Achieving sustainable cultivation of sugarcane

Volume 1: Cultivation techniques, quality and sustainability

Edited by Professor Philippe Rott, University of Florida, USA
Contents

Series list x
Acknowledgements xiv
Introduction xvi

Part 1 Cultivation techniques

1 The development of sugarcane cultivation 3
 Louis Jean Claude Autrey, International Society of Sugar Cane Technologists (ISSCT), Mauritius; Salem Saumtally and Asha Dookun-Saumtally, Mauritius Sugarcane Industry Research Institute (MSIRI), Mauritius
 1 History of sugarcane 3
 2 Sugarcane species 4
 3 Description of the sugarcane plant 5
 4 Sugarcane breeding 7
 5 Agronomic practices in sugarcane 9
 6 Sugarcane milling 10
 7 Sugarcane cultivated today 12
 8 Future trends and conclusion 14
 9 Where to look for further information 17
 10 Acknowledgement 18
 11 References 18

2 Crop modelling to support sustainable sugarcane cultivation 21
 Abraham Singels, University of KwaZulu-Natal and University of Pretoria, South Africa
 1 Introduction 21
 2 Strategic applications of crop modelling 22
 3 Operational applications of crop modelling 27
 4 Improved adoption of crop modelling 33
 5 Conclusions and future trends 37
 6 Where to look for further information 38
 7 References 38

3 The Sustainable Sugarcane Initiative 45
 Biksham Gujja and U. S. Natarajan, AgSri Agricultural Services Pvt. Ltd., India; and Norman Uphoff, Cornell University, USA
 1 Introduction 45
 2 Origins of the Sustainable Sugarcane Initiative (SSI) 47
 3 Basic principles of SSI 52
 4 Tillering architecture and SSI 56
 5 Field trials of SSI in India 58
 6 Overview of Indian experience 66
 7 SSI in Africa and Latin America 67
 8 Future trends and conclusion 70
 9 Where to look for further information 73
 10 References 73
4 Good planting and cultivation practices in sugarcane production

Bernard L. Schroeder, University of Southern Queensland, Australia; Andrew W. Wood, Tanglewood Agricultural Services, Australia; David V. Calcino and Danielle M. Skocaj, Sugar Research Australia Limited, Australia; Alan P. Hurney, Edmonton, Australia; and Peter G. Allsopp, Seventeen Mile Rocks, Australia

1 Introduction 77
2 A philosophy of BMP 79
3 The need for best practice crop establishment 79
4 Planning for the next sugarcane crop cycle 79
5 Implementing the crop establishment plan 81
6 Residue management, rectification and soil amelioration activities 83
7 Fallow and sugarcane-planting strategies 85
8 Cultivation practices and weed control 90
9 Irrigation 90
10 Conclusion 91
11 Acknowledgements 92
12 References 92

5 Improving soil management in sugarcane cultivation

Paul White and Richard Johnson, USDA-ARS, USA

1 Introduction 97
2 Water management 99
3 Soil compaction 101
4 Tillage 102
5 Residue management 103
6 Cover cropping 106
7 Conclusion and future trends 106
8 References 107

6 Improving nutrient management in sugarcane cultivation

Gaspar H. Korndörfer, Universidade Federal de Uberlândia, Brazil

1 Introduction 111
2 Benefits of crop rotation, green manure and trash retention 112
3 Cane fertilization: nitrogen 115
4 Cane fertilization: other macronutrients 118
5 Cane fertilization: micronutrients and silicon 121
6 Use of residues from cane processing 126
7 Foliar nutrition diagnosis 131
8 Conclusion 134
9 Where to look for further information 134
10 References 135

7 Advances in sugarcane irrigation for optimisation of water supply

Jean-Louis Chopart, AGERconsult, France (Section 3.2 contributed by M. T. Sall, B. Ahondokpe, and G. Walter, Senegalese Sugar Company, Senegal)

1 Introduction 141
2 Optimising irrigation of sugarcane 142
3 Case studies of sugarcane irrigation: Réunion Island and Senegal 149
4 Research on improving irrigation efficiency 157
Contents

5 Future trends and conclusion 158
6 Where to look for further information 159
7 Abbreviations 159
8 References 160

8 Best management practices for maintaining water quality in sugarcane cultivation 163
Jehangir H. Bhadha, University of Florida, USA; and Bernard L. Schroeder, University of Southern Queensland, Australia
1 Introduction 163
2 Industry-driven BMPs 164
3 SmartCane principles of BMP adopted by the Australian sugar industry 167
4 Phosphorus reduction BMPs in the Everglades Agricultural Area (EAA) of Florida, USA 170
5 Sugarcane and nitrogen (N) cycling 177
6 Future trends and conclusion 181
7 Where to look for further information 182
8 Acknowledgements 182
9 References 182

9 Precision agriculture and sugarcane production – a case study from the Burdekin region of Australia 185
R. G. V. Bramley, CSIRO, Australia; T. A. Jensen, University of Southern Queensland, Australia; A. J. Webster, CSIRO, Australia; and A. J. Robson, University of New England, Australia
1 Introduction 185
2 Yield monitoring and mapping 187
3 Remote and proximal sensing 190
4 High-resolution soil survey and digital elevation modelling 193
5 Data analysis and integration 195
6 Opportunities for targeted management and the cost: benefit ratio of PA implementation 195
7 Environmental imperatives 196
8 Future prospects 197
9 Conclusions 198
10 Where to look for further information 198
11 Acknowledgements 198
12 References 198

10 Advances in harvesting and transport of sugarcane 203
Rianto van Antwerpen, South African Sugarcane Research Institute and University of the Free State, South Africa; Philipus Daniel Riekert van Heerden, South African Sugarcane Research Institute and University of Pretoria, South Africa; Peter Tweddle, South African Sugarcane Research Institute, South Africa; Ronald Ng Cheong and Vivian Rivière, Mauritius Sugarcane Industry Research Institute (MSIRI), Mauritius
1 Introduction 203
2 Pre-harvest ripening of sugarcane 205
3 Manual harvesting of sugarcane 208
4 Mechanical harvesting of sugarcane 216
5 Loading and transportation of sugarcane 223
6 Conclusion 227
7 Future trends 228
8 Where to look for further information 228
9 References 229

11 Cultivating sugarcane for use in bioenergy applications: key issues 235
Hardev S. Sandhu, University of Florida, USA
1 Introduction 235
2 Key issues and challenges in cultivating sugarcane for bioenergy applications 237
3 Addressing the key challenges 239
4 Case studies in how research can be used to improve cultivation in practice 242
5 Future trends in research 244
6 Concluding remarks 245
7 References 246

Part 2 Quality and sustainability

12 Analysing the processing quality of sugarcane 253
Charley Richard, Sugar Processing Research Institute and the New York Sugar Trade Laboratory, USA
1 Introduction 253
2 Composition of the whole sugarcane plant 254
3 Composition of sugarcane juice: sucrose, glucose and fructose 256
4 Other constituents in cane juice 260
5 Composition of sugarcane fibre and bagasse 264
6 Variation in juice composition 265
7 Production, harvesting and extraction 268
8 Sugarcane quality and grower payments 270
9 References 273

13 Predicting the effect of climate change on sugarcane cultivation 277
Fábio R. Marin, University of São Paulo (USP) - Luiz de Queiroz College of Agriculture (ESALQ), Brazil; Daniel S. P. Nassif, Federal University of São Carlos, Brazil; and Leandro G. Costa, Murilo S. Vianna, Kassio Carvalho and Pedro R. Pereira, University of São Paulo (USP) - Luiz de Queiroz College of Agriculture (ESALQ), Brazil
1 Introduction 277
2 Sugarcane responses to change in temperature, rainfall and CO₂ concentration 278
3 Assessing the impacts of climate change on sugarcane growth and yield 282
4 Brazilian biofuel strategy 284
5 Summary 285
6 Future trends in research 285
7 Where to look for further information 286
8 References 286
14 Mitigating the impact of environmental, social and economic issues on sugarcane cultivation to achieve sustainability

Kathy Hurly and Richard Nicholson, SA Canegrowers, South Africa; Carolyn Baker and Michelle Binedell, South African Sugarcane Research Institute, South Africa; Vaughan Koopman, WWF-SA, South Africa; Graeme Leslie, Consultant Entomologist, South Africa; Geoff Maher, Zambia Sugar, Zambia; and Scott Pryor, North Dakota State University, USA

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>291</td>
</tr>
<tr>
<td>2</td>
<td>Environmental impacts on sugarcane cultivation</td>
<td>293</td>
</tr>
<tr>
<td>3</td>
<td>Economics of sustainable sugarcane cultivation</td>
<td>297</td>
</tr>
<tr>
<td>4</td>
<td>Case study: mitigating negative environmental effects</td>
<td>298</td>
</tr>
<tr>
<td>5</td>
<td>Small-scale grower (SSG) sustainable production</td>
<td>302</td>
</tr>
<tr>
<td>6</td>
<td>Conclusion and future trends</td>
<td>303</td>
</tr>
<tr>
<td>7</td>
<td>Where to look for further information</td>
<td>303</td>
</tr>
<tr>
<td>8</td>
<td>References</td>
<td>303</td>
</tr>
</tbody>
</table>

15 Sugarcane as a renewable resource for sustainable futures

Francis X. Johnson, Stockholm Environment Institute, Sweden

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>309</td>
</tr>
<tr>
<td>2</td>
<td>Sugarcane resources and co-products</td>
<td>311</td>
</tr>
<tr>
<td>3</td>
<td>Sustainability for sugarcane-based biomass, bioenergy and biofuels</td>
<td>317</td>
</tr>
<tr>
<td>4</td>
<td>Agricultural operations and land use</td>
<td>321</td>
</tr>
<tr>
<td>5</td>
<td>Lifecycle performance and assessment</td>
<td>323</td>
</tr>
<tr>
<td>6</td>
<td>A brief case study in Brazil</td>
<td>326</td>
</tr>
<tr>
<td>7</td>
<td>Conclusion</td>
<td>329</td>
</tr>
<tr>
<td>8</td>
<td>References</td>
<td>329</td>
</tr>
</tbody>
</table>

Index

335
Introduction

Sugarcane is the source of about three quarters of the world’s sugar, and is grown widely in the tropics and sub-tropics. Despite rising demand, average yields have not increased significantly, partly because of continued vulnerability to pests and diseases. In addition, cultivation has been seen as damaging biodiversity and soil health with a negative effect on both yields and the environment.

These volumes on achieving sustainable cultivation of sugarcane summarise the wealth of research addressing these challenges. Volume 1 reviews cultivation techniques and sustainability issues. Volume 2 reviews how the challenges facing sugarcane production can be addressed through developments in breeding as well as better management of pests and diseases. This volume, Volume 1, is devoted to key research on improving sugarcane production. The volume focuses on enhancing cultivation techniques such as good planting, irrigation and nutrient management, and addresses the latest methods of measuring and improving sustainability.

Part 1 Cultivation techniques

The focus of the first part of the volume is on summarising current best practices in sugarcane cultivation across the value chain, from planting through to post-harvest operations. Chapter 1 explains the development of sugarcane cultivation. Sugarcane is considered one of the most efficient plants on the planet given its capacity to transform solar energy into chemical energy with high carbon fixation rates. It has traditionally been exploited for sucrose production, but has also gained importance for energy and ethanol production from bagasse and molasses, two major co-products from sugar processing.

The chapter provides a concise history of sugarcane cultivation, as well as outlining the various different sugarcane species and providing a description of the sugarcane plant. The chapter describes current and historic practices in sugarcane management and the process of sugarcane milling.

Chapter 2 builds on Chapter 1 by focusing on the role of crop modelling to support sustainable sugarcane cultivation. Crop simulation models can be used to support research and management of sustainable cultivation of sugarcane, and the chapter supplies case studies of strategic applications of this technology, including benchmarking of crop productivity and resource use and assessing environmental impacts of current operations, new developments and future scenarios. The chapter describes the use of crop modelling support for operational management, including irrigation scheduling and yield forecasting. The chapter discusses strengths and weaknesses of different modelling approaches and their relevance for a variety of applications, as well as looking ahead to opportunities for integrating crop modelling with new crop monitoring technologies and improved weather forecasts.

Expanding in detail on one possible approach to achieving sustainable sugarcane cultivation, Chapter 3 focusses specifically on the Sustainable Sugarcane Initiative (SSI). This technique has been trialled in India to reduce the ecological footprint of sugarcane cultivation whilst at the same time expanding land area under cultivation for sugarcane in order to meet increasing global demand for sugar. The SSI is designed to meet this
Introduction

Chapter 3 describes the origins of SSI and its basic principles. Understanding tillering architecture is key to SSI, and the chapter gives a detailed account of SSI field trials in India, as well as outlining the expansion of SSI to Africa and Latin America.

Complementing Chapter 3, Chapter 4 focuses on good planting and other cultivation practices in sugarcane cultivation. The chapter explains how plant crop establishment provides an opportunity to ensure that best management practices (BMPs) are identified and implemented or continued on-farm. This chapter concentrates on a philosophy of BMP associated with sugarcane farming systems and explores how this philosophy enables good decision-making when crop establishment practices and activities are being considered and implemented by a grower. The chapter addresses the need for best practice crop establishment, planning for sugarcane crop cycles, implementation of crop establishment plans, residue management, rectification and soil amelioration activities, fallow and sugarcane planting strategies, and sugarcane cultivation practices including weed-control and irrigation.

Chapter 5 follows on from Chapter 4's theme of good planting practices to examine the challenge of improving soil management in sugarcane cultivation. Chapter 5 identifies the most important soil management practices for sugarcane cultivation and provides information on the practices used by important cane producing countries in the world. The chapter focuses on field management of soil for optimum sugarcane production, and covers such areas as water management, tillage, minimizing soil compaction, cover cropping, soil fertility, and crop residue management.

Chapter 6's theme of improving nutrient management in sugarcane cultivation builds on the preceding chapter's focus on soil management. Chapter 6 shows that a nutrient management strategy which relies on the total replacement of all nutrients in the biomass is not sustainable from an economic or environmental point of view. The chapter reviews more sustainable strategies for nutrient management in sugarcane cultivation. It begins by discussing the benefits of crop rotation, green manure and trash retention, before offering a detailed consideration of cane fertilization with nitrogen and other macronutrients, micronutrients and silicon. The chapter considers the potential uses of cane processing residues and assesses foliar nutrition diagnosis as a tool to evaluate the nutritional status of a crop.

Chapter 7 addresses another important field in the area of sustainable sugarcane production, notably the advances that have been made in irrigation of sugarcane in order to optimise water supply. As the climate changes, irrigation presents a major challenge in improving sugar cane crop performance and extending cultivated areas. The chapter describes the water requirements of sugarcane and current irrigation practices, as well as suggesting ways of adjusting and optimising sugarcane irrigation that can make it more sustainable, including the use of decision-making tools. The chapter is supported by detailed case studies of irrigation practices in Réunion Island (France) and Senegal as examples of contrasting environments.

Chapter 8 continues the theme of water use in sugarcane cultivation by addressing best management practices for maintaining water quality. The chapter draws on evidence from two well-established long-term best management practice programs providing a measure of water quality management. These are the BMP program (SmartCane) adopted by the Australian Sugar Industry, and the BMP program adapted by growers in the Everglades Agricultural Area in South Florida, USA. The chapter addresses the importance of understanding nitrogen cycling to maintaining water quality and thereby sustainability of sugarcane production.
Chapter 9 builds on the themes of previous chapters, which focus on the deployment of technology in sugarcane cultivation, by addressing the issue of precision agriculture in sugarcane production through a detailed case study from the Burdekin region of Australia. Precision agriculture involves the use of spatial information about crop performance and the biophysical characteristics of the production system at the field and sub-field scales, in order to optimize agronomic management decisions. The chapter uses a 26.7 ha field in the Burdekin sugarcane growing region of Australia to illustrate how precision agriculture technologies might be used to enhance sugarcane production. In this case, precision agriculture achieved a saving of A$330/ha in gypsum application costs through the use of variable rate application.

The chapter examines potential future prospects for the further development of sugarcane precision agriculture, including improved variable rate fertilizer equipment, on-the-go sensing of commercial cane sugar at harvest, detection and spot spraying of weeds. Detrimental environmental impacts from sugarcane production can be reduced by recognizing that, under uniform management, areas that are low yielding have low efficiencies of fertilizer use and so may have increased risk of nutrient loss off-site. Precision agriculture technologies explored in the chapter include yield monitoring and mapping techniques, remote and proximal sensing, high resolution soil survey and digital elevation modeling, and data analysis and integration.

Chapter 10 moves the focus of the book to the process of sugarcane harvesting, examining advances in the harvesting and transportation of sugarcane. The chapter describes preparation of sugarcane for harvesting, including the importance of pre-harvest ripening. It outlines the available harvesting options, including infield loading and transport. It considers two harvesting systems, manual and mechanical harvesting, each of which is affected by whether the crop is burnt or not burnt immediately before harvest. The chapter explores the advantages and disadvantages of each method of harvesting and transportation.

Looking beyond the conventional use of sugarcane as a source of sugar for human consumption, Chapter 11 is focussed on the challenge of cultivating sugarcane for use in new and emerging bioenergy applications, and the key issues associated with this effort. The high biomass and sucrose accumulation in the stem of the sugarcane plant render it a favorable feedstock for bioenergy production. Chapter 11 reviews the challenge of competing with food crops when cultivating sugarcane for bioenergy, as well as loss of biodiversity, potential increase in pest problems, water, air and soil pollution, yield maximization, susceptibility to drought and cold, and the issues posed by sugarcane’s complex genome. The chapter shows how these issues are being addressed through research into genetic improvement, improved understanding of agronomics and improved pest management practices. Case studies from Brazil and the US offer a brief overview of sugarcane development for energy production in these two countries.

Part 2 Quality and sustainability

The focus of the second part of the volume is on ways of measuring the environmental impact of sugarcane cultivation, as well as on the ways in which smallholders can be effectively supported. Chapter 12 concentrates on the challenges of analysing the processing quality of sugarcane. Knowledge about sugarcane’s compositional traits is becoming increasingly important as industries attempt to achieve sustainability in sugar
production and to produce by-products from sugarcane. Chapter 12 discusses the composition of the whole sugarcane plant, sugarcane juice and sugarcane fiber and bagasse. It reviews how composition varies among and within species of sugarcane, and among commercial varieties. Finally, the chapter covers sucrose extraction methods, sustainable production and harvesting practices, quality parameters and grower payment schemes.

Chapter 13 complements the preceding chapter by addressing an over-arching issue of great importance to the present and future of sugarcane cultivation, the challenge of predicting the effect of climate change on the cultivation of this crop. It is acknowledged that sugarcane can be a source of ethanol and biomass for energy generation as part of a climate change mitigation policy. However, sugarcane is also an important crop from a food security perspective, with almost 75% of the world’s sugar coming from sugarcane plantations. Chapter 13 reviews the potential impacts of climate change on sugarcane crops, focusing on the likely effects of changes in air temperature and CO₂ concentration. The effects of changes in rainfall patterns and water stress are also discussed. The chapter uses experimental and process-based dynamic crop growth models (PBCM) to demonstrate the potential climate change impacts on the crop for the main sugarcane producing countries.

Chapter 14 continues and expands the themes of Chapter 13 by examining efforts to mitigate the impact of environmental, social and economic issues on the cultivation of sugarcane, in order to achieve sustainability. The chapter focuses on the impact of agrochemical use and greenhouse gas (GHG) emissions and how these may be mitigated. The chapter identifies the persistent effects of agrochemical practices as well as strategies aimed at mitigating their impact. It examines the sources of greenhouse gas emissions and some of the challenges associated with implementation of the practices required to mitigate their effects. The chapter outlines arguments associated with the economic value of the practices that underpin adherence to improved environmental management.

Chapter 14 includes a detailed case study from South Africa describing SUSFARMS®, an expansive learning approach to enhance adoption of a sound environmental management system. The chapter considers the imperative of balancing the environmental impact of sugar cane cultivation with the clear economic need for sustainable growing of sugarcane, concentrating ultimately on the potential of sustainable production by small-scale growers.

The final chapter in the volume, Chapter 15, examines the role of sugarcane as a renewable resource for a sustainable future. The chapter highlights sugarcane’s significance as not only the main source of sucrose but also the world’s most important energy crop. Sugarcane has an important role to play in the transition to global sustainability, owing to its high productivity, its concentration in developing and emerging economies and the wide array of commercial products that it can provide. Chapter 15 describes the diversification of sugarcane production systems into multiple energy and non-energy products, improving economic competitiveness and environmental sustainability. Improved sugarcane production can contribute to greater social equality where good governance and inclusive institutions are designed and implemented, and a case study from Brazil is included to explore these possibilities. The chapter focuses on sustainability assessment, including the entire supply chain from cultivation through end use, describing the development of bio-refineries using sugarcane as feedstock and examining the ways in which efficient and effective use of sugarcane resources supports sustainable development pathways.
and plant breeding support 27
green cane harvesting 214–216
greenhouse gas (GHG) emissions 295–297, 323–324
green manure 112–115
grower payments 270–271

harvesting. see sugarcane harvesting
high-resolution soil survey 193–195
household use (cooking) 315

India
experimentation in 48–49
experimentation outside of 49–50
field trials of 58–66
Maharashtra 61–62
Odisha 61
overview 66–67
spread beyond 51–52
Telangana 59–61
Uttar Pradesh 62–66
indirect land use change 323
industry-driven BMPs
Everglades Forever Act 164–165
reef water protection plan 165–167
institutional support, for SSI 50–51
intercropping 55–56
land use and agricultural operations
burning 321
green cane 322
harvesting 321
indirect land use change 323
land use change and impacts 322
Latin America, SSI in 67–70
lifecycle performance and assessment
energy balances 323
GHG emissions 323–324
soils and pollutants 325
water use 324–325
loading, and sugarcane transportation
cane presentation 224
operations 224–225
overview 223–224
and vehicle designs 225

magnesium, and cane fertilization 120–121
Maharashtra, SSI in 61–62
manual harvesting
burning versus green cane harvesting 214–216
cane cutter 210–211
efficiency 211–213
ideal field layout for 213–214
overview 208–210
mechanical harvesting
case study 220–223
equipment availability 216–217
farming practices 217–218
post-harvest operations 218–220

GBEP. see Global Bioenergy Partnership (GBEP)
GHG. see greenhouse gas (GHG) emissions
Global Bioenergy Partnership (GBEP) 318
glucose 258–259
green cane 322

and plant breeding support 27
green cane versus burning harvesting 214–216
greenhouse gas (GHG) emissions 295–297, 323–324
green manure 112–115
grower payments 270–271

harvesting. see sugarcane harvesting
high-resolution soil survey 193–195
household use (cooking) 315

India
experimentation in 48–49
experimentation outside of 49–50
field trials of 58–66
Maharashtra 61–62
Odisha 61
overview 66–67
spread beyond 51–52
Telangana 59–61
Uttar Pradesh 62–66
indirect land use change 323
industry-driven BMPs
Everglades Forever Act 164–165
reef water protection plan 165–167
institutional support, for SSI 50–51
intercropping 55–56
land use and agricultural operations
burning 321
green cane 322
harvesting 321
indirect land use change 323
land use change and impacts 322
Latin America, SSI in 67–70
lifecycle performance and assessment
energy balances 323
GHG emissions 323–324
soils and pollutants 325
water use 324–325
loading, and sugarcane transportation
cane presentation 224
operations 224–225
overview 223–224
and vehicle designs 225

magnesium, and cane fertilization 120–121
Maharashtra, SSI in 61–62
manual harvesting
burning versus green cane harvesting 214–216
cane cutter 210–211
efficiency 211–213
ideal field layout for 213–214
overview 208–210
mechanical harvesting
case study 220–223
equipment availability 216–217
farming practices 217–218
post-harvest operations 218–220

GBEP. see Global Bioenergy Partnership (GBEP)
GHG. see greenhouse gas (GHG) emissions
Global Bioenergy Partnership (GBEP) 318
glucose 258–259
green cane 322

and plant breeding support 27
green cane versus burning harvesting 214–216
greenhouse gas (GHG) emissions 295–297, 323–324
green manure 112–115
grower payments 270–271

harvesting. see sugarcane harvesting
high-resolution soil survey 193–195
household use (cooking) 315

India
experimentation in 48–49
experimentation outside of 49–50
field trials of 58–66
Maharashtra 61–62
Odisha 61
overview 66–67
spread beyond 51–52
Telangana 59–61
Uttar Pradesh 62–66
indirect land use change 323
industry-driven BMPs
Everglades Forever Act 164–165
reef water protection plan 165–167
institutional support, for SSI 50–51
intercropping 55–56
land use and agricultural operations
burning 321
green cane 322
harvesting 321
indirect land use change 323
land use change and impacts 322
Latin America, SSI in 67–70
lifecycle performance and assessment
energy balances 323
GHG emissions 323–324
soils and pollutants 325
water use 324–325
loading, and sugarcane transportation
cane presentation 224
operations 224–225
overview 223–224
and vehicle designs 225

magnesium, and cane fertilization 120–121
Maharashtra, SSI in 61–62
manual harvesting
burning versus green cane harvesting 214–216
cane cutter 210–211
efficiency 211–213
ideal field layout for 213–214
overview 208–210
mechanical harvesting
case study 220–223
equipment availability 216–217
farming practices 217–218
post-harvest operations 218–220

GBEP. see Global Bioenergy Partnership (GBEP)
GHG. see greenhouse gas (GHG) emissions
Global Bioenergy Partnership (GBEP) 318
glucose 258–259
green cane 322
micronutrients 121–123
milling, sugarcane plant 10–12
moisture and field floodings 54
MyCanesim system 28–29
nitrogen, and cane fertilization 115–118
nitrogen (N) cycling
 climatic factors 177–178
cultivars 179
economics 178
plant cane/ratoon 178
planting season 178–179
recommendations 179–181
soil N mineralization potential 179
nursery raising 52–53
nutrient management
cane fertilization
 calcium 120–121
 magnesium 120–121
 micronutrients 121–123
 nitrogen 115–118
 phosphorus 118–119
 potassium 119–120
 silicon 123–125
 sulphur 120–121
crop rotation 112–115
and fallow strategies 88–90
foliar nutrition diagnosis 131–134
green manure 112–115
overview 111–112
residues
 distillery waste/vinasse 127–129
 filter cake (press mud/cachaza) 126–127
 fly ash agronomic value 129–131
trash retention 112–115

Odisha, SSI in 61
operational applications, of crop modelling
 irrigation management 27–28
 MyCanesim system 28–29
 OSIRI 30
 remote sensing models 32–33
 WaterSense 29
 web-based harvest management 31–32
 yield forecasting 30–31
organic methods, for SSI 54–55
OSIRI software 30
PA. see precision agriculture (PA)
particulate matter 174–175
payment schemes 273
pest management 88
pest problems 237–238, 240
phosphorus, and cane fertilization 118–119
plant breeding support 27
plant cane/ratoon 178
plant crop establishment
 cultivation practices 90
 fallow and sugarcane-planting strategies
 nutrient management 88–90
 overview 85–88
 pest management 88
 implementation 89
 disease status 81
 soil sampling 81–83
 irrigation 90–91
 overview 77–78
 philosophy of BMP 79
 purpose of 79
 rectification 83–85
 residue management 83–85
 soil amelioration 83–85
 and sugarcane crop cycle planning 79–81
 and weed control 90
planting season 178–179
post-harvest operations 218–220
potassium, and cane fertilization 119–120
precision agriculture (PA)
 cost of 195–196
 data analysis and integration 195
 and digital elevation modelling 193–195
 environmental imperatives 196–197
 and high-resolution soil survey 193–195
 overview 185–187
 remote and proximal sensing 190–193
 yield monitoring and mapping 187–190
pre-harvest ripening
 chemical ripening 206–207
 crop maturity tracking 207–208
 drying-off 205–206
proximal sensing, and sugarcane
 production 190–193
quality prediction, and crop modelling 34–37
raised culverts 175
reef water protection plan 165–167
regulation, for sustainable sugarcane
 cultivation, 319–320
remote sensing
 and crop modelling 32–33
 and sugarcane production 190–193
residue management 103–105
 and plant crop establishment 83–85
residues, and nutrient management
 distillery waste/vinasse 127–129
 filter cake (press mud/cachaza) 126–127
 fly ash agronomic value 129–131
resources and co-products
 management systems 311–312
 production models 311–312
 technical options 311–312
Réunion Island (France) case study
 decision-making tools 151–152
 drip irrigation 151
 sprinkler irrigation 150
scaling up, and SSI 50–51
SDGs. see Sustainable Development Goals (SDGs)
sediment control 174–175
seedlings, transplanting 53–54
Sénégal sugarcane irrigation case study
decision-making tools 152
drip irrigation 155–157
furrow irrigation management 154–155
surface irrigation design and
equipment 152–153
surface irrigation scheduling 153
silicon, and cane fertilization 123–125
small-scale grower (SSG) sustainable
production 302
SmartCane principles
implementation 169–170
recommendations 167–168
soil amelioration 83–85
soil compaction 101–102
soil management
cover cropping 106
overview 97–99
residue management 103–105
soil compaction 101–102
tillage 102–103
water management 99–101
soil N mineralization potential 179
soil pollution 238, 240–241
soil sampling 81–83
soils and pollutants 325
soil testing 173
spirits (potable ethanol), bioethanol 314–315
SSI. see Sustainable Sugarcane Initiative (SSI)
sucrose 258–259
sugarcane bio-refineries 316
sugarcane crop cycle planning 79–81
sugarcane fibre and bagasse 264–265
sugarcane harvesting 321
manual harvesting
burning versus green cane
harvesting 214–216
cane cutter 210–211
efficiency 211–213
ideal field layout for 213–214
overview 208–210
mechanical harvesting
case study 220–223
equipment availability 216–217
farming practices 217–218
post-harvest operations 218–220
overview 203–204
pre-harvest ripening
chemical ripening 206–207
crop maturity tracking 207–208
drying-off 205–206
and sugarcane processing quality 269–270
trashing 204–205
sugarcane irrigation
and crop modelling 23–24
decision-making tools for
monitoring 147–149
improving current methods 157–158
improving smallholder irrigation
efficiency 158
innovative technologies for 158
optimising
overview 142–143
requirements 144
role of soil 144–147
overview 141–142
and plant crop establishment 90–91
Réunion Island (France) case study
decision-making tools 151–152
drip irrigation 151
sprinkler irrigation 150
Sénégal case study
decision-making tools 152
drip irrigation 155–157
furrow irrigation management 154–155
surface irrigation design and
equipment 152–153
surface irrigation scheduling 153
sugarcane juice composition
description 256–258
fructose 258–259
glucose 258–259
other constituents in 260–264
sucrose 258–259
sugarcane fibre and bagasse 264–265
variation in 265–268
sugarcane plant
agronomic practices in 9–10
breeding 7–8
description of 5–7
global production 12–14
history of 3–4
milling 10–12
species 4–5
sugarcane-planting strategies
nutrient management 88–90
overview 85–88
pest management 88
sugarcane processing quality
and grower payments 270–271
overview 253–254
parameters and methods 271–272
payment schemes 273
production and harvesting 269–270
sugarcane juice composition
composition 256–258
fructose 258–259
glucose 258–259
other constituents in 260–264
sucrose 258–259
Uttar Pradesh, SSI in 62–66
vehicle designs, and sugarcane transportation 225

water management 99–101, 174
water pollution 238, 240–241
WaterSense 29

water use 324–325
web-based harvest management 31–32
weed control, and plant crop establishment 90
whole sugarcane plant composition 254–256

yield forecasting 30–31
yield gap analysis 22–23
yield monitoring and mapping 187–190