Achieving sustainable production of sheep

Edited by Professor Johan Greyling
University of the Free State, South Africa
Contents

Series list xii
Introduction xvi

Part 1 Quality issues

1 Factors affecting sheep carcass characteristics 3
 Nicola M. Schreurs and Paul R. Kenyon, Massey University, New Zealand
 1 Introduction: sheep carcass characteristics and their importance 3
 2 Animal and on-farm influences on carcass characteristics 6
 3 Factors affecting dressing-out percentage in the carcass 7
 4 Factors affecting carcass composition 10
 5 Factors affecting tissue distribution in the carcass 17
 6 Factors affecting carcass shape 18
 7 Summary and future trends 20
 8 Where to look for further information 20
 9 References 21

2 Animal and on-farm factors affecting sheep and lamb meat quality 29
 Nicola M. Schreurs and Paul R. Kenyon, Massey University, New Zealand
 1 Introduction 29
 2 Factors affecting meat quality 30
 3 Attributes of sheep meat appearance 31
 4 Palatability attributes for sheep meat 32
 5 Influence of on-farm practices on meat quality 35
 6 Influence of on-farm factors on lean meat colour 36
 7 Influence of on-farm factors on fat colour 37
 8 Influence of on-farm factors on meat tenderness 38
 9 Influence of on-farm factors on meat juiciness 41
 10 Influence of on-farm factors on meat flavour 42
 11 Summary and future trends 46
 12 Where to look for further information 47
 13 References 47

3 Improving sheep wool quality 53
 E. K. Doyle, University of New England, Australia
 1 Introduction 53
 2 Wool quality 54
 3 Wool production 55
 4 Selection of superior genetics and breeding 57
 5 Health and welfare management for improved wool quality 59
 6 Nutritional management and wool production 62
 7 Precision sheep management 64
 8 Woollen products and consumer awareness of provenance 65
9 Conclusion: sustainability of the wool industry into the future 66
10 Where to look for further information 67
11 References 67

4 Producing quality milk from sheep 73
Sam W. Peterson, Massey University, New Zealand
1 Introduction 73
2 Choice of breed and breeding to improve milk production 76
3 Milking frequency 82
4 Nutrition of growing and lactating ewes 83
5 Weaning lambs 88
6 Photoperiod and season 89
7 Milk composition and quality 91
8 Mastitis in ewes 95
9 Future trends and conclusion 99
10 Appendix 100
11 Where to look for further information 106
12 References 107

Part 2 Genetics and breeding

5 Mapping the sheep genome 115
Noelle E. Cockett, Utah State University, USA; Brian Dalrymple, University of Western Australia, Australia; James Kijas, CSIRO, Australia; Brenda Murdoch, University of Idaho, USA; and Kim C. Worley, Baylor College of Medicine, USA
1 Introduction 115
2 Tools and resources for studying the sheep genome 116
3 Next steps for annotating the sheep genome: overview 119
4 The Ovine FAANG Project 121
5 Additional projects and expected outcomes of the next stage of research 126
6 Case study 127
7 Summary and future trends 128
8 Where to look for further information 129
9 References 129

6 Advances in sheep breeding 133
Julius van der Werf, School of Environmental & Rural Science, University of New England, Australia; and Andrew Swan and Robert Banks, Animal Genetics and Breeding Unit, University of New England, Australia
1 Introduction 133
2 Early sheep breeding programmes: the case of Australia 134
3 Genetic evaluation systems in sheep breeding 136
4 Cross-breeding of sheep 137
5 Use of new technologies in sheep breeding 140
6 Genomic selection of sheep 141
7 Sheep breeding objectives and target traits 145
8 Future trends and conclusion 151
Part 3 Animal nutrition and health

8 Sustainably meeting the nutrient requirements of grazing sheep
D. K. Revell, Revell Science and The University of Western Australia, Australia
 1 Introduction
 2 Animal adaptability to a variable nutrient supply
 3 Using suitable forages with different nutritional characteristics
 4 Using forages as supplements
 5 Forage diversity to meet nutrient requirements: a case study
 6 Forage diversity, diet diversity and productivity
 7 Converting a diverse feed base into a diverse diet: how animals learn about forages
 8 Summary and future trends
 9 Where to look for further information
 10 References

9 Sheep nutrition: formulated diets
M. L. Thonney, Cornell University, USA
 1 Introduction
 2 Nutrients for sheep
 3 Formulating sheep feed
 4 Feed formulation tools
 5 Case studies
 6 Sheep feed pricing
 7 Mixing sheep feed
 8 Storage and delivery of sheep feed
 9 Where to find further information
 10 References
 11 Appendix 1: Common feed ingredient components
 12 Appendix 2: Suggested feed components for sheep

10 Maintaining sheep flock health: an overview
Neil Sargison, University of Edinburgh, UK
 1 Introduction
 2 The global role of farming small ruminants
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Efficiency of global ruminant livestock production</td>
<td>222</td>
</tr>
<tr>
<td>4</td>
<td>Ecological impact of small ruminants</td>
<td>223</td>
</tr>
<tr>
<td>5</td>
<td>Genetic improvement of sheep and technological advances</td>
<td>224</td>
</tr>
<tr>
<td>6</td>
<td>Improving small ruminant production efficiency through animal health management</td>
<td>224</td>
</tr>
<tr>
<td>7</td>
<td>Sheep health management</td>
<td>226</td>
</tr>
<tr>
<td>8</td>
<td>Sheep flock health planning</td>
<td>227</td>
</tr>
<tr>
<td>9</td>
<td>Sheep nutritional management</td>
<td>230</td>
</tr>
<tr>
<td>10</td>
<td>Biosecurity of individual sheep flocks</td>
<td>231</td>
</tr>
<tr>
<td>11</td>
<td>Case study: applying principles of sheep flock health planning to lamb growth rates</td>
<td>234</td>
</tr>
<tr>
<td>12</td>
<td>Case study: parasitic nematode control in sheep as a globally important health management challenge</td>
<td>237</td>
</tr>
<tr>
<td>13</td>
<td>Summary</td>
<td>240</td>
</tr>
<tr>
<td>14</td>
<td>Where to look for further information</td>
<td>241</td>
</tr>
<tr>
<td>15</td>
<td>References</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>11 Bacterial and viral diseases affecting sheep</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Francesca Chianini, Moredun Research Institute, UK</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>245</td>
</tr>
<tr>
<td>2</td>
<td>Diseases of the reproductive system</td>
<td>246</td>
</tr>
<tr>
<td>3</td>
<td>Diseases of the nervous system</td>
<td>249</td>
</tr>
<tr>
<td>4</td>
<td>Diseases of the respiratory and alimentary systems</td>
<td>252</td>
</tr>
<tr>
<td>5</td>
<td>Diseases of the skin and feet</td>
<td>257</td>
</tr>
<tr>
<td>6</td>
<td>Multisystemic diseases and other relevant infectious diseases</td>
<td>260</td>
</tr>
<tr>
<td>7</td>
<td>Future trends in research</td>
<td>262</td>
</tr>
<tr>
<td>8</td>
<td>Where to look for further information</td>
<td>263</td>
</tr>
<tr>
<td>9</td>
<td>References</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>12 Sustainable control of gastrointestinal nematode parasites affecting sheep</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>W. E. Pomroy, Massey University, New Zealand</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>271</td>
</tr>
<tr>
<td>2</td>
<td>Gastrointestinal nematodes (GIN)</td>
<td>272</td>
</tr>
<tr>
<td>3</td>
<td>General principles of worm control</td>
<td>273</td>
</tr>
<tr>
<td>4</td>
<td>GIN control programmes</td>
<td>274</td>
</tr>
<tr>
<td>5</td>
<td>Targeted treatments and targeted selective treatments</td>
<td>276</td>
</tr>
<tr>
<td>6</td>
<td>Selecting sheep for enhanced immunity to GIN</td>
<td>277</td>
</tr>
<tr>
<td>7</td>
<td>Nematophagous fungi</td>
<td>277</td>
</tr>
<tr>
<td>8</td>
<td>Utilising condensed tannins</td>
<td>278</td>
</tr>
<tr>
<td>9</td>
<td>Copper oxide wire particles</td>
<td>278</td>
</tr>
<tr>
<td>10</td>
<td>Vaccines</td>
<td>279</td>
</tr>
<tr>
<td>11</td>
<td>Conclusion and future trends</td>
<td>280</td>
</tr>
<tr>
<td>12</td>
<td>References</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>13 Understanding and improving immune function in sheep</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td>Gary Entrican and Sean Wattegedera, Moredun Research Institute, UK</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>285</td>
</tr>
<tr>
<td>2</td>
<td>Diseases of sheep</td>
<td>286</td>
</tr>
</tbody>
</table>
Contents

3 Sheep vaccines
4 Identification of immunological correlates for vaccine design
5 Case Study: OEA
6 Conclusion and future trends
7 Where to look for further information
8 Acknowledgements
9 References

Part 4 Animal welfare

14 Understanding sheep behaviour
R. Nowak, INRA/Université de Tours, France

1 Introduction
2 Sociality of sheep
3 Sheep reproduction
4 Motherhood in ewes
5 Infancy of lambs
6 Environmental conditions
7 Case study: improving the welfare of artificially reared lambs
8 Summary and future trends
9 Where to look for further information
10 References

15 Validating indicators of sheep welfare
N. J. Beausoleil and D. J. Mellor, Massey University, New Zealand

1 Introduction
2 What is animal welfare and how can it be assessed?
3 Welfare indicators must be scientifically validated
4 Validation must include demonstrable repeatability, reliability and practicality
5 Selected welfare indicators interpreted in terms of the Five Domains and Welfare Quality® frameworks
6 Case study: recent evidence of validity of BCS as an indicator of hunger
7 Summary and future trends
8 Where to look for further information
9 References

16 Improving the welfare of ewes
A. L. Ridler and K. J. Griffiths, Massey University, New Zealand

1 Introduction
2 Longevity, mortality, undernutrition and body condition score
3 Environment and housing
4 Lambing management and dystocia
5 Vaginal prolapse
6 Lameness and footrot
7 Ectoparasites
8 On-farm euthanasia
9 Summary and future trends
17 Improving the welfare of lambs

K. Stafford, Massey University, New Zealand

1 Introduction
2 Handling and training lambs
3 Lamb mortality
4 Marking of lambs
5 Growing lambs
6 Summary and future trends
7 Where to look for further information
8 References

18 Humane transport, lairage and slaughter of sheep

P. H. Hemsworth and E. C. Jongman, University of Melbourne, Australia

1 Introduction
2 Animal welfare and its assessment
3 Transporting sheep
4 Abattoirs
5 Sheep pen design: rest and recovery in lairage
6 Sheep handling
7 Stunning
8 Safeguarding animal welfare
9 Future trends and conclusion
10 Where to look for further information
11 Acknowledgements
12 References

Part 5 Sustainability

19 Assessing the environmental impact of sheep production

S. F. Ledgard, AgResearch Ruakura Research Centre, New Zealand

1 Introduction
2 Environmental emissions and impacts at farm level
3 Environmental emissions throughout the life cycle
4 Case study: sheep production in France and New Zealand
5 Summary and future trends
6 Where to look for further information
7 References

20 Nutritional strategies to minimize emissions from sheep

C. Jamie Newbold, Eli R. Saetnan and Kenton J. Hart, Aberystwyth University, UK

1 Introduction
2 Plant-based approaches
3 Use of additives in grazing animals
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Host-driven effects on the rumen</td>
<td>436</td>
</tr>
<tr>
<td>5 Conclusion and future trends</td>
<td>437</td>
</tr>
<tr>
<td>6 Where to look for further information</td>
<td>438</td>
</tr>
<tr>
<td>7 References</td>
<td>438</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
</table>

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
Introduction

Sheep farming, whether for meat, wool or milk, has long been an essential component in diversifying farming systems, particularly in exploiting land unsuitable for arable crops. It has been estimated that there are over 1 billion sheep around the globe, over 8 million tonnes of sheep meat consumed each year and over 2 million tonnes of wool produced. Overall demand for meat in particular is rising and could reach as much as 15 million tonnes by 2019 according to FAO estimates.

Sheep farming faces a range of challenges in meeting this demand. There is an ongoing threat both from endemic and more exotic diseases. Consumer expectations about nutritional and sensory quality have never been higher. There is also greater concern about the environmental impact of animal production and the need to minimise that impact. In addition, consumers are increasingly concerned about animal welfare issues. In recent years there has been a wealth of research to address these challenges, from the increasing use of genetics to improve breeding and predict meat quality to improving animal nutrition and disease management in flocks. This volume summarises key developments in research in these areas, whether to make farming more efficient, improve its environmental sustainability or promote animal welfare.

Part 1 Quality issues

The first part of the book looks at aspects of quality. Chapter 1 reviews research on factors affecting sheep carcass characteristics. Because of their relevance to on-farm production and profit, carcass traits are often used in breeding objectives with sires ranked and evaluated for carcass characteristics such as meat yield or fat depth. Understanding the on-farm and animal influences on meat yield and fat deposition in the carcasses of sheep has allowed the selection of sire rams and the management of the progeny to produce carcasses that yield more meat. The result has been a steady increase in lean meat yields over the last decade which has been matched by increases in carcass weights and dressing-out percentages.

This chapter starts by describing the characteristics of a sheep’s carcass and explains the principles of carcass composition (the weight or proportion of muscle, fat and bone in the carcass). It then examines current research on the factors that influence a carcass’s dressing-out percentage (the relative proportions of carcass and non-carcass components in an animal’s body), carcass composition, distribution and partitioning of tissues within the carcass and carcass shape. As research shows, in each of these areas, type-of animal effects such as the weight or age, breed, genetic line and sex (including castration), have the greatest influence on carcass characteristics. How the animal is managed with respect to its nutrition and health, which influence its growth, also have an impact, as does the use of growth promotants. As an example, supplementation of lambs on pasture with proteins that escape rumen degradation has been shown to enhance lamb growth and decrease rates of fat deposition. However, as the review of research in Chapter 1 suggests, these factors have a less significant and more variable effect than type-of animal characteristics.

Chapter 1 is complemented by Chapter 2 which assesses animal and on-farm factors affecting sheep and lamb meat quality. Quality attributes valued by consumers include
appearance traits such as meat or fat colour and palatability characteristics such as tenderness, succulence and flavour. The chapter begins by summarising how quality characteristics may be defined and their chemical basis. Research suggests that differences in meat quality between different types of sheep, as well as between different nutritional regimens for sheep and lambs, can generally be explained by changes in the intrinsic determinants of meat quality such as pH, intramuscular fat content, collagen content and collagen solubility.

The chapter goes on to provide a comprehensive review of what we know about on-farm factors that affect meat quality, including lean meat and fat colour, tenderness, juiciness and flavour. In the case of each quality attribute, the chapter looks at the relative importance of age, breed and genetic factors, sex, diet and nutrition as well as how handling and transport affect meat quality. As an example, research shows that colour pigments in muscle increase in concentration as the sheep gets older. The most rapid changes in muscle myoglobin concentration appear to take place during the first few months of age and that, once lambs are older than 270 days of age (9 months), there is no further change in the colour or redness of the meat. Research also shows that meat from lambs fed on forage diets has been shown to be redder and to retain redness and colour saturation for longer when under retail display conditions, compared to meat from lambs on concentrate diets. Studies also highlight the significance of the 1-2 weeks prior to slaughter and the activities of the animals immediately prior to stunning and slaughter as well the importance of maximising growth rates of lambs to ensure an early slaughter age.

In addition to meat, sheep also produce wool. To maintain market share and remain competitive against other types of fibre, the wool industry requires increased efficiency and management of sheep. The focus of Chapter 3 is on the quality of Merino wool, the dominant wool type. The chapter discusses ways of improving the management of sheep in a number of key areas. These include: utilisation of breeding values to select better animals; improved welfare and management of diseases such as gastrointestinal parasites, blowfly strike, fleece rot and lice; optimising nutritional management of breeding ewes to deliver lifetime wool productivity of both the ewe and progeny; and adoption of precision sheep management to increase efficiency and profitability. This allows farmers to provide consumers with a high quality, ethically and sustainably produced product with marketable provenance.

Sheep have been milked for about ten thousand years, particularly for the manufacture of cheeses such as feta. There is increasing interest in sheep dairying in developing more diverse and sustainable livestock production systems. Chapter 4 provides an authoritative review of the sheep dairy industry, starting by analysing the advantages and disadvantages of different sheep breeds for production of sheep’s milk of high quality. The chapter addresses in detail key issues in dairy farming of sheep, including frequency of milking, the nutritional needs of pregnant and lactating ewes, the weaning of lambs, as well as the role of photoperiod and season. The chapter also reviews the composition and quality of sheep milk, as well as examining the common problem of mastitis in ewes and possible management strategies and treatments for the condition. Finally, the chapter suggests future directions the sheep dairy industry may take.

Part 2 Genetics and breeding

The second part of the book reviews recent research on sheep genetics and breeding. The exploration of genomic variation is central to advances in animal genetic studies.
Understanding genetic variation and the way it relates to particular traits will both accelerate breeding and improve animal husbandry in such areas as optimisation of nutrition as well as preventing and managing disease. Chapter 5 summarises the important work of the International Sheep Genome Consortium (ISGC) in coordinating research to develop genomic resources for the ovine species. As the chapter points out, perhaps the most important ISGC achievement to date has been the construction of the sheep reference genome assembly, which currently contains whole genome sequences from over 450 sheep collected from around the world. A key recent development has been the launch of the Functional Annotation of Animal Genomes (FAANG) project which provides coordinated functional annotation of farmed animal genomes, linking phenotypes and genotypes. Association studies using the FAANG datasets will inform our understanding of biological processes underlying a phenotype by providing an estimate of the probability of a particular variation in the genome sequence affecting the phenotype of interest. This increased understanding of biological processes will also be used to improve the management of the animals so they can reach their genetic potential. As an example, a key target is understanding the complement of genes expressed in the gastrointestinal tract of sheep and their potential regulatory networks. This will increase our understanding of the development and function of the rumen and its role in nutrient acquisition, control of methane production and animal efficiency to facilitate more effective management of animals for optimal performance.

Building on Chapter 5, Chapter 6 reviews recent advances in sheep breeding. Focusing on wool and meat sheep breeding programmes, the chapter discusses the implementation and adoption of genetic evaluation systems, the development of breeding objectives, and the recent developments towards uptake of genomic selection. From a relatively informal, low-cost base, the last 25 years have seen a transition to more formal approaches in sheep breeding, with more objective multi-trait measurement, across-flock genetic evaluation and the development of breeding objectives based on more systematic economic analysis. As a result, sheep breeding programmes have become more sophisticated, with significant genetic improvements being made.

The chapter reviews the impact of advances in breeding technologies such as artificial insemination as well as embryo transfer techniques such as multiple ovulation and embryo transfer (MOET) and juvenile in vitro embryo production and transfer (JIVET). It also discusses developments in crossbreeding as a way of accelerating breed improvement, including its application in developing dual-purpose breeds suited to both wool and meat production. An important recent development is genomic selection based on genomic tests. The advantage of a genomic test is that the information is available early in life and for traits that are hard to measure on-farm. Genomic selection can thus help achieve higher rates of genetic improvement, especially for traits such as reproductive rate, lifetime wool productivity, lamb carcass and eating quality, disease resistance and feed efficiency. This has resulted, for example, in the development of estimated breeding values (EBV) incorporating traits such as intra-muscular fat percentage, along with EBVs for lean meat yield, based on genomic prediction.

As Chapter 7 points out, given constraints on land availability, it is essential to make sheep farming more efficient, with the same numbers of animals generating higher production. An obvious option is an increased reproduction rate. The chapter reviews the range of ways of improving the reproductive efficiency of sheep. Given that seasonal nutrient deficiencies may limit overall productivity, the chapter discusses ways of optimizing maternal nutrition, which has been reported to influence foetal development, lamb birth
weight and growth weights from birth to weaning. The chapter also discusses lactational feeding as well as the use of strategic nutritional flushing of ewes and rams. Using this practice, animals are fed an energy concentration (e.g. maize) for a period of 3-6 weeks at strategic times e.g. prior to mating or late pregnancy and peri-partum to limit lamb mortality.

The chapter also explores the importance of maintaining animal health through a comprehensive health programme, including strategic dipping (ecto parasites), dosing (endo parasites) and vaccinations. The chapter concludes by reviewing developments in reproductive technologies such as oestrous synchronization, artificial insemination, the use of exogenous hormones and pregnancy diagnosis, as well as the complex management challenges in controlled breeding programmes. The chapter concludes that, provided adequate nutrition is provided and a strict animal health and reproduction programme is adhered to with a breed adapted to the specific environment, a lambing rate of 130-150% is achievable.

Part 3 Animal nutrition and health

Chapter 2 discussed the role of diet in influencing meat quality, whilst Chapter 7 emphasised the importance of nutrition in animal health and reproductive performance. Chapter 8 opens Part 3 by suggesting new ways of optimising grazing to meet sheep nutritional requirements. It suggests that a more effective and sustainable approach is to minimise fluctuations in nutrient supply by using forage plants suited to the local environment. It then argues for managing inevitable fluctuations in feed quality and quantity by capitalising on the adaptive strategies of grazing herbivores. Optimising the diet of grazing sheep by providing diverse forages suited to the local environment, and by managing the experiences of animals so they learn to combine appropriate mixtures of plants, represents an opportunity to combine profitable animal production with broader goals associated with land stewardship and natural resource management.

Modern production systems are often characterised by a limited diversity of forage, which then has to be supplemented by feed, and management systems which make it hard for animals to learn about the functional attributes of different forages during their life cycle. The chapter explores how sheep continuously assess how well their nutrient requirements are being met and, given the opportunity, modify their selection of forages accordingly. The chapter shows, for example, how this behaviour can be reinforced by broadening the range of plants that animals are exposed to during early life, as well the value of introducing new forages into an existing diet to allow sheep to adapt accordingly. As an example, the author discusses the ‘Enrich’ project which incorporated native, perennial shrub species into grazing systems in southern Australia, assessing how well this programme filled existing feed gap deficiencies in the autumn, reduced reliance on supplementary feeding, enhanced animal gut function and health, improved natural resource management and overall farm profitability.

Whilst, as Chapter 8 points out, much can be done to optimise grazing, there remains an important role for formulated diets in sheep nutrition. Sheep farming is sustainable because the primary feeds for sheep are renewable and contain high concentrations of components not useful for human consumption. As an example, by-products of grains such as corn, barley, sorghum, wheat, soybeans or rapeseed can be fed strategically during
Introduction

parts of the lifecycle of sheep. Chapter 9 provides a general overview of sheep nutrient requirements, discusses the measurable components of sheep feeds which supply those nutrients (including fermentable fiber), and suggests practical methods of combining feed ingredients to achieve functional supplements and diets. The chapter discusses nutrients in sheep feed, methods for formulating sheep feed as well as mixing, storage and delivery of feed.

The next group of chapters discuss aspects of animal health. As Chapter 10 points out, while animal health problems are not the only cause of low production and poor welfare, better planned sheep flock health management affords opportunities for more rapid improvement than genetic selection for production traits. The concept of flock health management extends beyond the diagnosis and treatment of particular diseases, taking into consideration wider issues of better surveillance and prevention, as well as factors such as nutrition, welfare, environmental impact and improved productivity.

As the chapter points out, the main components of an animal health programme are effective biosecurity, good nutrition, protection from infectious pathogens, and endemic disease management, for example by ensuring trace element sufficiency in the diet, appropriate vaccination programmes or sustainable parasite control measures. Such programmes require setting and measuring targets (such as body condition scoring), as well as good practice in surveillance and diagnosis, including on-farm post-mortem examination. Picking up on Chapters 8 and 9, the chapter emphasises the importance of good nutrition in maintaining healthy animals able to resist infection. Undernutrition, for example, can weaken host protective immune responses to infectious diseases such as helminth, arthropod and protozoal parasitism, or contagious viral diseases. The chapter highlights the need for better understanding of the nutritive value of herbage that is fed to small ruminants, the concept of a balanced ration, and of the effects of concentrate feeding on the efficiency of digestion of primary, natural nutrient resources. The chapter also highlights the importance of effective biosecurity measures and challenges in implementation for diseases with delayed and hard to diagnose symptoms. Good biosecurity includes appropriate risk assessment, proper sourcing of new animals, quarantine and isolation procedures. The chapter concludes with two case studies showing sheep flock health management in practice, both in achieving weaned lamb growth rates as well as parasitic nematode control in sheep.

Chapter 10 highlighted the importance of effective surveillance and early diagnosis in effective flock health management. Chapter 11 provides a helpful summary of the key bacterial and viral diseases affecting sheep with a particular focus on disease symptoms and methods of diagnosis. The chapter begins with an overview of diseases of the reproductive system such as enzootic abortion of ewes (EAE), Q fever (Coxiella burnetti), Brucellosis (Brucella spp), Contagious agalactia (Mycoplasma agalactiae), Salmonellosi (Salmonella spp) and Campylobacteriosis (Campylobacter fetus and jejuni). The chapter then provides summaries for key diseases of the nervous system, the respiratory and alimentary systems as well diseases of the skin and feet. It concludes by discussing multi-systemic diseases and other relevant infectious diseases.

Building on Chapter 10, Chapter 12 reviews sustainable control of gastrointestinal nematode parasites affecting sheep. The threat of anthelmintic resistance has loomed over attempts to control gastrointestinal nematodes (GIN) in sheep for several decades and in some regions is threatening the sustainability of sheep farming. This chapter describes the current state of options to achieve sustainable control of GIN in sheep, covering general principles of worm control and methods specific to controlling GIN,
including nematophagous fungi, condensed tannins, copper oxide wire particles (COWP) and vaccines.

Echoing Chapter 10, Chapter 13 suggests that prevention and control of infectious diseases of sheep can be achieved through measures such as disease screening programmes, implementation of biosecurity measures, chemotherapeutics and vaccination. Chemotherapeutics can be very effective for treating certain infectious diseases of sheep (principally bacterial and parasitic infections). As the chapter points out, our understanding of the mechanisms underlying immune responses in sheep is still relatively poor. The chapter reviews current progress in studying immunology in sheep, including techniques for investigating cell-mediated immunity in sheep. It then goes on to discuss the identification of immunological correlates and how these can be used in vaccine design. These issues are illustrated by a case study on ovine enzootic abortion (OEA) which looks at current vaccination strategies for controlling OEA, antibodies as an immune correlate of protection or infection for OEA, cell-mediated immunity and protection against OEA.

Parts 4 and 5 Animal welfare and sustainability issues

The final parts of the book discuss aspects of animal welfare and the environmental impact of sheep production. As Chapter 14 points out, under farm conditions, sheep are often maintained in single-sex groups of similar age or size, the main exceptions being male-female groups at mating and the mother-young dyad. Separating lambs from their mother at an early age and rearing them with artificial milk is also a frequent practice. However, the most prominent behavioural feature of sheep is their marked sociality together with the formation of a bond between mother and young. Sheep show a strong need to stay with their flock mates and become very distressed when isolated. Chapter 14 examines the importance of understanding sheep sociality and how this can be taken into account in improved husbandry. It looks specifically at natural behaviour in reproduction, as well as at maternal and infant behaviour. The chapter then discusses how animal management can best incorporate these behaviours to minimise stress and promote animal health and wellbeing, including reduced lamb mortality. The chapter also looks at environmental factors such as the importance of shelter, and concludes with a case study on improving the welfare of artificially-reared lambs, showing the value of positive human-lamb interactions and nutritional factors in improving the health status of artificially reared lambs.

Practical and validated indicators of both negative and positive experiences that influence sheep welfare are required to facilitate the identification, prevention and mitigation of negative welfare impacts and to enhance welfare wherever possible. Sheep have traditionally been managed extensively, and their greater behavioural freedom has led to perceptions of fewer or lesser risks to their welfare. However, extensively managed sheep are still vulnerable to welfare challenges such as thirst, hunger or thermal comfort. Chapter 15 reviews the principles of welfare indicators for sheep and addresses the question of how sheep welfare can be scientifically assessed in repeatable, reliable and practical ways. The chapter describes possible welfare risks in a variety of sheep production systems and includes a detailed case study on the use of body condition scoring as an indicator of hunger.
Building on both Chapters 14 and 15, Chapter 16 looks specifically at improving the welfare of ewes. Ewes are often grazed in large flocks in extensive pastoral production systems, and health or production problems may go unnoticed for some time. The chapter considers what we know about the major welfare considerations affecting ewes. These include longevity and mortality, undernutrition and body condition score, environment and housing, lambing management and dystocia, vaginal prolapse, lameness and footrot, ectoparasites and on-farm euthanasia. In each case, the chapter suggests ways of assessing and improving ewe health and wellbeing in these areas.

Chapter 16 is complemented by Chapter 17 which discusses improving the welfare of lambs. High lambing rates and maintaining high standards of lamb survival, health, nutrition and growth are essential for farm profitability. Chapter 17 examines the main issues affecting the welfare of lambs, including the handling and training of lambs from birth, causes of lamb mortality, techniques for marking lambs, and issues regarding the weaning of lambs and controlling infectious diseases in the lamb population.

Chapter 18 reviews the main welfare issues associated with management of sheep post-farm gate, including transport by road and by sea, as well as pen design to allow rest and recovery in lairage. It also assesses best practice in treatment of sheep in abattoirs, including handling and stunning. The chapter argues that welfare monitoring at each stage of the post-farm gate production process is essential, together with well-designed holding systems for transport, as well as proper training for staff on handling sheep.

The final two chapters in the book look at the environmental impact of sheep production. Sheep production can have a local impact on water, air and soil quality, as well as a global impact (such as contributing to greenhouse gas emissions). Sheep production can also impact biodiversity, human health via various pollutants, and community and cultural well-being. Chapter 19 examines how life cycle assessment (LCA) can be used as a tool to quantify multiple resource use and environmental impacts. Via a detailed comparative case study of lamb production in France and New Zealand, it examines how potentially harmful emissions can be assessed and measured at each stage in a sheep's lifecycle, so that the most damaging stages can be identified and steps taken to mitigate them. As an example, LCA of a housed system showed that it resulted in higher sheep productivity but was associated with relatively high greenhouse gas (GHG) and nitrogen (N) emissions per-hectare and per-kg product, associated with crop-feed provision and manure management. Such analyses allow more informed decisions about improving sustainability.

Building on Chapter 19, Chapter 20 discusses nutritional strategies to minimise emissions from sheep. Agricultural production accounts for 10-12% of global annual greenhouse gas (GHG) emissions, with livestock production (including sheep) being the most important contributing factor within this sector. The largest single contributor to agricultural GHG emissions is methane produced during enteric fermentation. Chapter 20 describes the various approaches to minimising enteric emissions from sheep, including plant-based approaches such as high sugar grass sward or the addition of legumes such as clover. The chapter also looks at dietary components such as garlic, essential oils and saponins. It reviews the potential use of additives for grazing sheep such as ionophoric antibiotics, before examining host-driven effects on the rumen and what determines whether some animals segregate into ‘low’ or ‘high’ methane producers.
Index

Abattoirs 388
Air quality, and sheep production 410–413
Alimentary system diseases
 clostridial diseases 253–255
 Nairobi sheep disease (NSD) 257
 paratuberculosis/Johnie’s disease 255–256
 Rift Valley fever (RVF) 256
Animal welfare. see Sheep welfare
Anthrax 262
Artificial insemination 140–141
Artificial reproductive technologies (ARTs) 160–161
ARTs. see Artificial reproductive technologies (ARTs)
Australian wool industry 56–57
Bacterial and viral diseases
 alimentary system
clostridial diseases 253–255
Nairobi sheep disease (NSD) 257
paratuberculosis/Johnie’s disease 255–256
Rift Valley fever (RVF) 256
anthrax 262
leptospirosis 261
multisystemic
 bluetongue (BT) 260
 maedi-visna 261
nervous system
 border disease (BD) 249–250
 Borna disease virus (BoDV) 250
 listeriosis 251
 louping ill virus (LIV) 250–251
 rabies 251–252
 Schmallenberg, Akabane and Cache Valley viruses 252
overview 245–246
reproductive system
 brucellosis 248
 campylobacteriosis 249
 contagious agalactia 248
 enzootic abortion of ewes 246–247
 Q fever 247–248
 salmonellosis (Salmonella spp.) 248–249
respiratory system
 ovine pulmonary adenocarcinoma (OPA) 252–253
 peste des petits ruminants (PPR) 253
skin and feet
 caseous lymphadenitis (CLA) 258
 contagious ecthyma 257
 contagious ovine digital dermatitis (CODD) 259–260
foot-and-mouth disease (FMD) 258–259
scald and footrot 259
sheep pox 258
 tuberculosis 261
BD. see Border disease (BD)
Biosecurity, of sheep flock health 231–234
Blowfly strike 60–61
Bluetongue (BT) 260
BoDV. see Borna disease virus (BoDV)
Body condition score, and ewe welfare 350–351
Border disease (BD) 249–250
Borna disease virus (BoDV) 250
Brucellosis 248
BT. see Bluetongue (BT)
Campylobacteriosis 249
Carbohydrates, for sheep 188–189
Care and welfare-related traits 150
Caseous lymphadenitis (CLA) 258
Castration 368–369
CLA. see Caseous lymphadenitis (CLA)
Clostridial diseases 253–255
Cobalt nutrients, for sheep 191
CODD. see Contagious ovine digital dermatitis (CODD)
Condensed tannins (CTs) 278
Consumer awareness, and sheep wool quality 66
Contagious agalactia 248
Contagious ecthyma 257
Contagious ovine digital dermatitis (CODD) 259–260
Copper nutrients, for sheep 190
Copper oxide wire particles 278–279
Cross-breeding 137–140
CTs. see Condensed tannins (CTs)
DDM. see Digestible dry matter (DDM)
Digestible dry matter (DDM) 192
Disease resistance 148–150
Diseases, lambs 372–373
Docking, of lambs 369–370
Dusty feeds 198
Dystocia 352
Ear tagging, of lambs 370–371
Ecological impact, of sheep flock health 223–224
Ectoparasites 354–355
Environmental impact and life cycle assessment (LCA)
 sheep products and 413–415
Environmental impact, and sheep production beyond farm gate 418–420
effects on air quality 410–413
effects on water quality 408–410

http://dx.doi.org/10.0000/00000.0000
© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
in France and NZ
 cradle-to-farm-gate emissions 424
 on-farm emissions 422–423
 and life cycle assessment (LCA)
 GHG emissions 415–418
 sheep products and other animal products 420–421
 overview 407–408
Environment and ewe welfare 351–352
Enzootic abortion, of ewes 246–247
Essential oils 435
Ewes
 enzootic abortion of 246–247
 lactation in
 drying off 87
 energy requirements of 84
 feed requirements of 85–86
 herbage mass and quality 86–87
 maintenance requirement of 84–85
 nutrition of ewes in pregnancy 87
 supplements for 87
 voluntary feed intake 84
 mastitis in
 causes of 96
 management and prevention 97–98
 subclinical 97
 treatment of 98
 welfare of
 ectoparasites 354–355
 environment and housing 351–352
 lambing management and dystocia 352
 lameness and footrot 353–354
 longevity, mortality, undernutrition and body condition score 350–351
 on-farm euthanasia 355
 overview 349–350
 vaginal prolapse 353
Faecal egg counts (FECs) 276
Farm infrastructure 198
Fat colour, on-farm factors on
 age and growth rate 37
 breed and genetics 37
 diet and nutrition 37–38
FECS. see Faecal egg counts (FECs)
Feed costs, for sheep breeding 151
Feed formulation tools 199
Fermentable fibre 192–194
Fleece rot 61
Flock size, and sheep nutrition 198
Floor space allowance 382–383, 386–387
FMD. see Foot-and-mouth disease (FMD)
Foetal programming, on wool production 63–64
Foot-and-mouth disease (FMD) 258–259
Footrot and ewe welfare 353–354
Footrot and scald 259
France
 sheep production in
 cradle-to-farm-gate emissions 424
 on-farm emissions 422–423
Garlic compounds 434–435
Gastrointestinal nematode (GIN) 60
Gastrointestinal nematodes (GIN)
 condensed tannins (CTs) 278
 control programmes 274–276
 copper oxide wire particles 278–279
 description 272–273
 immunity to 277
 nematophagous fungi 277–278
 overview 271
 targeted selective treatments (TSTs) 276
 targeted treatments (TTs) 276
 vaccines 279–280
 worm control 273–274
Genetic evaluation systems, in sheep breeding 136–137
Genetic improvement, of sheep flock health 224
Genetics and breeding
 genetic evaluation in 57
 whiter wool 58–59
 wool and sheep meat demand 58
Genomic sheep selection
 implementation strategies 144–145
 potential benefits 142–144
 reference populations 144
GHG emissions, and sheep production 415–418
GIN. see Gastrointestinal nematodes (GIN)
Global food security, and sheep flock health 222
Global ruminant livestock production 222–223
Growing lambs
 diseases 372–373
 weaning 371
Housing and ewe welfare 351–352
Immunity, in sheep
 diseases 286–287
 enzootic abortion (OEA)
 antibody 293–294
 cell-mediated immunity 294–295
 strategies for controlling 292–293
 overview 285–286
 vaccination
 cell-mediated immunity 291–292
 challenges for 288–289
 sheep immunology 290–291
 as sustainable disease control strategy 287–288
Iodine nutrients, for sheep 191
Iterative management, of sheep flock health 230

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
Johne’s disease/paratuberculosis 255–256
Journey duration, sheep transport 383

Lambing management 352
Lamb meat quality, factors affecting
 description 30–31
 flavours 34–35
 juiciness 33–34
 on-farm factors on fat colour
 age and growth rate 37
 breed and genetics 37
 diet and nutrition 37–38
 on-farm factors on meat flavour
 age 42
 breed and genetics 42
 diet and nutrition 43–46
 pre-slaughter effects 46
 sex 42–43
 on-farm factors on meat juiciness
 age 41
 breed and genetics 41
 diet and nutrition 42
 on-farm factors on meat tenderness
 animal age at slaughter 38–39
 breed and genetics 39–40
 nutrition and growth rates 40–41
 sex 40
 stress and ultimate pH 41
 on-farm practices on lean meat colour
 age 36
 breed and genetics 36
 diet, nutrition and transport 36–37
 influence of 35–36
 sex 36
 overview 29–30
 sheep meat appearance
 fat colour 32
 lean meat colour 31–32
 tenderness 32–33

Lamb welfare
 growing
 diseases 372–373
 weaning 371
 handling and training 363–364
 marking
 castration 368–369
 docking 369–370
 ear tagging 370–371
 mulesing 370
 mortality 365–368
 overview 361–363

Lameness and ewe welfare 353–354
Lean meat colour, on-farm practices on
 age 36
 breed and genetics 36
 diet, nutrition and transport 36–37
 influence of 35–36
 sex 36

Leptospirosis 261
Lice, and sheep wool quality 62
Life cycle assessment (LCA)
 and sheep production
 GHG emissions 415–418
 sheep products and 413–415
Listeriosis 251
Listeriosis and silages 198–199
LIV. see Louping ill virus (LIV)
Longevity and ewe welfare 350–351
Louping ill virus (LIV) 250–251

Maedi-visna 261
Marking, of lambs
 castration 368–369
 docking 369–370
 ear tagging 370–371
 mulesing 370
Mastitis, in ewes
 causes of 96
 management and prevention 97–98
 subclinical 97
 treatment of 98
Meat flavour, on-farm factors on
 age 42
 breed and genetics 42
 diet and nutrition 43–46
 pre-slaughter effects 46
 sex 42–43
Meat juiciness, on-farm factors on
 age 41
 breed and genetics 41
 diet and nutrition 42
Meat tenderness, on-farm factors on
 animal age at slaughter 38–39
 breed and genetics 39–40
 nutrition and growth rates 40–41
 sex 40
 stress and ultimate pH 41

Milk production
 composition and quality 91–95
 freezing of milk 95
 nutrition 93–95
 overview 91–92
 stage of lactation 92–93
 diversity in sheep dairy systems 73–75
 growing and lactating ewes
 drying off 87
 energy requirements of 84
 feed requirements of 85–86
 herbage mass and quality 86–87
 maintenance requirement of 84–85
 nutrition of ewes in pregnancy 87
 supplements for 87
 voluntary feed intake 84
 key issues 75–76
 mastitis in ewes
 causes of 96

© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
management and prevention 97–98
subclinical 97
treatment of 98
milking frequency 82–83
MYs
of dairy breeds 78–81
of non-dairy breeds 77–78
selection within a breed or flock 81–82
photoperiod and season 89–91
weaning lambs 88–89
Milk yields (MYs)
of dairy breeds 78–81
of non-dairy breeds 77–78
selection within a breed or flock 81–82
Mineral mixes 198
Mineral-vitamin premix 202
MOET. see Multiple ovulation and embryo transfer (MOET)
Mortality, and ewe welfare 350–351
Mulesing 370
Multiple ovulation and embryo transfer (MOET) 141
Multisystemic diseases
bluetongue (BT) 260
maedi-visna 261
Nairobi sheep disease (NSD) 257
Nematophagous fungi 277–278
Nervous system diseases
border disease (BD) 249–250
Borna disease virus (BoDV) 250
listerosis 251
loping ill virus (LIV) 250–251
rabies 251–252
Schmallenberg, Akabane and Cache Valley viruses 252
New Zealand (NZ)
sheep production in
 cradle-to-farm-gate emissions 424
 on-farm emissions 422–423
Non-forage diet 202–204
NSD. see Nairobi sheep disease (NSD)
Nutrient requirements, of grazing sheep
animal adaptability 168–170
diet diversity and productivity 174–176
forage diversity 172–174
forages as supplements 171–172
learning throughout the life cycle 179–180
overview 167–168
sensory perceptions and visual feedback 176–179
stress levels 180–181
suitable forages 170–171
Nutrients, for sheep
calcium to phosphorus ratio 191
carbohydrates 188–189
cobalt 191
copper 190
iodine 191
protein 189–190
selenium 191
and urinary calculi 191
vitamins 190
water 188
Nutritional strategies
additives 435–436
host-driven effects on rumen 436–437
ionophores 436
overview 431–433
plant-based approaches
esential oils 435
garlic compounds 434–435
overview 433–434
saponins 435
Objectives/target traits, for sheep breeding
care and welfare-related traits 150
disease resistance 148–150
feed costs, intake and efficiency 151
growth and carcass characteristics 147–148
reproductive success 148
wool objectives 145–147
On-farm euthanasia 355
On-farm post-mortem examination 230
OPA. see Ovine pulmonary adenocarcinoma (OPA)
Ovine FAANG Project 121–126
Ovine functional element projects 126–127
Ovine pulmonary adenocarcinoma (OPA) 252–253
Ovine reference genome sequence 117–118
Ovine SNP arrays 116–117
Parasitic nematode control, and sheep flock health 237–240
Paratuberculosis/Johnes's disease 255–256
Pasture supplement case study 199–200
Peste des petits ruminants (PPR) 253
Plant-based approaches
esential oils 435
garlic compounds 434–435
overview 433–434
saponins 435
PPR. see Peste des petits ruminants (PPR)
Precision sheep management 64–65
Pre-weaned diets 204–205
Protein nutrients, for sheep 189–190
Q fever 247–248
Rabies 251–252
Reproductive efficiency
animal health and welfare 159–160
artificial reproductive technologies (ARTs) 160–161
overview 157–158
sheep nutrition 158–159
sheep production management 161
Reproductive system diseases 248
brucellosis 248
campylobacteriosis 249
contagious agalactia 248
enzootic abortion of ewes 246–247
Q fever 247–248
salmonellosis 248–249
Respiratory system diseases
ovine pulmonary adenocarcinoma (OPA) 252–253
peste des petits ruminants (PPR) 253
Rift Valley fever (RVF) 256
Road transport, of sheep 381–382
RVF, see Rift Valley fever (RVF)
Safeguarding animal welfare
monitoring in field 394–395
science and education 393
training stockpeople 393–394
Salmonellosis 248–249
Saponins 435
Scald and footrot 259
Schmallenberg, Akabane and Cache Valley viruses 252
Sea transport, of sheep
ammonia concentrations 387–388
floor space allowance 386–387
inappetence, inanition, salmonellosis and mortality 385–386
overview 384–385
Selenium nutrients, for sheep 191
Sheep behaviour
case study 316–318
environmental conditions
description 315
sheltering 314–315
infancy of lambs
bonding 311–313
description 313–314
motherhood in ewes
description 309–311
maternal responsiveness and selectivity 308–309
overview 303–304
sheep reproduction
sexuality 307–308
sexual partner 306–307
sociality 305–306
social organization 304–305
Sheep behavioural characteristics 390–391
Sheep breeding
artificial insemination 140–141
case of Australia 134–136
cross-breding 137–140
genetic evaluation systems in 136–137
genomic sheep selection
implementation strategies 144–145
potential benefits 142–144
reference populations 144
multiple ovulation and embryo transfer (MOET) 141
objectives and target traits
care and welfare-related traits 150
disease resistance 148–150
feed costs, intake and efficiency 151
growth and carcass characteristics 147–148
reproductive success 148
wool objectives 145–147
overview 133–134
Sheep carcass characteristics
animal and on-farm influences on shape 5–6
composition 4–5
age/weight 10–11
breed and genetic line 11–14
growth promotants 17
nutrition and health 15–17
sex/castration 14–15
dressing-out percentage 4
and age/weight 7
breed and genetic line 7–8
growth promotants 8–10
nutrition and health 8
sex/castration 8
importance of shape 3–4
animals 4–5
age/weight 18
breed 19
genetic line/sire group 19
nutrition, health and growth promotants 20
sex/castration 19
tissue distribution and partitioning 5
tissue distribution in age/weight 17
breed 17–18
genetic line or sire group 18
nutrition, health and growth promotants 18
sex/castration 18
Sheep feed
mixing 205–206
pricing 205
storage and delivering 206–207
Sheep flock health
and animal health management
at global level 226
at individual farm level 225–226
at regional/national level 226
clinical examination
of groups of sheep 229–230
of individual sheep 228–229
ecological impact of 223–224
© Burleigh Dodds Science Publishing Limited, 2017. All rights reserved.
genetic improvement of 224
and global food security 222
and global ruminant livestock production 222–223
iterative management 230
and lamb growth rates 234–237
on-farm post-mortem examination 230
overview 221–222
and parasitic nematode control 237–240
production targets 227
sheep health management 226–227
sheep nutritional management 230–231
Sheep genome mapping
annotating 119–121
case study 127–128
overview 115–116
Ovine FAANG Project 121–126
outcomes from 127
ovine functional element projects 126–127
ovine reference genome sequence 117–118
ovine SNP arrays 116–117
sheep whole-genome sequencing 119
Sheep handling
sheep behavioural characteristics 390–391
stockperson characteristics 389–390
Sheep health management 226–227
Sheep meat appearance
fat colour 32
lean meat colour 31–32
Sheep nutrition
carbohydrates instead of energy 196–197
case for concentrations 197
component values of feeds 195
concentrations of feed components 195–196
diets for pre-weaned and weaned lambs 204–205
digestible dry matter (DDM) 192
dusty feeds 198
farm infrastructure 198
feed formulation tools 199
fermentable fibre 192–194
flock size 198
mineral mixes 198
non-forage diet 202–204
nutrients
calcium to phosphorus ratio 191
carbohydrates 188–189
cobalt 191
copper 190
iodine 191
protein 189–190
selenium 191
and urinary calculi 191
vitamins 190
water 188
overview 187–188
pasture supplement case study 199–200
sheep feed
mixing 205–206
pricing 205
storage and delivering 206–207
silages and listeriosis 198–199
standard mineral–vitamin premix 202
vitamin premix 201–202
Sheep nutrition, and reproductive efficiency 158–159
Sheep nutritional management 230–231
Sheep pox 258
Sheep production management 161
Sheep products, LCA 413–415
Sheep reproduction
sexuality 307–308
sexual partner 306–307
Sheep welfare
and assessment 329–331, 380
indicators of
Five Domains model 337–338
overview 327–329
repeatability, reliability and practicality 336–337
scientific validation 332–336
validity of BCS 338–342
Welfare Quality® model 337–338
and reproductive efficiency 159–160
safeguarding
monitoring in field 394–395
science and education 393
training stockpeople 393–394
and sheep flock health
at global level 226
at individual farm level 225–226
at regional/national level 226
Sheep whole-genome sequencing 119
Sheep wool quality
blowfly strike 60–61
breeding for disease resistance 59
consumer awareness 66
decrption 54–55
fleece rot 61
foetal programming on wool production 63–64
gastrointestinal nematode (GIN) 60
genetics and breeding
geneic evaluation in 57
whiter wool 58–59
wool and sheep meat demand 58
lice 62
measurement of 55
nutrition during pregnancy and lactation 62–63
overview 53–54
precision sheep management 64–65
weaner performance 64
wool consumption 65
wool production
Index

Australian wool industry 56–57
key challenge 57
Silages and listeriosis 198–199
Skin and feet diseases
 caseous lymphadenitis (CLA) 258
 contagious ecthyma 257
 contagious ovine digital dermatitis (CODD) 259–260
 foot-and-mouth disease (FMD) 258–259
 scald and footrot 259
 sheep pox 258
Stockpeople
 characteristics 389–390
 training 393–394
Stunning
 overview 391–392
 religious slaughter without 392–393
Targeted selective treatments (TSTs) 276
Targeted treatments (TTs) 276
Transport/lairage/slaughter, of sheep
 abattoirs 388
 animal welfare and assessment 380
 environmental conditions 384
 floor space allowance 382–383
 journey duration 383
 overview 379–380
 rest and recovery 388–389
 road transport 381–382
 safeguarding animal welfare
 monitoring in field 394–395
 science and education 393
 training stockpeople 393–394
 sea transport
 ammonia concentrations 387–388
 floor space allowance 386–387
 inappetence, inanition, salmonellosis and mortality 385–386
 overview 384–385
 sheep handling
 sheep behavioural characteristics 390–391
 stockperson characteristics 389–390
 stunning
overview 391–392
 religious slaughter without 392–393
TSTs. see Targeted selective treatments (TSTs)
TTs. see Targeted treatments (TTs)
Tuberculosis 261
Undernutrition, and ewe welfare 350–351
Urinary calculi, for sheep 191
Vaginal prolapse 353
Vitamin premix 201–202
Vitamins, for sheep 190
Water nutrients, for sheep 188
Water quality, and sheep production 408–410
Weaned lambs diets 204–205
Weaner performance 64
Weaning 371
Welfare
 of ewes
 ectoparasites 354–355
 environment and housing 351–352
 lambing management and dystocia 352
 lameness and footrot 353–354
 longevity, mortality, undernutrition and body condition score 350–351
 on-farm euthanasia 355
 overview 349–350
 vaginal prolapse 353
 of lambs
 castration 368–369
 diseases 372–373
 docking 369–370
 ear tagging 370–371
 handling and training 363–364
 mortality 365–368
 mulesing 370
 overview 361–363
 weaning 371
Wool consumption 65
Wool objectives 145–147
Wool production
 Australian wool industry 56–57
 key challenge 57