to a challenge resulting from disease control itself, Chapter 3 addresses the issue of antibiotic resistance in pig production. The chapter describes the practice of antibiotic use in pig production. The chapter begins with a brief history of antibiotic use in livestock production, before examining the current state of research focused on developing non-antibiotic means of controlling bacterial infections in livestock. Finally, the chapter provides a case study of research in phage therapy as a case study of a (re)emerging technology that could be utilized in biocontrol of bacterial pathogens in agriculture.

The final chapter of the section, Chapter 4, deals with detecting veterinary drug residues in pork. The United States Food and Drug Administration (FDA) new animal drug approval process evaluates veterinary drugs intended for use in food-producing animals for safety and effectiveness. As part of the human food safety evaluation process, new animal drugs are evaluated for microbial food safety, toxicology and residue chemistry. The chapter summarizes the evaluation process that includes the assignment of tolerance(s) and withdrawal periods. It also establishes the criteria for violative residues i.e. residues above the established tolerance limits which may have potential adverse health effects in humans.

Part 2 Quality

The focus of the second part of the book is on ensuring the quality of pig meat. Chapter 5 provides an overview of the process of producing meat of consistent quality from the modern pig. Pork producers have focused, over many years, on producing pork more efficiently in order to remain competitive and to satisfy consumer demand for lean pork. Increases in efficiency and leanness have been achieved through genetics, targeted nutrition, the use of entire males and metabolic modifiers. The chapter first discusses the importance of visual appearance, sensory quality and protein functionality in assessing pork products. It then discusses recent developments in genetics such as the identification of gene markers for tenderness as well as breeding to achieve a desirable muscle pH. The chapter also discusses the role of nutrition in such areas as minerals, vitamins, fishmeal and other supplements high in polyunsaturated fatty acids (PUFAs), as well as slaughter and post-mortem operations. The chapter concludes with a detailed case study on optimizing pork quality in Australia.

The focus of Chapter 6 is on the factors affecting pork flavour. Pork-related products such as bacon, sausage, and ham comprise a large portion of the meat products sold in today’s market due to their desirable flavor. The application of various processing methods such as cooking, curing, deboning, grinding, canning, etc., as well as additives or spices applied during processing, greatly contribute to the characteristic aromas of specific pork-related products. The chapter provides an integrated overview of current research on essential flavor constituents in pork products and the factors affecting pork flavor. Despite large differences among animals, genetics, and methods used in processing and cooking, the chapter highlights common odorants that underpin pork flavour, emphasizing the heat-induced pathways for formation of pork odorants.

Moving from flavour to other features of pig meat, Chapter 7 considers the factors affecting the colour and texture of pig meat. In pork, colour and texture are the two most significant factors influencing consumer perceptions of quality. It is therefore important to understand the many factors that can affect pork colour and texture. The chapter
explores the biological and environmental factors that affect colour and texture in pig meat, including both antemortem and postmortem factors. The chapter then discusses existing and potential methods for the measurement and assessment of the colour and texture attributes of pig meat, including imaging technology.

Concluding Part 2, Chapter 8 concentrates on the nutritional composition and value of pig meat. The chapter provides an overview of the nutritional content of pork, examining pork consumption and dietary guidance in the USA. The chapter looks at the challenge of studying the influence of nutrition on human health, concentrating on the effects of pork consumption on weight control and body composition as well as the effects of consumption on cardiometabolic health and other health indices.

Part 3 Sustainability

The focus of the third part of the book is on the sustainability of pig meat production. The subject of Chapter 9 is assessing the environmental impact of swine production. The swine production industry has reduced its environmental impacts during the past 50 years due to productivity gains. However, there are increasing demands on the industry’s resource base, making clear the need for robust tools to continue to support the best decisions in the face of environmental challenges. The chapter presents a review of the environmental sustainability impacts of swine production, focused at the farm level because the majority of environmental impacts occur by this stage of the supply chain. Two case studies comparing European and US swine production and the adoption of gestation pens to replace gestation stalls demonstrate the value of using life cycle assessments (LCA).

Complementing the preceding chapter’s focus on sustainability, Chapter 10 examines nutritional strategies to reduce emissions from waste in pig production. Gaseous emissions of ammonia, odour, and greenhouse gases from livestock housing and storage and application of manure are major concerns in the environmental sustainability of pig production. The chapter addresses dietary strategies to reduce these emissions. The chapter examines the relationship between nutrition and ammonia emissions and between nutrition and odour emissions. It then considers the impact of nutrition on greenhouse gas emissions before evaluating the effectiveness of dietary solutions for reducing gaseous emissions and improving animal performance. The volume’s final chapter, Chapter 11, addresses organic pig production systems, welfare and sustainability. The chapter describes standards for organic pig production, as well as the current state of organic pig production. The chapter then moves on to consider the issue of animal welfare in organic pig production and its environmental impact, providing an authoritative overview of the contribution of organic farming to pig production.
Index

Aberration and muscle metabolism 82
Aberration and muscle pH 87
Acids 134
Affecting factors 263–264
Ageing 97–98, 159–160
Air 208–209
Aitch-bone hanging/tender stretching 98–99
Alcohols 131–132, 134–135, 140
Aldehydes 131–134, 137–140
Ammonia emission 228–230
Analytical methods 73
Animal welfare 257–261
Ante-mortem factors 156–159
Antibiotic alternatives 55–59
Antibiotic resistance 209–211
Antibiotic use and availability 54–55
Aroma compounds 120–124
Bacon 124–132
Bacteriocins 58–59
Balancing diets 236–237
Berkshires 93
Boar taint 83–85, 89–90, 94, 101
Breeding 86–87, 252
Breeding for a desirable ultimate pH 92
Breeding sow 258–259
Brucellosis 10–12
Calcium 154
Campylobacter 22–24
Cancer 189–190
Carboxylic acids 140
Carcinogens 73
Cardiometabolic health 186–189
Challenges of antibiotic resistance
alternatives 55–59
bacteriocins 58–59
plant extracts 57–58
prebiotics 55–57
probiotics 55–57
synbiotics 55–57
virulence inhibitors 59
use and availability 54–55
drug discovery 54
FDA policies 54
livestock production 54–55
consequences of antibiotic use 52–53
historical background 52
overview 51–52
phage therapy 59–61
Classical zoonoses 6–10
Colorimeters/spectrophotometers 163–164
Consequences of antibiotic use 52–53
Cooking 100
Current organic production 253–257
Dietary guidance 180–182
Display lighting 161–162
Drug discovery 54
Duroc 92–93
Economic results 257
Effects of specific genes and markers 90–92
Electrical stimulation 99
Emerging zoonoses 12–21
Emissions 206, 208–210
Enhancement of pork 99
Enteric bacteria 22–24
Environmental impact and emissions
antibiotic resistance 209–211
case studies 211–217
emissions
air 208–209
water 206–207
GHG emissions 203–206
overview 201–202
pathogenic microbes 209–211
pharmaceuticals 209–211
throughout life cycle 211
Environmental impacts 261–265
Esters 134–135
Factors affecting colour and texture
ante-mortem factors 156–159
diet 158
genetics and species 157–158
myoglobin 156–157
pre-slaughter stress 159
objective measurement 163–166
colorimeters/spectrophotometers 163–164
hyperspectral imaging system 166
imaging technology 164–165
near-infrared spectroscopy 165–166
subjective measurement 163
overview 151–152
physicochemical factors 152–156
calcium 154
high-energy phosphates 153–154
muscle physiology 154–156
myofilament structure in post-mortem
muscle 156
pork texture 162–163
post-mortem factors 159–162
ageing 159–160
display lighting 161–162
meat packaging and storage time 160–161
Factors affecting pork quality
alcohols 131–132
aldehydes 131–132
aroma compounds 120–123
heterocyclic 125–130

© Burleigh Dodds Science Publishing Limited, 2018. All rights reserved.
lipid-derived volatiles in cooked pork 123
volatiles formed by Maillard reaction 121–122
bacon 124–132
furans 128–130
oxazoles and oxazolines 128
pyrazines 125–126
pyridines 130
thiazoles and thiazolines 127–128
ham 136–141
alcohols 140
aldehydes 137–140
carboxylic acids 140
hydrocarbons 140
ketones 140
lactones 140
hydrocarbons 131–132
ketones 131–132
lactones 131–132
overview 119–120
phenols 130–131
processing effects 123–124
sausage 132–133
acids 134
alcohols 134–135
aldehydes 133–134
esters 134–135
ketones 134–135
phenolic compounds 134–135
spice-derived compounds 135–136
Factors affecting pork texture 162–163
Faeces 232–233
FDA policies 54
Feed 41–42, 251–252
Feeding 86–87
Finisher herds 44
Finishing pig 260–261
Foodborne parasites 24–25
Foodborne pathogens 21–25
Furans 128–130

Genetic influences 89
Genetics and species 157–158
GHG emissions 203–206
Greenhouse gas emission 238–240
HAL gene 90–91
Ham 136–141
Hampshires 93
Health management 252–253
Hepatitis E virus 18–20
Heterocyclic aroma compounds 125–130
High-energy phosphates 153–154
Human food safety evaluation 68–73
Hydrocarbons 131–132, 140
Hyperspectral imaging system 166

Imaging technology 164–165
IMF 93–94
Influencing factors 89–90
Influenza A viruses 12–14
Intramuscular fat 89
Issues/challenges 83–89

Ketones 131–132, 134–135, 140
Lactones 131–132, 140
Land and housing 251
Lean carcasses 81–87
Leptospirosis 7–9
Life cycle assessment 264–265
Lipid-derived volatiles in cooked pork 123
Livestock-associated Staphylococcus aureus 16–18
Livestock production 54–55
Lowering protein levels 230–231
Low IMF 101
Magnesium 94–95
Male pigs 83–85
Management and husbandry 252
Markers for tenderness 92
Measurement of meat colour and texture 163–166
Meat packaging and storage time 160–161
Meeting consumer demand 102
Menangle virus 20–21
Metabolic modifiers 85–86
Microbial 68–69
Mitigating options 206–211
Monitoring 41
Muscle physiology 154–156
Myofilament structure in post-mortem muscle 156
Myoglobin 156–157
Near-infrared spectroscopy 165–166
Nipah virus 20–21
Novel paramyxoviruses 20–21
Nutritional composition and the value of pig meat diet 180–182
effect of pork consumption on cancer 189–190
on cardiometabolic health 186–189
on sleep health 190–191
weight control and body composition 183–186
influence on human health 182
nutritional content 176–178
overview 175
pork consumption 179–180
Nutritional management and environmental influences 93–96
Nutritional strategies
- Ammonia emission: 228–230
- Lowering protein levels: 230–231
- Lowering the pH of faeces: 232–233
- Lowering the pH of urine: 233
- Urea to bacterial protein in faeces: 231–232
- Greenhouse gas emission: 238–240
- Odour emission: 234–238
- Balancing diets: 236–237
- Reduction of dietary crude protein: 234–236
- Reduction of odour and ammonia: 237–238
- Overview: 227–228
- Reduction of gaseous emissions: 240

Objective measurements
- 163–166

Odour emission
- 234–238

Organic pig production
- Animal welfare: 257–261
- Breeding sow: 258–259
- Finishing pig: 260–261
- Suckling piglet: 259–260
- Weaned piglet: 260
- Current organic production: 253–257
- Diversity: 254
- Economic results: 257
- Quality: 255–257
- Results: 254–255
- Environmental impacts: 261–265
- Affecting factors: 263–264
- Life cycle assessment: 264–265
- Use of resources: 262–263
- Standards: 250–251
- Breeding: 252
- Feed: 251–252
- Health management: 252–253
- Land and housing: 251
- Management and husbandry: 252
- Overview: 249–250

Oxazoles and oxazolines
- 128

Pathogenic microbes
- 209–211

Phage therapy
- 59–61

Pharmaceuticals
- 209–211

Phenolic compounds
- 134–135

Phenols
- 130–131

Physicochemical factors
- 152–156

Plant extracts
- 57–58

Pork consumption
- 179–180

Pork quality in Australia
- 103–108

Post-mortem factors
- 159–162

Post-mortem technologies
- 97–100

Prebiotics
- 55–57

Pre-slaughter stress
- 159

Processing effects
- 120–124
- Quality: 88–89

Production of quality meat
- Aberration and muscle pH: 82–83, 87
- Breeding for a desirable ultimate pH: 92
- Effects of specific genes and markers: 90–92
- Genetic influences: 89
- Boar taint: 89–90
- Intramuscular fat: 89
- Issues/challenges: 83–89
- Boar taint: 83–85
- Breeding and feeding: 86–87
- Male pigs: 83–85
- Metabolic modifiers: 85–86
- Lean carcasses: 81–87, 100–101
- HAL gene: 90–91
- Markers for tenderness: 92
- RN gene: 91
- Nutritional management and environmental influences: 93–96
- Boar taint: 94
- IMF: 93–94
- Magnesium: 94–95
- Poly unsaturated fatty acids: 96
- Tryptophan: 94–95
- Vitamin E: 95–96
- On-farm and pre-slaughter handling: 96–97
- Overview: 51

Post-mortem technologies
- 97–100
- Ageing: 97–98
- Aitch-bone hanging/tender stretching: 98–99
- Cooking: 100
- Electrical stimulation: 99
- Enhancement of pork: 99
- Novel and innovative: 100
- Production of high quality meat: 82–83, 87–89
- Processing quality: 88–89
- Sensory quality: 88
- Visual quality: 87–88

Recommendations for overcoming challenges
- 100–102

Boar taint
- 101
- Low IMF: 101
- Meeting consumer demand: 102
- Pork quality in Australia: 103–108
- Reducing the occurrence of aberrant quality: 102
- Specific breeds: 92–93
 - Berkshires: 93
 - Duroc: 92–93
 - Hampshires: 93
- Stunning at slaughter: 97

Production system
- 40–41

Pyrazines
- 125–126

Pyridines
- 130

© Burleigh Dodds Science Publishing Limited, 2018. All rights reserved.
Index

Quality 255–257

Recommendations for overcoming challenges 100–102
Reducing the occurrence of aberrant quality 102
Reduction of dietary crude protein 234–236
gaseous emissions 240
odour and ammonia 237–238
Replacement animals 43–44
Residue chemistry 71–73
RN gene 91
Salmonella 22–24
Salmonella control case study 46–48
environment 43
feed 41–42
finisher herds 44
monitoring 41
overview 39–40
production system 40–41
replacement animals 43–44
slaughterhouse 44–46
surveillance 41
vaccine as reduction strategy 44
Sausage 132–133
Sensory quality 88
Slaughterhouse 44–46
Sleep health 190–191
Specific breeds 92–93
Spice-derived compounds 135–136
Streptococcus suis 14–16
Studies on influence of nutrition on human health 182
Subjective measurements 163
Suckling piglet 259–260
Surveillance 41
Synbiotics 55–57
Thiazoles and thiazolines 127–128
Toxicology 69–71
Tryptophan 94–95
Tuberculosis 9–10
Urea to bacterial protein in faeces 231–232
Urine 233
Use of antimicrobial drugs 75
Use of resources 262–263
Vaccine as reduction strategy 44
Veterinary drug residues analytical methods 73
carcinogens 73
microbial 68–69
overview 67–68
residue chemistry 71–73
toxicology 69–71
use in food producing animals 75
volatile residues exceeding established tolerances 74
Virulence inhibitors 59
Visual quality 87–88
Vitamin E 95–96
Volatiles formed by Maillard reaction 121–122
Water 206–207
Weaned piglet 260
Weight control and body composition 183–186
Zoonoses classical zoonoses 6–10
brucellosis 10–12
leptospirosis 7–9
tuberculosis 9–10
emerging zoonoses 12–21
Hepatitis E virus 18–20
influenza A viruses 12–14
livestock-associated Staphylococcus aureus 16–18
novel paramyxoviruses. see also Nipah virus, Menangle virus
Streptococcus suis 14–16
foodborne pathogens 21–25
Campylobacter 22–24
enteric bacteria 22–24
parasites 24–25
Salmonella 22–24
overview 3–4
zoonotic hazards 4–6

© Burleigh Dodds Science Publishing Limited, 2018. All rights reserved.