Achieving sustainable production of poultry meat

Volume 3: Health and welfare

Edited by Professor Todd Applegate
University of Georgia, USA
Contents

Series list x
Introduction xiv

Part 1 Animal health

1 Monitoring trends in diseases of poultry 3
 Brian Jordan, University of Georgia, USA
 1 Introduction 3
 2 Diagnostic laboratories 4
 3 Diagnostic assays 5
 4 Diagnostic sampling and submission 8
 5 Epidemiology 9
 6 Discussion and conclusions 10
 7 Where to look for further information 11
 8 References 11

2 Gut health and susceptibility to enteric bacterial diseases in poultry 13
 B. M. Hargis and G. Tellez, University of Arkansas, USA; and
 L. R. Bielke, Ohio State University, USA
 1 Introduction 13
 2 Specific bacterial gut pathogens in poultry 14
 3 Symbiosis between prokaryotes and the host in the gut 16
 4 Impact of bacterial pathogens on host biology 17
 5 Dysbiosis and disease in poultry 18
 6 Inflammation and effects on anaerobiosis in poultry 19
 7 Positive and negative effects of mucins 20
 8 Gut infections and dietary disruption 20
 9 Airborne infection by enteric bacteria among poultry 24
 10 Future trends and conclusion 26
 11 References 27

3 Viruses affecting poultry 39
 Venugopal Nair, Pirbright Institute, UK
 1 Introduction 39
 2 Newcastle disease (ND) 41
 3 Infectious bronchitis (IB) 42
 4 Infectious bursal disease (IBD) 44
 5 Marek’s disease (MD) 45
 6 Infectious laryngotracheitis (ILT) 46
 7 Avian influenza (AI) 47
 8 Summary 48
 9 Where to look for further information 49
 10 References 49
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Parasites affecting poultry</td>
</tr>
<tr>
<td>53</td>
<td>Larry McDougald, University of Georgia, USA</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>53</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Coccidiosis</td>
</tr>
<tr>
<td>54</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Non-Eimerian Coccidia</td>
</tr>
<tr>
<td>61</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Flagellates</td>
</tr>
<tr>
<td>62</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Blackhead disease (histomonosis, histomoniasis)</td>
</tr>
<tr>
<td>62</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Cochlosoma anatis</td>
</tr>
<tr>
<td>66</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Spironucleus meleagridis (formerly Hexamita meleagris)</td>
</tr>
<tr>
<td>67</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Tetratrichomonas gallinae (formerly Trichomonas gallinae)</td>
</tr>
<tr>
<td>67</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Blood-borne protozoan parasites</td>
</tr>
<tr>
<td>67</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Roundworms (Nematoda)</td>
</tr>
<tr>
<td>68</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Tapeworms (Cestoda)</td>
</tr>
<tr>
<td>71</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Trematodes (flukes) in poultry</td>
</tr>
<tr>
<td>74</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Ectoparasites and arthropod pests</td>
</tr>
<tr>
<td>74</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Conclusion and future trends</td>
</tr>
<tr>
<td>77</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Where to look for further information</td>
</tr>
<tr>
<td>78</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>References</td>
</tr>
<tr>
<td>78</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Disease management in poultry flocks</td>
</tr>
<tr>
<td>79</td>
<td>Peter Groves, University of Sydney, Australia</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>79</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Disease investigation techniques</td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Preventative measures</td>
</tr>
<tr>
<td>82</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Monitoring of poultry health and performance</td>
</tr>
<tr>
<td>93</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Management of sick birds</td>
</tr>
<tr>
<td>94</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Emergency disease occurrence</td>
</tr>
<tr>
<td>96</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Future trends and conclusion</td>
</tr>
<tr>
<td>98</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Where to look for further information</td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>References</td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Understanding and boosting poultry immune systems</td>
</tr>
<tr>
<td>103</td>
<td>Rami A. Dalloul, Virginia Tech, USA</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>103</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Overview of the avian defence system</td>
</tr>
<tr>
<td>104</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Coccidiosis</td>
</tr>
<tr>
<td>108</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Probiotics and poultry</td>
</tr>
<tr>
<td>111</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Conclusion and future trends</td>
</tr>
<tr>
<td>115</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Where to look for further information</td>
</tr>
<tr>
<td>117</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>References</td>
</tr>
<tr>
<td>117</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Competitive exclusion (CE) treatment to control pathogens in poultry</td>
</tr>
<tr>
<td>123</td>
<td>Carita Schneitz, Orion Pharma, Finland; and Martin Wierup, Swedish University of Agricultural Sciences (SLU), Sweden</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>123</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>The CE principle</td>
</tr>
<tr>
<td>124</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Development of treatment materials: undefined CE cultures</td>
</tr>
<tr>
<td>127</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>Development of treatment materials: defined CE cultures</td>
</tr>
<tr>
<td>5</td>
<td>Evaluation and administration of CE treatment materials</td>
</tr>
<tr>
<td>6</td>
<td>Pathogen and host specificity of CE treatment</td>
</tr>
<tr>
<td>7</td>
<td>Factors affecting the efficacy of CE treatment</td>
</tr>
<tr>
<td>8</td>
<td>Field experience of CE</td>
</tr>
<tr>
<td>9</td>
<td>Strategies for use, safety and licensing</td>
</tr>
<tr>
<td>10</td>
<td>Conclusions</td>
</tr>
<tr>
<td>11</td>
<td>Where to look for further information</td>
</tr>
<tr>
<td>12</td>
<td>References</td>
</tr>
<tr>
<td>8</td>
<td>Leg disorders in poultry: bacterial chondronecrosis with osteomyelitis (BCO)</td>
</tr>
<tr>
<td></td>
<td>Robert F. Wideman Jr., University of Arkansas, USA</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>The pathogenesis of BCO</td>
</tr>
<tr>
<td>3</td>
<td>Understanding and treating BCO: the role of experimental models</td>
</tr>
<tr>
<td>4</td>
<td>Sources and routes of bacterial colonization</td>
</tr>
<tr>
<td>5</td>
<td>The role of probiotics</td>
</tr>
<tr>
<td>6</td>
<td>Summary and conclusions</td>
</tr>
<tr>
<td>7</td>
<td>Where to look for further information</td>
</tr>
<tr>
<td>8</td>
<td>References</td>
</tr>
<tr>
<td>9</td>
<td>Understanding poultry behaviour</td>
</tr>
<tr>
<td></td>
<td>M. M. Makagon and R. A. Blatchford, University of California-Davis, USA</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Key methodological challenges: defining experimental unit, sample size and behaviour of interest</td>
</tr>
<tr>
<td>3</td>
<td>Key methodological challenges: selecting the most appropriate metric and sampling strategy</td>
</tr>
<tr>
<td>4</td>
<td>Case study: provision and design of perches</td>
</tr>
<tr>
<td>5</td>
<td>Summary: notes on the contributions of applied ethology to enhanced and sustainable production</td>
</tr>
<tr>
<td>6</td>
<td>Future trends in research</td>
</tr>
<tr>
<td>7</td>
<td>Where to look for further information</td>
</tr>
<tr>
<td>8</td>
<td>References</td>
</tr>
<tr>
<td>10</td>
<td>Ensuring the welfare of broilers: an overview</td>
</tr>
<tr>
<td></td>
<td>T. B. Rodenburg, Wageningen University, The Netherlands</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Genetic selection</td>
</tr>
<tr>
<td>3</td>
<td>Stocking density</td>
</tr>
<tr>
<td>4</td>
<td>Case study: hatching environment and early feeding</td>
</tr>
<tr>
<td>5</td>
<td>Case study: alternative and free range systems</td>
</tr>
<tr>
<td>6</td>
<td>Summary: how research can contribute to enhanced and sustainable broiler production</td>
</tr>
<tr>
<td>7</td>
<td>Future trends in research</td>
</tr>
</tbody>
</table>
11 Broiler breeding flocks: management and animal welfare
Ingrid C. de Jong and Rick A. van Emous, Wageningen Livestock Research, The Netherlands

1 Introduction 211
2 Housing conditions and management in the rearing period 212
3 Housing conditions and management in the production period 213
4 Welfare issues: restricted feeding and water restriction 215
5 Welfare issues: excisions, mating behaviour and quality of feather cover 219
6 Environmental enrichment 222
7 Vaccinations 223
8 Transgenerational effects 224
9 Concluding remarks 225
10 Where to look for further information 225
11 References 225

12 The effect of incubation temperature on embryonic development in poultry
M. S. Lilburn and R. Shanmugasundaram, Ohio State University, USA

1 Introduction 231
2 Establishing a temperature recommendation 232
3 Pre-incubation holding 233
4 Early incubation temperature outcomes 235
5 Late embryonic temperature outcomes 237
6 Immunology of poultry 239
7 Thermal manipulations and heat stress post-hatch 240
8 Future trends and conclusion 241
9 Where to look for further information 242
10 References 242

13 The contribution of environmental enrichment to sustainable poultry production
Inma Estevez, Neiker-Tecnalia and Ikerbasque (The Basque Foundation for Science), Spain; and Ruth C. Newberry, Norwegian University of Life Sciences, Norway

1 Introduction 247
2 Structural complexity: an introduction 249
3 Structural complexity: cover panels 250
4 Structural complexity: perches, barriers and ramps 255
5 Other benefits of structural complexity 258
6 Visual enrichment through lighting 260
7 Foraging enrichments 261
8 Comfort behaviour enrichments 264
9 Enrichment and use of outdoor areas 266
10 Discussion 268
11 Conclusions 270
12 References 271
14 Hot weather management of poultry
Brian Fairchild, University of Georgia, USA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>281</td>
</tr>
<tr>
<td>Sources of heat and heat loss mechanisms</td>
<td>282</td>
</tr>
<tr>
<td>Poultry house ventilation systems</td>
<td>284</td>
</tr>
<tr>
<td>Factors affecting hot weather management</td>
<td>288</td>
</tr>
<tr>
<td>Conclusions</td>
<td>289</td>
</tr>
<tr>
<td>Where to look for further information</td>
<td>289</td>
</tr>
<tr>
<td>References</td>
<td>289</td>
</tr>
</tbody>
</table>

15 Transportation and the welfare of poultry
K. Schwean-Lardner and T. G. Crowe, University of Saskatchewan, Canada

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>291</td>
</tr>
<tr>
<td>Impacts on poultry welfare before and during transport</td>
<td>292</td>
</tr>
<tr>
<td>Containers and trailers used for poultry transport</td>
<td>294</td>
</tr>
<tr>
<td>Other factors influencing poultry welfare during transport</td>
<td>297</td>
</tr>
<tr>
<td>Lairage</td>
<td>300</td>
</tr>
<tr>
<td>Transporting chicks and EOL hens</td>
<td>301</td>
</tr>
<tr>
<td>Conclusions</td>
<td>302</td>
</tr>
<tr>
<td>Where to look for further information</td>
<td>302</td>
</tr>
<tr>
<td>References</td>
<td>303</td>
</tr>
</tbody>
</table>

16 Developments in humane slaughtering techniques for poultry
Andy Butterworth, University of Bristol, UK

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>309</td>
</tr>
<tr>
<td>The physiological basis of stunning</td>
<td>310</td>
</tr>
<tr>
<td>Electrical stunning methods</td>
<td>311</td>
</tr>
<tr>
<td>Gas stunning systems</td>
<td>313</td>
</tr>
<tr>
<td>Other systems: maceration, manual neck dislocation, concussive stunning and low atmosphere pressure systems</td>
<td>315</td>
</tr>
<tr>
<td>Future trends</td>
<td>318</td>
</tr>
<tr>
<td>Where to look for further information</td>
<td>318</td>
</tr>
<tr>
<td>References</td>
<td>319</td>
</tr>
</tbody>
</table>

Index 323
Introduction

Poultry production faces a range of challenges. These are addressed in the three volumes of *Achieving sustainable production of poultry meat*. The three volumes are:

- Volume 1: Safety, quality and sustainability
- Volume 2: Breeding and nutrition
- Volume 3: Health and welfare

Volume 3 discusses recent research on improving poultry health and welfare.

Part 1 Health

Chapters in Part 1 look at key aspects of poultry health, disease prevention and management. Poultry are infected by numerous pathogens that cause a wide variety of diseases. Effective disease surveillance is critical to identify and combat both existing and emerging diseases. Disease surveillance is a staple program in most developed poultry systems and is a cooperative effort between individual poultry companies, regional and national disease control agencies and programs, public and private diagnostic laboratories and other partners.

As Chapter 1 points out, surveillance can be active in the form of sacrificing birds for clinical necropsy examination or submitting samples for diagnosis during a disease outbreak. It can also be passive in the form of routine diagnostic assays designed to provide a historical picture of a flock or region. The chapter reviews key challenges and best practice for both types of surveillance, covering diagnostic laboratories, diagnostic assays, high quality sampling and submission. The data that these submissions and clinical cases provide is invaluable both in highlighting particular problems and in identifying epidemiological patterns of disease. These patterns can help to develop models that can predict the spread of disease and make management of disease outbreaks timely and effective.

Most pathogens of poultry and other vertebrates enter the body via a mucosal portal of entry, and for most birds, this means either the respiratory or gastrointestinal tract (GIT). Chapter 2 surveys the main bacterial pathogens found in the GIT of poultry such as *Salmonella*, *E.coli* and *Clostridium*. The chapter also discusses what we know about the intestinal microflora of chickens, notably phyla such as Firmicutes and Bacteroidetes, and how the assembly of gut microflora is regulated by complex host–microbial and microbial–microbial interactions. The chapter then goes on to review what causes dysbiosis, the shift in the microbiome which results in an imbalance between beneficial and harmful bacteria. This imbalance has a negative impact in the GIT, including reduced nutrient digestibility, increased gut permeability and upregulated inflammatory responses. The eubiosis/dysbiosis status of the microbiome is thus a major factor in poultry health or disease. As the chapter points out, the fragile balance can be altered by any kind of stress that induces inflammation, including environmental factors, diet or pathogens. The chapter also examines the effects of inflammation of the GIT on anaerobiosis and assesses the role of mucins, glycoproteins that cover epithelial surfaces of the intestine and form a mucus layer to protect epithelial cells from infection. After exploring the effect of gut...
infections in disrupting dietary function, it assesses the impact of airborne infections of enteric bacteria on poultry.

As suggested in Chapter 2, infectious diseases, particularly those caused by viral pathogens, pose one of the most serious threats to the sustainability of the global poultry industry. The industry has relied heavily on vaccination-based control strategies, but there are major drawbacks in this approach, such as the immunosuppressive effects of some viral pathogens and the increasing diversity of pathogens. This chapter reviews viral diseases affecting poultry, including the most significant viral diseases: Newcastle disease, infectious bronchitis, infectious bursal disease, Marek’s disease, infectious laryngotracheitis and avian influenza. It discusses each in terms of their distribution, effect on avian health, and role in producing economic losses. For each disease, current findings on symptoms, diagnosis and control measures are discussed. The major threats to vaccination-based strategies are reviewed together with potential solutions.

Many of the avian pathogens continue to emerge and re-emerge, showing huge diversity which poses immense challenges to traditional vaccination-based methods of control. These challenges are evident in diseases such as Marek’s disease, where there is something of a biological arms race between vaccines and pathogens able to evolve resistance. Pathogen diversity also poses problems in diagnosis, although the advent of new generation sequencing and PCR-based diagnostic tests are helping to tackle the issues. In this context, development of DIVA (differentiating infected from vaccinated animals) tests and rapid diagnostic tools that could be deployed in the field are vital for curbing outbreaks. Finally, it is important to examine the heavy reliance on vaccination strategy for sustainable control. The recent success of recombinant vectored vaccines against a number of avian diseases is a welcome change as some of the more traditional vaccines are becoming less effective in inducing protection.

Like viruses, parasitic infections and infestations are a major challenge to poultry production worldwide. Chapter 4 provides a comprehensive survey of parasites affecting poultry, divided into the broad categories of protozoa, flagellates and worms. It also discusses arthropods including lice, bedbugs, flies, beetles, mites, fleas and ticks. The chapter examines diagnosis, control, management and disinfection for each of the major parasites associated with poultry farming. It also addresses the pathology, epidemiology and molecular biology of the major parasitic infections.

As the chapter points out, the most severe parasitic diseases are caused by protozoans and include coccidiosis and histomoniasis which are discussed in detail. The chapter also discusses blood-borne protozoan parasites, roundworms, tapeworms and trematodes (flukes) in poultry. As the chapter highlights, future control of parasites in poultry will have to be maintained with fewer, less-effective vaccines. Current avenues of research include selection of poultry for improved disease resistance, and the use of natural products to stimulate innate and acquired resistance to infection. With the increasing importance of free-range rearing of poultry, more research is needed on roundworms, tapeworms and methods for their prevention. The interaction of nematode parasites and protozoan parasites, is of major importance, as well as the interaction of parasites with bacterial diseases such as necrotic enteritis. The chapter concludes by noting the need to find new ways to control parasites if we are to maintain production to meet the demand for high quality food by a growing world population.

As described in previous chapters, diseases in intensive poultry flocks may occur due to viral, bacterial, fungal, protozoal, metazoan or arthropod infections or infestations. Chapter 5 describes current disease preventative measures, health monitoring and
disease investigation techniques, and the management of infected poultry flocks. The chapter discusses both routine monitoring and more targeted investigations in the face of a particular outbreak. It also highlights the value of systematic investigation of outbreaks to both improve understanding of a disease and improve techniques for its prevention and management. This systematic approach involves: systematic epidemiological investigation to identify potential risk factors; investigation of risk factors through controlled experiments; and confirmation of the findings in field situations.

Chapter 5 also provides a comprehensive review of biosecurity measures to prevent disease and minimise its spread. Key measures include an ‘all-in all-out’ approach which, for example, avoids multi-age flocks where older, infected flocks spread disease to young birds. The chapter looks at appropriate quarantine and hygiene procedures, including disinfection regimes and litter management, including composting. The chapter also summarises best practice for dealing with an outbreak of disease in the flock, including hygiene procedures in these situations and methods of disposing of dead birds.

In the perpetual battle against common poultry pathogens and other environmental antigens, the role of the immune system is an important and ongoing topic of research. Chapter 6 reviews the various elements of the host defense system in poultry, including innate and adaptive immune systems. By boosting local immune function at mucosal sites (digestive and respiratory), subclinical infections could be averted or suppressed, thus enhancing growth and general health. The chapter discusses examples of how dietary supplements can modulate the immune system and its response to common diseases. Among the most commonly used modulators are feed and/or water supplements such as probiotics and prebiotics which have been the subject of extensive research.

The chapter focuses particularly on the challenge of coccidiosis and the role of probiotics. As the chapter explains, prior to the activation of an adaptive immune response, the innate immune system will attempt to inhibit the infection through various pathways such as competitive exclusion by commensal microbiota, gastric secretions, phagocytosis and other components. The adaptive immune system uses three main mechanisms: competitive exclusion, bacterial antagonism (for example bacteriocins) and stimulation of the immune system. Research shows the role of probiotics in supporting these mechanisms in the immune system, reducing the rate and severity of enteric infections while maintaining optimal performance in poultry. It also demonstrates the potential of combining probiotics with prebiotics as well as the role of pre-hatch immune interventions. The chapter concludes by highlighting the need for more research on the immune system and its response to nutritional and other interventions.

As mentioned in Chapter 6, competitive exclusion (CE) describes the protective effect of the intestinal microflora against colonization of pathogenic bacteria. Building on Chapter 6, Chapter 7 discusses the current use of treatments to boost CE to prevent Salmonella infections in poultry, focussing on the administration of cultures of intestinal origin to day-old chickens. The chapter reviews research on the effectiveness of these treatments in preventing the risk for Salmonella infections in newly hatched chickens from being further spread horizontally in a flock or vertically in the case of breeding animals. The chapter reviews the development of undefined and defined CE cultures together with methods of evaluation and administration. It also looks at pathogen and host specificity of CE treatments and factors affecting their efficacy. As the chapter points out, the administrated cultures compensate for the delayed development of the protective intestinal microflora in chickens hatched under hygienic conditions in modern poultry production.
Introduction

As well as bacterial, viral and other infections, poultry are susceptible to a range of other health problems. Bacterial chondronecrosis with osteomyelitis (BCO) is widely recognized as one of the most common causes of lameness in broilers. Chapter 8 starts by summarizing the pathogenesis of BCO. Experimental models that successfully trigger BCO are then reviewed. Sources of bacteria that infect the bones are discussed, with the primary emphasis on bacterial translocation across the gastrointestinal epithelium. Finally, the chapter reviews the efficacy of probiotics as a prophylactic treatment for BCO.

Part 2 Welfare

In the context of poultry production, behavioral studies have been particularly useful in optimizing management strategies to promote the welfare of commercially raised poultry. Chapter 9 provides an overview of the contribution that the study of animal behavior has made to the debate about poultry welfare. It also discusses the design, execution and interpretation of behavioral research. The chapter begins with an overview of commonly used research methods and methodological challenges that should be considered before behavioral data is collected. These include issues such as sample size and sampling strategy. These issues are explored in detail through a case study looking at the importance and consequences (positive and negative) of improving perch access for poultry.

As noted earlier, genetic selection for highly efficient, fast-growing broilers has had negative effects on broiler welfare. The high stocking densities used in some broiler production systems has also been an issue. These factors mean that activity levels of fast-growing broilers can be low, especially during the second half of their life. This can lead to leg health problems such as lameness, footpad dermatitis and hock burns. It has also been found that fast-growing broilers are more sensitive to heart and circulation problems compared with slower growing genotypes, especially when placed in a suboptimal environment. Chapter 10 examines the welfare problems arising from intensive poultry systems, and reviews how both factors have been addressed within the European Union.

These issues are discussed in more detail through two case studies. The first examines the welfare effects of hatching environment and early feeding, whilst the second looks at the benefits of alternative and free-range broiler production systems. Both case studies illustrate how research can contribute to better standards of welfare and more sustainable broiler production. As an example, allowing chicks access to feed and water directly after hatching has the major advantage that chicks that hatch early do not have to wait for access to feed and water until all chicks have hatched. This long fasting period is increasingly criticised by animal protection organisations. Furthermore, early access to feed seems to benefit early muscle development as well as an early colonisation of the gut, boosting gut health and immunity. This may also be the reason why broilers from this type of systems seem to require fewer antibiotic treatments. The chapter also highlights the potential benefits of poultry operations that use slower growing genotypes in lower stocking densities. Evidence suggests fewer health and welfare problems and lower mortality rates in these alternative systems; however, as time to market weight is delayed, it can increase the risk of exposure to behavioural and disease maladies. In some cases these ‘middle-market’ systems have been shown to outperform conventional and organic systems both in welfare and cost efficiency, but remain to be demonstrated across bird final body weights and market segments.
Broiler breeders are the parent stock of broiler chickens. Appropriate management in rearing and in the production period is essential to produce a high number of fertile eggs and high quality broiler chickens. However, research has shown that current management practices may affect the welfare state of broiler breeders, both during rearing and in the production period. Chapter 11 describes the housing and management of broiler breeders during the rearing and the production periods. It then reviews major welfare issues relating to the management of broiler breeders, including feed and water restrictions, still one of the most important welfare issues in broiler breeders. It suggests that using feeds with higher insoluble fibre contents or lower protein content in the rearing period, as compared to standard commercial diets, may help to alleviate the effects of feed restriction. Another alternative is the use of slower growing or dwarf female broiler breeders that do not need to be feed restricted. The chapter also review research on excisions as well as on environmental enrichment and facilitating mating behaviour. Finally, it discusses the potential for management strategies to have transgenerational effects on the health and quality of offspring.

Chapter 12 examines the specific effects of exogenous and endogenous heat on embryonic growth during different stages of incubation, with an emphasis on control of incubation temperature. The chapter explores the challenges inherent in establishing a temperature recommendation for incubation of poultry eggs, and considers forms of pre-incubation holding as well as the outcomes of both early and late incubation temperatures. Finally, the chapter addresses the connection between incubation temperatures and poultry immunology, as well as thermal manipulations and the impact of temperature on post-hatch stress in chicks.

Environmental enrichment comprises stimuli added to the poultry housing environment to enhance the biological adaptation of the birds and improve their welfare. By promoting species-typical behavior, it has the potential to reduce the risk of harmful behaviors and health conditions, and to guide birds to use the available resources more uniformly. Environmental enrichment may also promote positive emotional states and enhance the birds’ ability to cope with unpredictable environmental changes. Chapter 13 reviews environmental enrichment strategies that are relevant to commercial meat poultry production. These include cover panels, perches, barriers and ramps as well as lighting. The chapter also looks at ways of enriching foraging and grooming behaviour. The chapter discusses the benefits of such strategies in terms of the behavior and welfare of the birds and their potential for contributing to more efficient and sustainable poultry production. Potential risks or problems that may arise when environmental enrichment is not appropriately implemented are also discussed.

As discussed in other chapters, maintaining an environment that minimizes stress on poultry is a significant part of obtaining a healthy bird that reaches its full genetic potential. One challenge that producers face is preventing heat stress and maintaining performance in hot weather conditions. By keeping bird body temperature at the right level, birds will continue to grow, develop and efficiently utilize feed. Chapter 14 focuses on the principles of poultry management that farmers can implement in their poultry houses during hot weather to prevent heat stress and maintain normal bird body temperature. The chapter reviews ventilation, evaporative cooling and management practices that influence the ability of the farmer to keep birds cool.

A variety of factors before and during transport affect the welfare of poultry. Chapter 15 begins by considering the pre-loading factors which can affect the birds’ welfare during transportation. It then reviews the physiological, behavioural and psychological responses
which birds may have during transport. The chapter goes on to discuss a wide range of factors which may affect welfare during transport, including the design of containers and trailers, journey duration, noise, vibrations and stocking density. The chapter also considers the effects of lairage as well as the transport of hens other than adult broilers.

Stunning of animals before slaughter is widely recognised as an essential element in humane slaughter. Chapter 16 reviews current research on the physiological basis of stunning. It then assesses the relative merits of differing stunning systems, starting with electrical stunning methods and gas stunning systems. It also discusses other systems such as maceration, manual neck dislocation, concussive stunning and low atmosphere pressure systems.
Index

Adaptive immune system
adavian defence system 105–107
and probiotics 114

AI. see Avian influenza (AI)

Airborne infection, by enteric bacteria 24–26

Ammation 19–20

Animal welfare, and disease management 99

Antibiotic-resistant strains 135–136

Antigen-presenting cells (APCs) 105

Antimicrobial-associated factors, and CE 138

APCs. see Antigen-presenting cells (APCs)

Avian defence system
adaptive immune system 105–107
cell-mediated immunity 106
cellular barriers 104–105
gut-associated lymphoid tissues (GALT) 107–108
humoral immunity 106
immune response genes 106–107
inmate defences 104
physical and chemical barriers 104

Avian influenza (AI) 47–48

Bacterial chondronecrosis with osteomyelitis (BCO)
bacterial colonization
bacterial translocation 167–168
epidemiology 164–165
vertical versus horizontal transmission 165–167
overview 155–156
pathogenesis of
bacterial osteomyelitis and clinical lameness 157–160
haematogenous bacterial distribution 157
osteochondrosis 156–157
and probiotics 168–172
treatment strategies for
mechanical models 161–164
pathogen exposure models 160–161
stress-mediated immunosuppression models 164

Bacterial colonization, and BCO
bacterial translocation 167–168
epidemiology 164–165
vertical versus horizontal transmission 165–167

Bacterial osteomyelitis, and clinical lameness 157–160

Bacterial translocation 167–168

Bacteriology 6–7

Bedbugs 74

Beetles 75

Biosecurity 83

Blackhead disease
biology of 64
chickens as carriers of 66
epidemiology of 66
overview 62–63
pathology of 64–66
susceptibility of birds to 64

Blood-borne protozoan parasite 67–68

Breeder monitoring 94

Broiler breeder management
environmental enrichment 222–223
housing conditions
in production period 213–215
in rearing period 212–213
overview 211–212
restricted feeding
excisions 219–220
feeding of males 218
fibre diluted diets 216–218
mating behaviour 220–221
overview 215–216
parent stock of slower growing broilers 218–219
programmes/frequencies/methods 218
quality of feather cover 221–222
water restriction 219
transgenerational effects 224–225
vaccinations 223–224

Broilers welfare
alternative and free range systems 204–205
genetic selection 200–201
hatching environment and early feeding 202–203
overview 199–200
research on 205–206
stocking density 202

Campylobacter 135

CE. see Competitive exclusion (CE)

Cell-mediated immunity (CMI)
avian defence system 106
coccidiosis 110–111

Cellular barriers 104–105

Chemical barriers 104
Chemoprevention 59–61
Chicken gastrointestinal microflora 125–126
Chicks, poultry transportation welfare of 301
Clinical lameness 157–160
Clostridium perfringens 136–137
CMI. see Cell-mediated immunity (CMI)
Coccidiosis
 age and susceptibility of birds to 58
 biology of 54–56
 in caged layers 58
 cell-mediated immune response 110–111
 control of 59–61
 diagnosis of 58–59
 environmental interaction with 58
 host immune response to Eimeria 110
 humoral immune response 110
 identification of 56–57
 management and disinfection 61
 molecular biology 57
 overview 108–109
 pathogenic effects of 57–58
 prevention and treatment 109–110
 research on control of 61
Cochlosoma anatis
 diagnosis 67
 prevention and control 67
 site of infection 66
Commercial products, of CE 128–129
Competitive exclusion (CE)
 administration of 132–133
 and antimicrobial-associated factors 138
 and chicken gastrointestinal microflora 125–126
 commercial products 128–129
 defined cultures 129–130
 and disease- and stress-associated factors 138–139
 experimental cultures 127–128
 experimental evaluation of 131–132
 field experience of 139–140
 history 124–125
 mechanisms of 126–127
 overview 123–124
 pathogen and host specificity 137–138
 antibiotic-resistant strains 135–136
 Campylobacter 135
 Clostridium perfringens 136–137
 Escherichia coli 135–136
 Salmonella 133–135
 safety and licensing of 141
 strategies for the use of 141
Concussive stunning/killing 317
Conduction 283
Convection 283
Cover panels 250–253
 benefits of 253–254
Crates/modules, and poultry transportation welfare 294–295
Cryptosporidium 62
Dark brooders 260
Dead bird disposal 91
Dead on arrival (DOA) 292
Depopulation 86–87
gas stunning for laying hens 314–315
Diagnostic assays 5–8
Diagnostic laboratories 4–5
Diagnostic sampling and submission 8–9
Dietary disruption, and gut pathogens 20–23
Disease- and stress-associated factors 138–139
Disease management. see also
 Parasitic diseases
 and animal welfare 99
 breeder monitoring 94
 challenges for 100
 dead bird disposal 91
 diminishing resources 100
 egg-borne infections 88
 emergency disease occurrence
 disposal of mass mortality 97–98
 mass destruction techniques 97
 overview 96–97
 and environmental sustainability 99–100
 and food safety 99
 free-range issues 92
 growth rate and associated problems 91
 hatching egg hygiene 91–92
 initial investigation 80
 management-related problems 88–89
 monitoring
 bacteriology 6–7
 diagnostic assays 5–8
 diagnostic laboratories 4–5
 diagnostic sampling and submission 8–9
 epidemiology 9–10
 of health and performance 93–94
 histopathology 7
 molecular diagnostics 7–8
 overview 3–4
 serology 5–6
 virology 6
 multiple pickup for slaughter 92
 overview 79–80
 preventative measures
biosecurity 83
composting and re-use of litter 87
depopulation 86–87
free-range biosecurity issues 87–88
hierarchy of operations 83–84
isolation of premises 84
quarantine and hygiene procedures 85–86
single age 84
rodent and insect control 92
blood disease 89–90
widespread problem 80–82
DOA. see Dead on arrival (DOA)
Dry electrode head-only electrical stunning 312–313
Dust bathing substrates 264–265
End-of-lay (EOL) hens 291, 301–302
Enteric bacteria, airborne infection by 24–26
Environmental enrichment 222–223
Environmental sustainability 99–100
Epidemiology 9–10
Escherichia coli 135–136
Ethology. see Poultry/animal behaviour
European Food Safety Authority (EFSA) 310
Evaporation 283
Evaporative cooling 287–288
Excisions 219–220
Experimental evaluation, of CE 131–132
Feather cover, quality of 221–222
Fibre diluted diets 216–218
Field experience, of CE 139–140
Flagellates 62, 63
Fleas 76
Flies 75
Food safety, and disease management 99
GALT. see Gut-associated lymphoid tissues (GALT)
Gametogony 56
Gas stunning
for depopulation in laying hens 314–315
maceration 315–316
overview 313–314
Genetic selection, and broilers welfare 200–201
Gut-associated lymphoid tissues (GALT) 107–108
Gut pathogens, in poultry
airborne infection by enteric bacteria 24–26
ammoniation and effects on anaerobiosis 19–20
and dietary disruption 20–23
dysbiosis and disease 18–19
impact on host biology 17–18
overview 13
positive and negative effects of mucins 20
prokaryotes and host in 16–17
specific bacterial 14–16
Haematogenous bacterial distribution 157
Hatching environment, and broilers
welfare 202–203
Head-to-cloaca electrical stunning 312
Heat loss mechanisms
conduction 283
convection 283
evaporation 283
radiation 283
sensible and latent 283–284
Heat sources 282
Heat stress post-hatch 240–241
Histopathology 7
Horizontal versus vertical BCO transmission 165–167
Host defence, and probiotics 114–115
Host immune response, to *Eimeria* 110
Hot weather management and evaporative cooling 287–288
factors affecting 288
heat loss mechanisms conduction 283
convection 283
evaporation 283
radiation 283
sensible and latent 283–284
heat sources 282
overview 281–282
tunnel ventilation and bird performance 286–287
and ventilation systems 284–287
Housing conditions, and broiler breeders in production period 213–215
in rearing period 212–213
Humoral immunity avian defence system 106
coccidiosis 110
Hygiene egg hatching 91–92
IB. see Infectious bronchitis (IB)
IBD. see Infectious bursal disease (IBD)
IECs. see Intestinal epithelial cells (IECs)
ILT. see Infectious laryngotracheitis (ILT)
Immune response genes 106–107
Immunology of poultry 239–240
Incubation temperature early incubation 235–237
immunology of poultry 239–240
late embryonic temperature 237–239
overview 231–232
pre-incubation holding 233–235
recommended 232–233
thermal manipulations and heat stress post-hatch 240–241
Infectious bronchitis (IB) 42–43
Infectious bursal disease (IBD) 44–45
Infectious laryngotracheitis (ILT) 46–47
Innate immunity 104
and probiotics 113–114
Intestinal epithelial cells (IECs) 104
Isolation, of premises 84
Lairage, and poultry transportation welfare 300
LAPS. see Low atmosphere pressure system (LAPS)
Late embryonic temperature 237–239
Latent heat loss 283–284
Lice (mallophaga) 74
Lipopolysaccharide-induced tumour necrosis factor-α (LITAF) 107
LITAF. see Lipopolysaccharide-induced tumour necrosis factor-α (LITAF)
Litter re-use 87
Low atmosphere pressure system (LAPS) 317–318
Maceration 315–316
Major histocompatibility complex (MHC) 105
Male feeding 218
MAMPs. see Microbe-associated molecular patterns (MAMPs)
Manual cervical dislocation (MCD) 316–317
Marek’s disease (MD) 45–46
Mass destruction techniques 97
Mass medication methods 95
Mass mortality disposal 97–98
MCD. see Manual cervical dislocation (MCD)
MD. see Marek’s disease (MD)
Mechanical models, for BCO 161–164
MHC. see Major histocompatibility complex (MHC)
Microbe-associated molecular patterns (MAMPs) 105
Molecular diagnostics 7–8
Monitoring diseases bacteriology 6–7
diagnostic assays 5–8
diagnostic laboratories 4–5
diagnostic sampling and submission 8–9
epidemiology 9–10
of health and performance 93–94
histopathology 7
molecular diagnostics 7–8
overview 3–4
serology 5–6
virology 6
Natural killer (NK) 105
ND. see Newcastle disease (ND)
Newcastle disease (ND) 41–42

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>NK. see Natural killer (NK)</td>
</tr>
<tr>
<td>Noise, and poultry transportation welfare 299</td>
</tr>
<tr>
<td>Non-\textit{Eimerian} coccidia 61–62</td>
</tr>
<tr>
<td>cryptosporidium 62</td>
</tr>
<tr>
<td>Nurmi concept. see Competitive exclusion (CE)</td>
</tr>
<tr>
<td>Oocysts 55</td>
</tr>
<tr>
<td>Osteochondrosis 156–157</td>
</tr>
<tr>
<td>Parasitic diseases. see also Disease management</td>
</tr>
<tr>
<td>blackhead disease</td>
</tr>
<tr>
<td>biology of 64</td>
</tr>
<tr>
<td>chickens as carriers of 66</td>
</tr>
<tr>
<td>epidemiology of 66</td>
</tr>
<tr>
<td>overview 62–63</td>
</tr>
<tr>
<td>pathology of 64–66</td>
</tr>
<tr>
<td>susceptibility of birds to 64</td>
</tr>
<tr>
<td>blood-borne protozoan 67–68</td>
</tr>
<tr>
<td>coccidiosis</td>
</tr>
<tr>
<td>age and susceptibility of birds to 58</td>
</tr>
<tr>
<td>biology of 54–56</td>
</tr>
<tr>
<td>in caged layers 58</td>
</tr>
<tr>
<td>control of 59–61</td>
</tr>
<tr>
<td>diagnosis of 58–59</td>
</tr>
<tr>
<td>environmental interaction with 58</td>
</tr>
<tr>
<td>identification of 56–57</td>
</tr>
<tr>
<td>management and disinfection 61</td>
</tr>
<tr>
<td>molecular biology 57</td>
</tr>
<tr>
<td>pathogenic effects of 57–58</td>
</tr>
<tr>
<td>research on control of 61</td>
</tr>
<tr>
<td>\textit{Cochlosoma anatis}</td>
</tr>
<tr>
<td>diagnosis 67</td>
</tr>
<tr>
<td>prevention and control 67</td>
</tr>
<tr>
<td>site of infection 66</td>
</tr>
<tr>
<td>ectoparasites and arthropod pests</td>
</tr>
<tr>
<td>bedbugs 74</td>
</tr>
<tr>
<td>beetles 75</td>
</tr>
<tr>
<td>control and prevention of 77</td>
</tr>
<tr>
<td>control of mite infestations 75–76</td>
</tr>
<tr>
<td>fleas 76</td>
</tr>
<tr>
<td>flies 75</td>
</tr>
<tr>
<td>as intermediate hosts 77</td>
</tr>
<tr>
<td>lice (mallophaga) 74</td>
</tr>
<tr>
<td>ticks 77</td>
</tr>
<tr>
<td>flagellates 62, 63</td>
</tr>
<tr>
<td>non-\textit{Eimerian} coccidia 61–62</td>
</tr>
<tr>
<td>cryptosporidium 62</td>
</tr>
<tr>
<td>overview 53–54</td>
</tr>
<tr>
<td>roundworms (nematoda)</td>
</tr>
<tr>
<td>biology of 69</td>
</tr>
<tr>
<td>control and treatment of 71</td>
</tr>
<tr>
<td>diagnosis of 69–71</td>
</tr>
<tr>
<td>management and environmental</td>
</tr>
<tr>
<td>control of 71</td>
</tr>
<tr>
<td>overview 68–69</td>
</tr>
<tr>
<td>pathology of 71</td>
</tr>
<tr>
<td>\textit{Spironucleus meleagris} 67</td>
</tr>
<tr>
<td>tapeworms (cestoda)</td>
</tr>
<tr>
<td>biology of 72–73</td>
</tr>
<tr>
<td>overview 71–72</td>
</tr>
<tr>
<td>treatment and control of 73–74</td>
</tr>
<tr>
<td>\textit{Tetratrichomonas gallinae} 67</td>
</tr>
<tr>
<td>trematodes (flukes) 74</td>
</tr>
<tr>
<td>Parent stock, of slower growing broilers 218–219</td>
</tr>
<tr>
<td>Pathogen and host specificity, of CE 137–138</td>
</tr>
<tr>
<td>antibiotic-resistant strains 135–136</td>
</tr>
<tr>
<td>\textit{Campylobacter} 135</td>
</tr>
<tr>
<td>\textit{Clostridium perfringens} 136–137</td>
</tr>
<tr>
<td>\textit{Escherichia coli} 135–136</td>
</tr>
<tr>
<td>\textit{Salmonella} 133–135</td>
</tr>
<tr>
<td>Pathogenesis, of BCO</td>
</tr>
<tr>
<td>bacterial osteomyelitis and clinical lameness 157–160</td>
</tr>
<tr>
<td>haematogenous bacterial distribution 157–157</td>
</tr>
<tr>
<td>osteochondrosis 156–157</td>
</tr>
<tr>
<td>Pathogen exposure models, for BCO 160–161</td>
</tr>
<tr>
<td>Pattern recognition receptors (PRRs) 105</td>
</tr>
<tr>
<td>Perches 255–256</td>
</tr>
<tr>
<td>provision and design of 191–192</td>
</tr>
<tr>
<td>Physical barriers, and avian defence system 104</td>
</tr>
<tr>
<td>Poultry/animal behaviour</td>
</tr>
<tr>
<td>enhanced and sustainable production 192–193</td>
</tr>
<tr>
<td>experimental unit and sample size 187–188</td>
</tr>
<tr>
<td>of interest 188–189</td>
</tr>
<tr>
<td>metric and sampling strategy</td>
</tr>
<tr>
<td>selection 189–191</td>
</tr>
<tr>
<td>overview 185–186</td>
</tr>
<tr>
<td>provision and design of perches 191–192</td>
</tr>
<tr>
<td>Poultry immune systems</td>
</tr>
<tr>
<td>avian defence system</td>
</tr>
<tr>
<td>adaptive immune system 105–107</td>
</tr>
<tr>
<td>cell-mediated immunity 106</td>
</tr>
<tr>
<td>cellular barriers 104–105</td>
</tr>
<tr>
<td>gut-associated lymphoid tissues (GALT) 107–108</td>
</tr>
<tr>
<td>humoral immunity 106</td>
</tr>
<tr>
<td>immune response genes 106–107</td>
</tr>
<tr>
<td>innate defences 104</td>
</tr>
<tr>
<td>physical and chemical barriers 104</td>
</tr>
<tr>
<td>coccidiosis</td>
</tr>
<tr>
<td>cell-mediated immune response 110–111</td>
</tr>
</tbody>
</table>

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
host immune response to *Eimeria* 110
humoral immune response 110
overview 108–109
prevention and treatment 109–110
overview 103
and probiotics
and adaptive immunity 114
and host defence against pathogens 114–115
and innate immunity 113–114
modes of action 111–112
performance and intestinal development 112–113
Poultry transportation welfare
behavioural responses 292–293
of chicks 301
EOL hen transport 301–302
lairage 300
noise 299
overview 291–292
physical structure of crates/modules 294–295
physiological responses 293–294
pre-loading impacts 292
seasonal factors 300
stocking density 299
trailers 295–297
trip duration/distance 297–298
vibration 298–299
Pre-incubation holding 233–235
Pre-loading impacts, on poultry transportation welfare 292
Preventative measures, diseases
biosecurity 83
composting and re-use of litter 87
depopulation 86–87
free-range biosecurity issues 87–88
hierarchy of operations 83–84
isolation of premises 84
quarantine and hygiene procedures 85–86
single age 84
Probiotics
and BCO 168–172
and poultry immune systems
and adaptive immunity 114
and host defence against pathogens 114–115
and innate immunity 113–114
modes of action 111–112
performance and intestinal development 112–113
Prokaryotes 16–17
PRRs. see Pattern recognition receptors (PRRs)
QTC. see Quality Time® Concept (QTC)
Quality Time® Concept (QTC) 220–221
Quarantine, and hygiene procedures 85–86
Radiation 283
Restricted feeding, broiler breeder
excisions 219–220
feeding of males 218
fibre diluted diets 216–218
mating behaviour 220–221
overview 215–216
parent stock of slower growing broilers 218–219
programmes/frequencies/methods 218
quality of feather cover 221–222
water restriction 219
Rodent and insect control 92
Roundworms (nematoda)
biology of 69
treatment and control of 71
diagnosis of 69–71
management and environmental control of 71
overview 68–69
pathology of 71
Safety and licensing, of CE 141
Salmonella 133–135
Schizogony 56
Seasonal factors, and poultry transportation welfare 300
Sensible heat loss 283–284
Serology 5–6
Sick birds, disease management of
communication with grower/serviceman/manager 96
diagnosis 94–95
economic judgement 96
mass medication methods 95
use of antibiotics 95–96
Spironucleus meleagridis 67
Sporozoites 55
Stocking density 202, 299
Stress- and disease-associated factors 138–139
Stress-mediated immunosuppression models, for BCO 164
Structural complexity
acquiring navigational skills 258–260
cover panels 250–253
benefits of 253–254
overview 249–250
perches 255–256
Index

and thermal environment 258
using third dimension 256–258
Stunning
concussive stunning/killing 317

electrical
dry electrode head-only 312–313
head-to-cloaca 312
waterbath–shackle 311–312
gas
for depopulation in laying hens 314–315
maceration 315–316
overview 313–314
low atmosphere pressure system (LAPS) 317–318
manual cervical dislocation (MCD) 316–317
overview 309–310
physiological basis of 310–311
Sustainable poultry production
dark brooders 260
design considerations 268–269
dust bathing substrates 264–265
enrichment and use of outdoor areas 266–268
foraging enrichments 261–263
overview 247–249
and poultry behaviour 192–193
and structural complexity
acquiring navigational skills 258–260
benefits of cover panels 253–254
cover panels 250–253
overview 249–250
perches 255–256
and thermal environment 258
using third dimension 256–258
visual enrichment through lighting 260–261
water baths 265

Tapeworms (cestoda)
biology of 72–73
overview 71–72
treatment and control of 73–74
Tetratrichomonas gallinae 67
TFF. see Trefoil factor (TFF)-2
TGF. see Transforming growth factor (TGF)
Thermal environment, and structural complexity 258
Thermal manipulations 240–241
Ticks 77
TNF. see Tumour necrosis factor (TNF)
Trailers, and poultry transportation welfare 295–297
Transforming growth factor (TGF) 107
Transgenerational effects 224–225
Treatment strategies, for BCO
mechanical models 161–164
pathogen exposure models 160–161
stress-mediated immunosuppression models 164
Trefoil factor (TFF)-2, 107
Trematodes (flukes) 74
Trip duration/distance, and poultry welfare 297–298
Tumour necrosis factor (TNF) 107
Tunnel ventilation, and bird performance 286–287

Vaccinations 59, 88, 223–224
Ventilation systems, and hot weather management 284–287
Vertical versus horizontal BCO transmission 165–167
Vibration, and poultry transportation welfare 298–299
Viral diseases
avian influenza (AI) 47–48
infectious bronchitis (IB) 42–43
infectious bursal disease (IBD) 44–45
infectious laryngotracheitis (ILT) 46–47
Marek’s disease (MD) 45–46
newcastle disease (ND) 41–42
overview 39–40
Virology 6

Waterbath–shackle stunning 311–312
Wet litter 89–90