Integrated weed management for sustainable agriculture

Edited by Robert L. Zimdahl, Professor Emeritus
Colorado State University, USA
Contents

Series list xi
Preface xv
Introduction xvii

Part 1 Weeds

1 Weed ecology and population dynamics 3
 Adam S. Davis, USDA-ARS, USA
 1 Introduction 3
 2 Populations: abundance 5
 3 Populations: weed distribution 7
 4 Target transitions: a quantitative approach to targeting weed life stages 9
 5 Communities in arable systems 11
 6 Agroecosystems 13
 7 Case study: mitigating the invasive potential of a bioenergy crop species 15
 8 Summary and future trends 17
 9 Where to look for further information 18
 10 References 18

2 Weed-plant interactions 29
 Bruce Maxwell, Montana State University, USA
 1 Introduction 29
 2 Crop-weed interactions: an evolutionary perspective 30
 3 The nature of shared resource pools 31
 4 Direct competition for resources 33
 5 Indirect effects of competition 36
 6 Spatial and temporal dynamics 38
 7 Conclusion 38
 8 Where to look for further information 39
 9 References 39

3 Invasive weed species and their effects 43
 David R. Clements, Trinity Western University, Canada
 1 Introduction 43
 2 What is an invasive weed? 44
 3 The invasion process 47
 4 Economic effects on agricultural commodities 49
 5 Indirect effects 53
 6 Globalization and climate change effects 54
 7 Applying IWM 57
 8 Conclusion 59
 9 Where to look for further information 59
 10 References 60
Part 2 IWM principles

4 Key issues and challenges of integrated weed management

C. J. Swanton and T. Valente, University of Guelph, Canada

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>69</td>
</tr>
<tr>
<td>2 Tillage</td>
<td>70</td>
</tr>
<tr>
<td>3 Time of weed emergence relative to the crop</td>
<td>71</td>
</tr>
<tr>
<td>4 Critical periods for weed control</td>
<td>72</td>
</tr>
<tr>
<td>5 Crop morphology</td>
<td>73</td>
</tr>
<tr>
<td>6 Row width and seeding density to reduce weed competitiveness</td>
<td>73</td>
</tr>
<tr>
<td>7 Nutrient management</td>
<td>74</td>
</tr>
<tr>
<td>8 Crop rotation</td>
<td>76</td>
</tr>
<tr>
<td>9 Future trends and conclusion</td>
<td>76</td>
</tr>
<tr>
<td>10 Where to look for further information</td>
<td>77</td>
</tr>
<tr>
<td>11 References</td>
<td>77</td>
</tr>
</tbody>
</table>

5 Ethical issues in integrated weed management

Robert L. Zimdahl, Colorado State University, USA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>83</td>
</tr>
<tr>
<td>2 Ethical principles</td>
<td>84</td>
</tr>
<tr>
<td>3 Ethics in agriculture</td>
<td>85</td>
</tr>
<tr>
<td>4 Sustainability as an ethical goal</td>
<td>87</td>
</tr>
<tr>
<td>5 Conclusion</td>
<td>89</td>
</tr>
<tr>
<td>6 Where to look for further information</td>
<td>89</td>
</tr>
<tr>
<td>7 References</td>
<td>89</td>
</tr>
</tbody>
</table>

6 Surveillance and monitoring of weed populations

Anita Dille, Kansas State University, USA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>91</td>
</tr>
<tr>
<td>2 Temporal and spatial variation</td>
<td>92</td>
</tr>
<tr>
<td>3 Monitoring weed populations</td>
<td>96</td>
</tr>
<tr>
<td>4 Case studies: how research has been used to improve practice</td>
<td>97</td>
</tr>
<tr>
<td>5 Summary and future trends</td>
<td>100</td>
</tr>
<tr>
<td>6 Where to look for further information</td>
<td>100</td>
</tr>
<tr>
<td>7 References</td>
<td>101</td>
</tr>
</tbody>
</table>

Part 3 Using herbicides in IWM

7 Site-specific weed management

S.A. Clay and S.A. Bruggeman, South Dakota State University, USA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>107</td>
</tr>
<tr>
<td>2 Site-specific weed management</td>
<td>108</td>
</tr>
<tr>
<td>3 Weed variability and its influence on weed management</td>
<td>110</td>
</tr>
<tr>
<td>4 Field scouting: measuring spatial and temporal variabilities of weeds</td>
<td>115</td>
</tr>
<tr>
<td>5 Other sensing methods and controlling weeds based on spatial variability</td>
<td>119</td>
</tr>
<tr>
<td>6 Results, interpretation and management decisions</td>
<td>122</td>
</tr>
</tbody>
</table>
Contents

7 Summary 125
8 Future trends in research 125
9 Where to look for further information 126
10 References 126

8 Assessing and minimizing the environmental effects of herbicides 133
Christopher Preston, University of Adelaide, Australia
1 Introduction 133
2 Sources and fate of herbicides in the environment 134
3 Environmental effects of herbicides 143
4 Managing environmental effects of herbicides 150
5 Future trends and conclusion 154
6 Where to look for further information 155
7 References 155

9 Trends in the development of herbicide-resistant weeds 169
Ian Heap, International Survey of Herbicide-Resistant Weeds, USA
1 Introduction 169
2 Herbicide resistance definitions 170
3 Resistant weeds by site of action 172
4 Resistant weeds by crop, region and weed family 178
5 Management of herbicide-resistant weeds 184
6 Future outlook on herbicide resistance 187
7 Conclusion 188
8 Where to look for further information 188
9 References 188

Part 4 Cultural and physical methods for weed control

10 The role of herbicide-resistant crops in integrated weed management 193
Prashant Jha, Montana State University, USA; and Krishna N. Reddy, USDA-ARS, USA
1 Introduction 193
2 Glyphosate-resistant crops 195
3 Glufosinate-resistant crops 197
4 Imidazolinone and sulphonylurea-tolerant crops 197
5 New HR crop technologies 198
6 HR crops as part of an IWM programme 199
7 Summary 200
8 Where to find further information 200
9 References 200

11 Cultural techniques to manage weeds 203
Matt Liebman, Iowa State University, USA
1 Introduction 203
2 Crop population density 204
3 Crop spatial arrangement 205
4 Sowing time and transplanting 206

© Burleigh Dodds Science Publishing Limited, 2018. All rights reserved.
5 Choice of crop genotype and breeding for competitive and allelopathic abilities

6 Mulching

7 Soil fertility management

8 Irrigation and flooding: depth, timing and placement

9 Effects of combining multiple practices: examples of ‘many little hammers’ at work

10 Future trends in research

11 Summary

12 Where to look for further information

13 References

12 The use of rotations and cover crops to manage weeds

John R. Teasdale, USDA-ARS, USA

1 Introduction

2 Crop rotation in weed management

3 Cover crops in weed management

4 Opportunities for weed establishment within rotations

5 Conclusion

6 Future trends

7 Where to look for further information

8 References

13 Developments in physical weed control

Eric R. Gallandt, University of Maine, USA; Daniel Brainard, Michigan State University, USA; and Bryan Brown, University of Maine, USA

1 Introduction

2 Tillage

3 Physical weed control: overview

4 Tools, weeds and soil conditions

5 Weed–crop selectivity

6 Fundamental problems with cultivation

7 Future research priorities

8 Where to look for further information

9 References

14 Flame weeding techniques

Stevan Z. Knezevic, University of Nebraska-Lincoln, USA

1 Introduction

2 Flaming specifications, effectiveness and equipment

3 Weed response to heat

4 Uses of flame weeding

5 Advantages, disadvantages and environmental impacts

6 Future research and practical recommendations

7 Where to look for further information

8 References
Contents

15 Soil solarization: a sustainable method for weed management 303
 Baruch Rubin, The Hebrew University of Jerusalem, Israel; and Abraham Gamliel, The Volcani Center, Israel
 1 Introduction 303
 2 Solarization: mode of action, effect on weeds, benefits and limitations 304
 3 Plastic mulching technologies 307
 4 Effects of solarization on soil nutrients and pesticides 310
 5 Solarization and integrated pest management 311
 6 Recent applications of organic amendments and solarization in weed control 313
 7 Concluding remarks 313
 8 Where to look for further information 314
 9 References 314

16 Weed management in organic crop cultivation 319
 Greta Gramig, North Dakota State University, USA
 1 Introduction 319
 2 Tools and tactics used in organic systems 320
 3 Farmer case studies 328
 4 Future trends and conclusion 333
 5 Where to look for further information 334
 6 References 334

Part 5 Biological methods for weed control

17 The use of allelopathy and competitive crop cultivars for weed suppression in cereal crops 339
 James M. Mwendwa, Charles Sturt University, Australia; Jeffrey D. Weidenhamer, Ashland University, USA; and Leslie A. Weston, Charles Sturt University, Australia
 1 Introduction: key issues and challenges 339
 2 Competitive crops and cultural strategies in weed management 341
 3 The effect of allelopathy on weed suppression 343
 4 The effect of soil and environment on plant metabolites (allelochemicals) 346
 5 Use of crop residue mulches and cover crops in weed suppression 350
 6 Case studies: production of benzoazinoids in cereal crops 353
 7 Case studies: competitive cereal cultivars as a tool in integrated weed management 356
 8 Summary and future trends 358
 9 Where to look for further information 360
 10 References 360

18 Bioherbicides: an overview 367
 Erin N. Rosskopf, USDA-ARS, United States Horticultural Laboratory, USA; Raghavan Charudattan, BioProdex, Inc., USA; and William Bruckart, USDA-ARS, Foreign Disease-Weed Science Research Unit, USA
 1 Introduction 367
 2 Natural products for targeting weed populations 368
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Microbial bioherbicides and classical biological control: an overview</td>
<td>370</td>
</tr>
<tr>
<td>4 Examples of classical biological control</td>
<td>372</td>
</tr>
<tr>
<td>5 Limitations and the effects of climate change</td>
<td>376</td>
</tr>
<tr>
<td>6 Bioherbicides: inundative applications</td>
<td>378</td>
</tr>
<tr>
<td>7 Integrating bioherbicides into weed management programmes</td>
<td>383</td>
</tr>
<tr>
<td>8 Institutional changes for biological control adoption</td>
<td>386</td>
</tr>
<tr>
<td>9 Conclusion</td>
<td>390</td>
</tr>
<tr>
<td>10 Where to look for further information</td>
<td>391</td>
</tr>
<tr>
<td>11 References</td>
<td>392</td>
</tr>
<tr>
<td>19 The use of microorganisms in integrated weed management</td>
<td>401</td>
</tr>
<tr>
<td>Susan M. Boyetchko, Agriculture and Agri-Food Canada, Canada</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>401</td>
</tr>
<tr>
<td>2 The role of biopesticides</td>
<td>402</td>
</tr>
<tr>
<td>3 Historical accomplishments</td>
<td>403</td>
</tr>
<tr>
<td>4 Recent registrations</td>
<td>404</td>
</tr>
<tr>
<td>5 New discoveries under development</td>
<td>406</td>
</tr>
<tr>
<td>6 Target weed selection</td>
<td>408</td>
</tr>
<tr>
<td>7 Early discovery and screening</td>
<td>408</td>
</tr>
<tr>
<td>8 Formulation and fermentation technologies</td>
<td>410</td>
</tr>
<tr>
<td>9 Future trends and conclusion</td>
<td>411</td>
</tr>
<tr>
<td>10 Where to look for further information</td>
<td>412</td>
</tr>
<tr>
<td>11 References</td>
<td>412</td>
</tr>
<tr>
<td>20 The use of bacteria in integrated weed management</td>
<td>417</td>
</tr>
<tr>
<td>Ann C. Kennedy, USDA-ARS and Washington State University, USA</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>417</td>
</tr>
<tr>
<td>2 The case of downy brome (cheatgrass, Bromus tectorum L.)</td>
<td>418</td>
</tr>
<tr>
<td>3 Finding a biocontrol agent to manage downy brome</td>
<td>419</td>
</tr>
<tr>
<td>4 Application and results</td>
<td>423</td>
</tr>
<tr>
<td>5 Summary</td>
<td>425</td>
</tr>
<tr>
<td>6 Future trends in research</td>
<td>425</td>
</tr>
<tr>
<td>7 Where to look for further information</td>
<td>427</td>
</tr>
<tr>
<td>8 References</td>
<td>428</td>
</tr>
<tr>
<td>21 The use of insects in integrated weed management</td>
<td>431</td>
</tr>
<tr>
<td>Sandrine Petit and David A. Bohan, UMR Agroécologie, AgroSup Dijon, INRA, Université de Bourgogne Franche-Comté, France</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>431</td>
</tr>
<tr>
<td>2 Deciphering complex interactions with generalist predator communities</td>
<td>432</td>
</tr>
<tr>
<td>3 Managing fields and landscapes to enhance weed seed predation</td>
<td>435</td>
</tr>
<tr>
<td>4 Extent of regulation</td>
<td>436</td>
</tr>
<tr>
<td>5 Case study: the UK national survey farm-scale evaluation</td>
<td>437</td>
</tr>
<tr>
<td>6 Conclusion</td>
<td>439</td>
</tr>
<tr>
<td>7 Future trends</td>
<td>440</td>
</tr>
<tr>
<td>8 Acknowledgements</td>
<td>441</td>
</tr>
<tr>
<td>9 Where to look for further information</td>
<td>441</td>
</tr>
<tr>
<td>10 References</td>
<td>442</td>
</tr>
<tr>
<td>Index</td>
<td>447</td>
</tr>
</tbody>
</table>
Weeds have received a lot of attention, but they have never been respected or understood well. The fact that many people earn a living and serve society by working to control and manage them is often greeted with amusement if not outright laughter. Even scientific colleagues who work in other esoteric disciplines find it hard to believe that another group of scientists could be concerned exclusively with what is perceived to be as mundane and ordinary as weeds.

No agricultural enterprise or part of our environment is immune to the detrimental effects of weeds. They have interfered with human endeavors for a long time. In much of the world weeds are controlled by hand or with a hoe. A person with a hoe may be as close as we can come to a universal symbol for the farmer, even though most farmers in developed countries no longer weed with, or even use, hoes. For many, the hoe and the weeding done with it, symbolize the practice of agriculture. The battle to control weeds, done by people with hoes, is the farmer’s primary task in much of the world.

Weed science is vegetation management — the employment of many techniques to manage plant populations in an area. This includes dandelions in turf, poisonous plants on rangeland, and weeds in soybeans. Weed scientists attempt to modify the environment against natural evolutionary trends.

Weed science is not a panacea for the world’s agricultural problems. The problems are too complex for any simple solution and students should be suspicious of those who propose simple solutions to complex problems. In fact, the hope should be not to solve but to diminish, not to cure but to alleviate. The work of the weed scientist is fundamental to solving problems of production agriculture in our world. Weeds have achieved respect among farmers who deal with them every year in each crop. Weeds and weed scientists have achieved respect and credibility in academia and the business community. The world’s weed scientists are and will continue to be in the forefront of efforts to feed the world’s people.

In weed science movements occur, directions change, and progress results. Some movements are called bandwagons with words and phrases that define and identify them. Each movement makes its contribution to the parade of ideas and contributes to the general cacophony of competing ideas, which, one hopes will yield a harmonious new paradigm. Some ideas assume a position at the head of the line. Integrated weed management (IWM) has assumed a position of centrality and leadership. The concept of integrated pest management (IPM), particularly in entomology, can be traced to the late 1800s when ecology was recognized as an essential foundation for scientific plant protection. If integrated IWM systems are to succeed, changes in weed management systems will be required. The direction and scope of changes will determine their success.

There is a risk that integrated weed management may only be another bandwagon, but it makes so much sense that it is likely to endure. It is not perfect but it is better than anything else we have. The evidence in this book is sufficient to demonstrate that weed management systems for crops are incomplete. They are developing, but research gaps exist. Present weed management is dependent on herbicides. Integrated weed management systems that are sustainable over time will emphasize putting components of weed control together. Even casual observation of the presently dominant capital, energy, and chemical dependent agriculture demands answers to questions about the system’s sustainability. In view of the rapid appearance of herbicide resistant weeds,
continued dependence on herbicides, and emphasis on short-term solutions, does not seem sustainable. The system that now dominates US and other industrialized, developed country agriculture emphasizes production in monocrop plant communities. Many argue that this kind of agriculture cannot achieve what all regard as a proper goal: sustainability. Weed science has been focused on control technology rather than understanding why and how weeds compete so well. Integrated weed management is widely promoted by weed scientists, but it is not widely practiced.

It is likely that successful integrated weed management systems will have to be developed within the opportunities and constraints of agricultural industrialization. Industrialization, is a process whereby agricultural production is structured under the pressure of increasing levels of capital and technology that allow management systems to integrate each step in the economic process to maximize efficiency of capital, labor, and technology. An inevitable question is whether this process is compatible with, and capable of achieving a sustainable agriculture. Some believe the answer is yes, others believe that the industrializing forces of consumer desires and demands, prescription agricultural products, molecular biology, and the changing nature of farming combine to make industrialization inevitable. Many argue that modern industrial agriculture built on and dependent on scientific knowledge is the only way to feed the 9 billion people expected by 2050 and the possible 11 billion by 2100. They argue that if the dominance of energy, chemical and capital dependent agriculture is not drastically changed, the 9 billion will not be fed, because the system is not sustainable. The result of the debate will affect weed science.

Integrated weed management should not limit its focus to weed control. To be successful, the focus must be the total vegetation complex or better, habitat management rather than weed control in a year in a crop. Perhaps it is most correct to say that industrialization should, although it may not, change the scale of concern. Sustainable integrated weed management systems should extend concern to environmental quality and future generations. These are large scale concerns. Small scale concerns such as how to control weeds in a crop in a year have dominated but future agricultural systems will require major changes. Environmental concerns demand large scale thought. Small scale thought suffices for individual concerns. Large thoughts are needed for large systems. Everything needs to be integrated to have a complete crop management system. It won’t be easy to do. It is necessary.
Introduction

Since settled agriculture began weeds have been and remain a significant obstacle to increased yields and to feeding a growing world population. Without effective weed management productive, profitable agriculture is not possible. Weed control has relied heavily on the use of herbicides which account for the majority of pesticide use in countries such as the US. However, herbicides suffer from a number of disadvantages, including environmental effects, effects on other species, residues in food and the environment. Weed scientists are aware of and dealing with these concerns as well as herbicide resistance among ever more weed species and the effects of invasive species.

These problems are being addressed by the development of integrated weed management (IWM) systems which include herbicides as part of a broader array of cultural, mechanical and biological methods of control. The chapters in this book review research on IWM directed toward developing sustainable methods of weed management. The volume summarises the latest research on the principles and methods of IWM. Chapters also assess the current challenges facing the use of herbicides, and provide a detailed review of the range of cultural, physical and biological methods of control available for IWM.

Part 1 Weeds

The focus of the first part of the volume is on the ecology of weeds. Chapter 1 addresses the relationship between weed ecology and the population dynamics of weeds, exploring the reasons for abundance of weeds and the effect of weed distribution on overall populations. The chapter examines the ‘target transitions’ approach to weed control, a technique based on targeting weeds at key life stages. It also examines the place of weeds within on-farm ecosystem communities and agroecosystems, and includes a detailed case study on efforts to mitigate the invasive potential of a bioenergy crop species.

Chapter 2 builds on the themes of Chapter 1 by focussing on weed-plant interactions. Crops or desired plant species co-occur with undesired species which are then classed as weeds. This human-imposed classification is based on the perception that there is an interaction that results in some negative effect of the weed on the crop or desired species. Chapter 2 offers an evolutionary perspective on crop-weed interactions and examines the nature of shared resource pools between desired crops and weeds. The chapter addresses the effects of direct competition between weeds and crops for resources, the indirect effects of competition and the spatial and temporal dynamics of crop-weed interaction.

Complementing the themes of Chapter 2, Chapter 3 concentrates on the nature and effects of invasive weed species. An invasive weed exhibits a tendency to spread rapidly and occupy new niches. The chapter describes ten examples of situations in which invasive weeds directly affect agriculture. The chapter also examines the indirect effects of invasive weeds, and discusses how climate change and globalization interact to promote invasions. The chapter explores the potential contribution of IWM to managing and controlling weed invasions, describing the invasion process and its economic effects on agricultural commodities.
Part 2 IWM principles

The focus of the second part of the volume is on IWM principles, including surveillance, risk assessment and planning an IWM programme. The focus of Chapter 4 is on key issues and challenges in the field of IWM. In order to intensify agricultural productivity while at the same time enhancing ecosystem services, it is necessary to evaluate carefully how current weed management technologies are deployed, including herbicides and herbicide resistant crops. Herbicide chemistries and herbicide resistant crops have provided excellent technologies that have resulted in significant changes to the way weeds can be controlled. Chapter 4 highlights several key components that must form the basis for an effective IWM strategy, including tillage, the importance of understanding weed emergence relative to the crop, critical periods for weed control, crop morphology, row width, nutrient management and crop rotation.

Chapter 5 complements Chapter 4 by discussing ethical issues in integrated weed management. Without an appropriate ethical framework, research runs the risk of pursuing too narrow a focus and thus the wrong goals. As the chapter points out, agriculturalists must see agriculture in its many forms — productive, scientific, environmental, economic, social, political, and moral. It is not sufficient to justify all management activities on the basis of increased production. Other criteria, many with a clear moral foundation, should be included.

Chapter 6 develops the themes of Chapter 5 by examining surveillance and monitoring of weed populations. To implement IWM more effectively, it is necessary to determine the temporal and spatial distribution of weed populations in a field. Weed species tend to be patchy and this influences the ability to calculate average weed densities when conducting a survey. The chapter reviews current and evolving practices for scouting and mapping weed populations both during and across growing seasons. It considers the use of scouts on the ground, UAVs with cameras flying over the fields, and advanced software and computer-based tools to detect, identify, and record weed species. The chapter also discusses the use of regional and global scales to understand changes in the occurrence of herbicide-resistant or invasive weed populations, and includes case studies on how research has been used to improve practice.

Part 3 Using herbicides in IWM

The theme of the third part of the volume is on the role of herbicides in IWM. The focus of Chapter 7 is the challenge of site-specific weed management. Weeds vary in species and density across fields, but uniform management is typical. Chapter 7 reviews the definition and underpinnings of site-specific weed management, and discusses how information about weed spatial and temporal variability can be used to determine if weed management strategies should be varied by location. Building on Chapter 6, the chapter considers how data about weed distribution can be collected using satellites, aerial platforms, and unmanned aerial vehicles (UAVs), and then verified by scouting. The chapter reviews the advantages of site-specific weed management, as well as the major factors which stand in the way of its adoption.

Chapter 8 complements the themes of the preceding chapter by concentrating on the assessment of herbicides and minimisation of their environmental effects. Herbicides
are widely used to control weeds but they can have other effects on the environment. Herbicides can move from the site of application through spray drift, volatilization from surfaces, surface runoff or leaching to groundwater. Whether and how far a herbicide will move depends on the physical and chemical properties of the herbicide, the style of application, environmental conditions at the time of and after application, site topography, how tightly the herbicide is bound to soil components, and how quickly the herbicide is degraded. Environmental effects of herbicides include damage to sensitive plants in the environment, damage to aquatic organisms and alterations in microbial populations. Chapter 8 examines the sources and fate of herbicides in the environment, the different types of environmental effects herbicides may have, and the challenge of managing the environmental effects of herbicides.

Chapter 9 switches the focus from herbicides themselves to address trends in the development of herbicide-resistant weeds. Since the mid-1940s, herbicides have been the most cost effective and efficient method of weed control for agronomic crops. Today, herbicide-resistant weeds, in combination with a decline in industry discovery programs and a cessation in discovery of new herbicide sites of action, threaten the continued utility of herbicides. Weeds have evolved resistance to 160 different herbicide active ingredients (23 of the 26 known herbicide sites of action) in 86 crops and in 66 countries. Chapter 9 reviews the various kinds of herbicide-resistance, and then considers resistant weeds by site of action, crop, region and weed family. It considers the available strategies for managing herbicide-resistant weeds, but concludes that although herbicides are likely to remain the backbone of agronomic weed control for the next 30 years, their utility will steadily decline, and we need to begin working on new weed control technologies that will eventually replace herbicides.

Part 4 Cultural and physical methods for weed control

Chapter 10 reviews the development and use of crops resistant to herbicides such as glyphosate, glufosinate, imidazolinone (IMI) and sulfonylurea, as well as the development of multiple herbicide-resistant (HR), stacked-trait crops. Prudent use of HR crops potentially diversifies weed control by enabling use of herbicide tank mixtures, herbicide rotations, or sequential herbicide programs. Instead, as the chapter points out, the simplicity and convenience of glyphosate-based cropping systems using glyphosate-resistant (GR) crops has been over-exploited, with growers often relying on glyphosate only for weed control in GR corn, soybean, and cotton, for example. Over-reliance on HR crop technology over the past two decades, has led to rapid evolution of HR weeds because of massive selection pressure. As the chapter points out, HR crop technology alone cannot provide total weed control. HR crops must be integrated with other weed control tactics. It is best regarded as supplementary to other weed control methods that increase the diversity of weed control tactics. This highlights the need for IWM, a holistic approach that integrates different methods of weed control to manage weeds and maintain crop yields. Integration of HR crop technology with cultural, mechanical, chemical and biological tactics is critical in the management of herbicide resistance.

Chapter 11 develops the theme of non-herbicide-based weed control by examining cultural techniques for managing weeds. Widespread problems with herbicide-resistant
weeds, environmental contamination by herbicides, and soil degradation due to excessive cultivation have led to an increasing need for a wide array of cultural techniques to reduce weed population densities, biomass production, and competition against crops. Chapter 11 reviews cultural techniques whose efficacy has been demonstrated in particular farming systems. These include increasing crop population density; increasing crop spatial uniformity; altering planting date; transplanting; the choice of highly competitive and allelopathic cultivars; mulching; and soil fertility and moisture management. The chapter shows how, when used in particular combinations, the cumulative effects of cultural tactics may be substantial and can lessen the burden of crop protection placed on chemical and mechanical controls.

Chapter 12 addresses another non-herbicide based method of weed control, the use of crop rotations and cover crops to manage weeds. Crop rotation has been known for many years as an effective strategy for controlling weeds because it has a disruptive effect on weed populations. Cover crops are important additions to cash crop rotations because they suppress weeds during rotational periods when crops are absent and provide ecosystem services that enhance soil quality and fertility. The chapter describes current research on crop phenological diversity and management disturbance diversity, before suggesting new analytical frameworks for assessing the multifunctional properties and discussing the overall sustainability of cover crops and crop rotations.

Chapter 13 moves the focus from the efficacy of crop rotations against weeds to developments in physical weed control, examining the effects of tillage on weed populations and offering an overview of the methods of physical weed control. The chapter examines the tools for physical weed control and the effect of soil conditions on the effectiveness of these approaches. Addressing in particular the issue of weed-crop selectivity, the chapter examines some of the fundamental problems associated with cultivation and the challenges of weed control. It looks, for example, at how to achieve effective combinations of intra-row weeding tools such as torsion, finger and tine weeder. As the chapter shows, recent advances in GPS and camera-based guidance systems permit increasingly precise, close-to-the-row tool adjustment, even for slow-growing, direct seeded crops.

Continuing the theme of physical methods of weed control, Chapter 14 homes in on techniques of flame weeding. Flaming as a vegetation control method began in the mid-1800s. It is based on utilizing heat for plant control, and has the potential to be used effectively for at least six agronomic crops (field corn, sweet corn, popcorn, sorghum, soybean, and sunflower) when conducted properly at the most tolerant crop growth stage. There has been increasing interest in integrating flame weeding with conventional cropping systems, and in locations where herbicide use is undesirable, such as in cities, parks, and other urban areas. The chapter reviews flame weeding requirements, the mechanism by which the technique reduces weeds, and the potential uses of flame weeding. The chapter also consider its advantages and disadvantages, including its potential environmental effects.

Shifting the focus of the volume to the effect of soil on weed control, Chapter 15 examines the potential of soil solarisation as a sustainable method for weed management. Solar heating of soils involves heating moist and mulched soil (with a transparent polyethylene film) for several weeks. The advantages of the technique include its nonchemical nature and its effective use in a wide range of agricultural areas worldwide. The chapter reviews the use of solarization in sustainable weed management, covering its mode of action, its effects on weeds, soil nutrients and pesticides, and the benefits and limitations of this
strategy. The plastic mulching technology required for solarisation is also discussed, along with the significance of the technique for integrated pest management.

Chapter 16 continues the theme of non-chemical techniques of weed control by focussing on weed management in organic crop cultivation. Managing weeds in organic production systems is critical to the economic success of organic farmers, as well as long-term ecological sustainability. Problems with weeds are a major reason why organic operations fail, or never get started. The chapter provides an overview of the range of tools and tactics that can be used to contend with weeds in organic systems and describes the integration of several tools and tactics. The chapter presents several organic farmer case studies to illustrate different types of weed management plans, and looks ahead to future trends in scientific research that will help organic farmers manage weeds while conserving and building soil resources.

Part 5 Biological methods for weed control

The fifth and final part of the volume surveys the available biological techniques for weed control. Chapter 17 examines the use of allelopathy and competitive crop cultivars for weed suppression in cereal crops. Due to the rise of herbicide resistance, diverse weed management tools are required to ensure sustainable weed control. The chapter focuses on competitive cereal crops and cultural strategies for weed management, including the use of weed-suppressive cultivars, post-harvest crop residues and cover crops for managing the weed seed bank and eventual weed suppression. It also addresses factors influencing the effect of allelopathy on weeds, including soil and environmental conditions, which limit or intensify the efficacy of allelochemicals. The chapter reviews the response of some weeds to secondary metabolites released by living cereal crops and/or crop residues (selectivity). The chapter recommends future research areas, aiming to address the knowledge gap regarding the fate of these compounds in the environment and their role in important physiological processes in both plants and microbes in the soil rhizosphere. Case studies are provided on the production of benzoxazinoids in cereal crops and the use of competitive cereal cultivars as a tool in integrated weed management.

Following on from the themes of Chapter 17, Chapter 18 offers an overview of bio-herbicides. Chemical control methods for weeds are widespread, but there are many invasive species for which these are not economically feasible. In addition, there are social, economic and political drivers towards reducing the overall use of pesticides. The chapter considers bioherbicides as an alternative method of weed control. It reviews the use of products based on natural compounds derived from plants or microbes, the classical approach to microbial bioherbicide application, and the use of an inundative approach which applies an endemic pathogen applied in much greater quantity than would be found naturally. The chapter discusses the ways in which bioherbicides can be integrated into weed management programs and the institutional changes needed for biological control adoption.

Complementing Chapter 18, Chapter 19 focusses on the use of microorganisms in integrated weed management. Biological control of weeds by fungal pathogens, bacteria and viruses has been studied for more than three decades, with the aim of suppressing or reducing the weed population below an ecological or economic threshold. The chapter describes the role of biopesticides in weed control, historical accomplishments...
in biological weed control and recently registered pathogens. The chapter discusses new
discoveries currently under development, target weed control, and the role of screening
and fermentation technologies, as well as looking ahead to future developments in this
area.

Continuing the theme of microorganisms in more detail, Chapter 20 specifically explores
the use of bacteria in integrated weed management. Annual grass weeds are increasing
as a dominant weed species in the western United States, Canada and Mexico. Downy
brome, one of the most widespread, invasive annual grass weeds, negatively affects cereal
yields, reduces forage quality in grazing lands, degrades rangelands, and increases the
fire frequency of western lands. Based on case studies, the chapter reviews how naturally-
occurring bacteria can be screened to find those that suppress downy brome but do
not harm native plants and crops. The chapter describes how one such bacterial strain,
Pseudomonas fluorescens strain ACK55, was identified as able to reduce downy brome
root formation, root growth, and tiller initiation. The chapter discusses long-term field
trials in the western US, in which application of the bacteria resulted in almost complete
suppression of downy brome for three to five years after one application, when desirable
plants were present.

The final chapter in the volume, Chapter 21, moves discussion from microorganisms
to the use of insects in integrated weed management. Seed predation by insects is a
potentially promising approach to the regulation of weeds that could offset herbicide use
as part of integrated weed management. Using the example of carabid beetles, as the
most intensively studied grouping of insect weed seed predators, the chapter describes
the current state of knowledge in this subject area and highlights future research trends.
The chapter examines the interaction between weeds and predator communities and
assesses how fields and landscapes can be managed to enhance weed seed predation.
The chapter looks at the level of weed regulation that can realistically be expected from
this approach, and provides a detailed case study from the UK.
Index

AAFC. see Agriculture & Agri-Food Canada (AAFC)
ACCase inhibitors 174–175
Acetic acid 321–322, 369
Acetolactate synthase (ALS) inhibitors 173–174
A-Frame farm 329
AGDISP spray drift 137
AgDRIFT spray drift 137
Agricultural weeds 44
Agriculture
ethics in 85–87
sustainability 87–89
Agriculture & Agri-Food Canada (AAFC) 380, 409
Agroecosystem 13–15
Albrecht System of Soil Fertility 330
Allelochemicals, on weed suppression 343–344
allopathic interaction process 346–348
analysis in plant and soil 348–350
production and mode of action 344–346
Allelopathic interference mechanisms 340
ALS inhibitors. see Acetolactate synthase (ALS) inhibitors
Amaranthus palmeri 180, 248
2-amino-7-methoxy-3H-phenoxazin-3-one (AMPO) 354
2-aminophenoxazin-3-one (APO) 348
AMPO. see 2-amino-7-methoxy-3H-phenoxazin-3-one (AMPO)
Anaerobic soil disinfestation (ASD) 384
Andropogon gayanus 58
APO. see 2-aminophenoxazin-3-one (APO)
Aquatic ecosystems, herbicides in 146–147
Araujia mosaic virus (ArjMV) 381
ASD. see Anaerobic soil disinfestation (ASD)
Assembly theory 11
Atrazine 146
Australian WRA 49
Bacteria
and bioherbicides 380–381
in IWM 417–427
description 417–418
downy brome management 418–423
field application 423–424
field results 424–425
Base cation saturation ratio (BCSR). see Albrecht System of Soil Fertility
BCSR. see Albrecht System of Soil Fertility
Benzoxazinoids (BXs) 344–345, 353–355
Bet-hedging mechanism 6
Bioclimatic envelope models 9
Bioeconomic models 123–124
Bioenergy crops
characteristics 54–55
mitigating potential of 15–17
Bioherbicides 367–391
classical biological control 370–376
cclimate change and 377–378
examples 372–376
limitations 376–377
description 367–368
inundative applications 378–379
bacteria 380–381
fungi 379–380
viruses 381–383
microbial 370–372
natural products for weed control 368–370
regulations for 386–390
and weed management programmes 383–384
in cropping systems 385
for herbicide-resistant weeds 385–386
The Biological Control Act 390
BioMal® 403
Biopesticides 402–403
Biopesticides and Pollution Prevention Division 426
BioProdex, Inc. 382, 406
Biosolarization 312–313
Blind cultivation tools 266
BOA. see 2(3H)-benzoxazolinone (BOA)
Brakke, Lynn 329–330
BRG100, 380
Bromus tectorum L. management 51, 418–423
bacteria 419–421
screening 421–423
Buffer zones 153–154
Buried drip irrigation 214
BXs. see Benzoxazinoids (BXs)
Camera-guided intra-row weeder 267
Camperico® 404
Carabid beetles 432
Carduus nutans 51
Carrying capacity 4
Gentarea solstitialis 51, 53
CGM. see Corn gluten meal (CGM)
Charudattan, Raghaan 406
Cheatgrass. see Bromus tectorum L. management
Chemical degradation 141
Chemical weed management 321–322
Chenopodium album 240
Chontrol® Paste 379, 404
Cirsium arvense 51
Classical biological control
climate change and 377–378
examples 372–376
limitations 376–377
Clearfield™ trait 197
Climate change effects, globalization and 54–56
Clinton, Bill 43
Codon deletion 171
CO₂ emission and energy use 296–297
Collego® 403
COMPETE model 33
Competition-colonization trade-off hypothesis 31
Composted swine manure 212
Conductance model 33
Corn, herbicide-resistant weeds in 179
Corn gluten meal (CGM) 321
Cotton, herbicide-resistant weeds in 180
Cover crops 326
in weed management 242–249
carbon-to-nitrogen ratio 244–245
herbicide-resistant weeds control 248
mixtures vs. monocultures 243–244
multifunctional role 248–249
organic no-tillage production 245–248
to suppress weeds 352–353
Critical thinking 85
Crop competitive ability 207–208, 341–343
Crop morphology 73
Crop population density 204–205
Crop residue 350–352
Crop rotation 30, 76, 325–326
in weed management 228–242
simulations 234–235
soil quality and 232–234
trait-based approach in communities 241–242
weed species and 237–241
year-to-year variability 236–237
Crop spatial arrangement 205–206
Cross-resistance 172
Cultural weed management 324–327
Decision-tree model 123
Deleterious rhizobacteria (DRB) 380, 406–407
Demography. see Population dynamics
Devine® 379, 403
DIBOA. see 2,4-dihydroxy-1,4(2H)-benzoxazin-3-one (DIBOA)
Diorhabda elongata 377
Dormancy mechanism 6
Dose-response experiment 184
Double-layer technique
transparent over black double film 309
two transparent films 308–309
Douglas, Mark 332
Dowdah Farms LLC 332–333
Downy brome. see Bromus tectorum L. management
Dr. BioSedge® 404
DRB. see Deleterious rhizobacteria (DRB)
Early detection and rapid response (EDRR) 48, 53
Echinochloa crus-galli 214
EDRR. see Early detection and rapid response (EDRR)
EIP. see Environmental Impact Points (EIP)
EIQ. see Environmental impact quotient (EIQ)
Emge, R. G. 372
Encore Technologies 403
Environmental effects, of herbicides 143–154
in aquatic ecosystems 146–147
managing 150–154
mitigating effects 153–154
reducing use and rates 150–151
substituting 151–153
off-site terrestrial 144–146
on-site effects 147–150
Environmental Impact Points (EIP) 152
Environmental impact quotient (EIQ) 151–152
Environmental Protection Agency (EPA) 297, 426
Environmental risks 109
Environmental weeds. see Invasive weed
Environmental Yardstick (EY) 152
EPA. see Environmental Protection Agency (EPA)
Eriochloa villosa 54
Essential oils 322
Euphorbia esula 51–52
EY. see Environmental Yardstick (EY)
Farm-scale evaluation (FSE) 437
Federal Aviation Administration 119
Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) 368
Fernholz, Carmen 329
Field scouting
results and interpretation of 122–123
spatial and temporal variabilities of weeds 115–119
FIFRA. see Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA)
Flame weeding techniques 285–298
advantages and disadvantages 295–296
CO₂ emission and energy use 296–297
description 285–256
economics 295
effectiveness 287–288
equipment 288–290
future research 297
life cycle analysis (LCA) 296
plant response to heat 286–287
practical implications 297–298
propane 286, 287
uses 291–295
in agronomic crops 291–294
at archaeological sites 294–295
weed response to heat 290–291
Flat fan nozzles 135
Food security 109
FSE. see Farm-scale evaluation (FSE)
Fungi, and bioherbicides 379–380
Furrow irrigation 214
Index

GDD. see Growing degree days (GDD)
Gene amplification 171
Georeferenced data 115
Globalization, and climate change effects 54–56
Global positioning system (GPS) 115
Glufosinate-resistant crops 197
Glyphosate 147, 149, 175–187
Glyphosate-resistant (GR) crops 194, 195–197
GM herbicide-tolerant crops 152
GPS. see Global positioning system (GPS)
GR crops. see Glyphosate-resistant (GR) crops
Ground-based sampling techniques 115
Growing degree days (GDD) 112

HAK® S-Series cultivator 268
Harrington Seed Destructor 278
2(3H)-benzoxazolinone (BOA) 345
Helianthus annuus 59
Henry’s law 138

Herbicide-resistant (HR) crops
impact on herbicide-resistant weeds 186–187
in integrated weed management 193–200
description 193–195
glufosinate-resistant crops 197
glyphosate-resistant crops 195–197
imidazolinone herbicides 197–198
integrated with weed control tactics 199
sulphonylurea-tolerant crops 197–198
technologies 198–199
Herbicide-resistant weeds 169–188
corn 179
cotton 180
non-crop 181
perennial crops 181
rice 180
soybean 179–180
wheat 178–179
definitions 170–172
non-target site resistance 171–172
target site resistance 170–171
description 169–170
management 184–187
confirmation 184
herbicide-resistant crops impact 186–187
integrated weed management 185–186
methods of spread 184–185
multiple resistance and non-target site resistance 186
by region 181–183
by site of action 172–177
ACCase inhibitors 174–175
ALS inhibitors 173–174
glyphosate 175–177
PSII inhibitors 174
synthetic auxins 177
by weed family 183–184
Herbicides 133–154
description 133–134
environmental effects of 143–154
in aquatic ecosystems 146–147
managing 150–154
off-site terrestrial 144–146
on-site effects 147–150
sources 134–143
and fates in soil 141–142
leaching to groundwater 142–143
run-off 140–141
spray drift 134–138
volatilization 138–139
High-residue cultivation 247–248
HR crops. see Herbicide-resistant (HR) crops
HTT. see Hydrothermal time (HTT)
Hydrothermal time (HTT) 112

Imidazolinone (IMI) herbicides 197–198
IMI-tolerance trait. see Clearfield™ trait
Infrared (IR) films 309
Insects, in IWM 431–441
description 431–432
in-field and landscape management 435–436
regulation of weed seedbank 436–437
seed-eating predator 432–435
UK national survey 437–439
detecting signals of weed regulation 438
farm-scale evaluation 437
seed-eating carabid abundance 438–439
Integrated weed management (IWM) 185–186
application 57–59
bacteria in 417–427
description 417–418
downy brome management 418–423
field application 423–424
field results 424–425
competitive cereal cultivars in 356–358
ethical issues in 83–89
agriculture and 85–87
description 83–84
principles 84–85
sustainability 87–89
insects in 431–441
description 431–432
in-field and landscape management 435–436
regulation of weed seedbank 436–437
seed-eating predator 432–435
UK national survey farm-scale evaluation 437–439
issues and challenges of 69–77
critical period for weed control 72–73
crop morphology 73
crop rotation 76
description 69–70

© Burleigh Dodds Science Publishing Limited, 2018. All rights reserved.
 nutrient management 74–75
row width and seeding density 73–74
tillage 70–71
weed-seedling emergence 71
microorganisms in 401–412
biopesticides role 402–403
description 401–402
discoveries and screening 406–408, 409–410
formulation and fermentation technologies 410–411
historical accomplishments 403–404
registrations 404–406
target weed selection 408

Intercropping strategies 327
International Survey of Herbicide-Resistant Weeds 172
International Union for Conservation of Nature and Natural Resources (IUCN) 46
Inter-Regional Project 4 (IR-4) 390
Inter-row, and intra-row zone 262
Inter-row hoeing 266–267
Inversion debt 53
Invasive Plant Research Laboratory 374
Invasive weed 43–59
definition 44–47
description 43
economic effects 49–53
globalization and climate change effects 54–56
indirect effects 53–54
IWM application 57–59
process 47–49
Inversion-driven drift 134, 137–138, 154
IR-4. see Inter-Regional Project 4 (IR-4)
IR films. see Infrared (IR) films
Irrigation, and flooding 213–215
IUCN. see International Union for Conservation of Nature and Natural Resources (IUCN)
IWM. see Integrated weed-management (IWM)

Lacto Pro-Tech Inc., 405
LCA. see Life cycle analysis (LCA)
LCMS. see Liquid chromatography mass spectrometry (LCMS)
LDPE. see Low-density PE (LDPE)
Leaching, of herbicides 142–143
Life cycle analysis (LCA) 296
Liquid chromatography mass spectrometry (LCMS) 354
LL64/CSL lactis strain 405
LL102/CSL lactis strain 405
LockDown® 403
Low-density PE (LDPE) 304
Lynn Brakke Organic Farm 329–330

Mallet WP 403
Many little hammers (MLH) 215–217
Marginal land 109
Marrone Bio Innovations (MBI) 369, 405
MBI. see Marrone Bio Innovations (MBI)
McGill University 405
M11/CSL cremoris strain 405
Mechanical cultivation 294
Microbial bioherbicides 370–372
Microbial degradation 141–142
Microorganisms in IWM 401–412
biopesticides role 402–403
description 401–402
discoveries and screening 406–408, 409–410
formulation and fermentation technologies 410–411
historical accomplishments 403–404
registrations 404–406
target weed selection 408

Mikania micrantha 52, 55–56
Miscanthus sinensis 15–16
Miscanthus x giganteus 15–16
MLH. see Many little hammers (MLH)
Mulching 208–210, 323
Multiple-base pair alteration 171
Multiple resistance 172, 186

National Organic Standards 321, 322, 323, 369
Natural product, as herbicide 368–369
Natural selection 32
5325N Diesel John Deere tractor 297
Nitrogen fertilizer 211
Nitrogen management 74–75
Non-crop weed control 181
Non-herbicidal control methods 58
Non-target site herbicide resistance 171–172, 186
cross 172
decreased absorption/translocation 171
enhanced metabolism 171
multiple 172
sequestration 171–172
Nutrient management 74–75

Off-site terrestrial effects, of herbicides 144–146
Oggún tractor 265
OMRI. see Organic Materials Review Institute (OMRI)
On-site effects, of herbicides 147–150
Opportune® 369, 405
Organic amendments, solarization and 312–313
Organic crop cultivation, weed management in 319–334
description 319
farmer case studies 328–333
tools and tactics 320–328
chemical weed management 321–322
cultural weed management 324–327
flame weeders 327
grazing 328
physical weed management 322–324
preventative weed management 320–321
solarization 327–328
weed seed predation 328
Organic Farming Research Foundation 368
Organic Materials Review Institute (OMRI) 369
Organic mulches 323
Organic no-tillage production 245–248
Organic System Plan 322
Organic weed management 328
Organo-Sol® 405
Pacific Forestry Centre 404
Panicum virgatum 55
Parthenium hysterophorus 52, 55–56
Pasture crops 326
PE. see Polyethylene (PE)
p-EMA 153
Perennial crops, herbicide-resistant weeds in 181
Pesta formulation 411
The Pest Control Products Act 390
Pesticides, and solarization 310–311
Pest Management Centre 390
Pest Management Regulatory Centre (PMRA) 404
Philom Bios 403
Photodegradation 141
Physical weed control (PWC) 261–279
description 261–262
overview 263–266
aims and principles 263–265
mechanisms of mortality 265–266
problems with cultivation 274–277
research priorities 278–279
soil conditions 270
tillage 262–263
tools 266–269
depth 267–268
design 266–267
speed 267
‘s‘stacking’ tools and ‘synergy’ 268–269
weed-crop selectivity 270–271
ability vs. potential 271–272
cultivator-tolerant traits and crops 273–274
improving ability 274
size differential 272–273
and weeds 269–270
Physical weed management 322–324
Plant secondary metabolites 344
Plastic mulching technologies 307–310, 323
double-layer technique 308–309
transparent over black double film 309
two transparent films 308–309
formulation and performance 308–310
double-layer films 308–309
improved plastic films 309–310
improved plastic films 309–310
overview 307–308
PMRA. see Pest Management Regulatory Centre (PMRA)
Polyethylene (PE) 304, 308, 310
Population dynamics model 5, 218
Post-planting cultivation 247
Precision Agriculture 108–110
Precision Weed Management 278
Pre-plant irrigation 214
Preventative weed management 320–321
Primary tillage 322
Propane flame weeding 286, 287–288
Pseudomonas fluorescens 407, 420–423
PSII inhibitors 174
PWC. see Physical weed control (PWC)
Quadrupole-time of flight (QToF) 354
Quinn, Bob 330–332
Quinn Farm and Ranch 330–332
Ranunculus repens 52
Recruitment process 6
Relative water content (RWC) 287
Remote sensing 116–119
Resource pool diversity hypothesis 13
Rhinocyllus conicus 376
Rice, herbicide-resistant weeds in 180
Robotic weeding 278
Robovator 265
Roundup Ready cropping system 175–176
Run-off, herbicide 140–141
RWC. see Relative water content (RWC)
Sarl Radis 265
Sarritor® 379, 404
Satellite imagery 118–119
SEBIOPAG 436
Secondary tillage 322
Seed-eating carabid abundance 438–439
Selective ability 271–272, 274
Selective potential 271–274
cultivator-tolerant traits and crops 273–274
weed–crop size differential 272–273
Selectivity concept 270–271
Self-guided tools 278
Semi-natural ecosystems 46
Sequestration, of herbicides 171–172
Sheeted mulches 209
Single-base pair alteration 170
Site-specific farming. see Precision Agriculture
Site-specific weed management 107–126
computer-controlled injection system 121–122
definition 108–109
description 107–108
field scouting 115–119
measuring spatial and temporal variabilities 115–119
multiple management approaches 123–125
results and interpretation 122–123
sensing devices on sprayer nozzles 120
sensors on autonomous robots 121
uniform management vs. 109–110
variability influence on 110–114
spatial 110–111
temporal 111–114
Soil-building plants 331
Soil fertility management 210–213
Soil-heating process 305
Soil microorganisms 71, 347
Soil moisture 270
Soil nutrients, and solarization 310
Soil pre-treatments 306
Soil quality, and weed suppression 232–234
Soil solarization 303–314, 327
and accelerated degradation of pesticides 310–311
applications in weed control 313
benefits and limitations 307
combining with organic amendments 312–313
combining with pesticides 311
description 303–304
effect on soil nutrients 310
mode of action 304–306
plastic mulching technologies
double-layer technique 308–309
improved plastic films 309–310
overview 307–308
weeds control spectrum 306–307
Soil Solarization: Theory and Practice 303
Soil temperature 304, 305
Soil texture 270
Soil water 304
Solar radiation 305
Solidago canadensis 56
Soliva sessilis 53–54
SolvNix® LC 382–383, 406
Sorghum halepense 56
Sowing time, and transplanting 206–207
Soybean, herbicide-resistant weeds in 179–180
Split tillage 329
Spray drift 134–138, 153
Sprinkler irrigation 214
State seedbed formation 7
ST crops. see Sulphonylurea-tolerant (ST) crops
Structural equation modelling 245
Sulfonylurea herbicides 142
Sulphonylurea-tolerant (ST) crops 197–198
Sweep hoe tool 264
SYNOPS 153
Synthetic auxins 177
Target site herbicide resistance 170–171
codon deletion 171
gene amplification 171
multiple-base pair alteration 171
single-base pair alteration 170
Target transition, and weed life stages 9–11
Thaxtomin A 369, 405
Thermal weed control 262
Tillage 70–71, 261, 262–263, 330
TMGMV U2. see Tobacco mild green mosaic tobamovirus, strain U2 (TMGMV U2)
TMV. see Tobacco mosaic virus (TMV)
Tobacco mild green mosaic tobamovirus, strain U2 (TMGMV U2) 382, 383
Tobacco mosaic virus (TMV) 381–382
Torsion weeder 267
Trait-based approach, in weed communities 241–242
Transplanting technique 206–207
Trial-and-error calibration process 274
Triazine-resistant weeds 174
Tropical soda apple (TSA) 382
Tuff-bilt tractor 265
UAVs. see Unmanned aerial vehicles (UAVs); Unmanned aircraft systems (UAVs)
UK national survey 437–439
detecting signals of weed regulation 438
farm-scale evaluation (FSE) 437
seed-eating carabid abundance 438–439
Uniform management vs. site-specific weed management 109–110
University of Florida 406
University of Victoria 404
Unmanned aerial vehicles (UAVs) 99–100, 116
Unmanned aircraft systems (UAVs) 119
U.S. Organic Standards 321, 322, 323
Viruses, and bioherbicides 381–383
Vision-guided intra-row weeding tools. see Self-guided tools
Visual crop injury 292
Volatilization 138–139
Water management 213–214
Water-soluble herbicides 141
Web of Science 432
Weed ecology 3–18
agroecosystem 13–15
bioenergy crop species potential 15–17
communities in arable systems 11–13
description 3–4
life stages 9–11
and population 5–9
abundance 5–7
spatial and temporal distributions 7–9
target transition concept 9–11
Weed management. see also Integrated weed management (IWM)
cover crops in 242–249
carbon-to-nitrogen ratio 244–245

© Burleigh Dodds Science Publishing Limited, 2018. All rights reserved.
herbicide-resistant weeds control 248
mixtures vs. monocultures 243–244
multifunctional role 248–249
organic no-tillage production 245–248
crop rotation in 228–242
simulations 234–235
soil quality and 232–234
trait-based approach in weed communities 241–242
weed establishment and 250–251
weed species and 237–241
year-to-year variability 236–237
cultural techniques to 203–219
competitive and allelopathic abilities 207–208
crop genotype 207–208
crop population density 204–205
crop spatial arrangement 205–206
description 203–204
irrigation and flooding 213–215
many little hammers (MLH) 215–217
mulching 208–210
soil fertility 210–213
sowing time and transplanting 206–207
in organic crop cultivation 319–334
description 319
farmer case studies 328–333
tools and tactics in 320–328
programmes and bioherbicides 383–386
in cropping systems 385
for herbicide-resistant weeds 385–386
soil solarization 303–314
and accelerated degradation of pesticides 310–311
applications in weed control 313
benefits and limitations 307
combining with organic amendments 312–313
combining with pesticides 311
description 303–304
effect on soil nutrients 310
mode of action 304–306
plastic mulching technologies
weed control spectrum 306–307
Weed phenology 237
Weed-plant interactions 29–39
competition for resources 33–37
direct 33–36
indirect 36–37
description 29
evolutionary perspective 30–31
shared resources 31–33
spatial and temporal dynamics 38
Weed population
distribution and variation 7–9, 94–95
distribution and variation 7–9, 92–93
Weed risk assessment (WRA) 48–49, 53
Weed Science Society of America 173–177
Weed seed predation 328
Weed suppression 339–360
allelochemicals on 343–344
allelopathic interaction process 346–348
analysis in plant and soil 348–350
production and mode of action 344–346
benzoxazinoids in cereal crops 353–355
competitive cereal cultivars in IWM 356–358
competitive crops and cultural strategies 341–343
breeding for 343
by cover crops 342–343, 352–353
crop residue mulches in 350–352
by crop rotation 228–232
enhanced and sustainable crop production 358–359
issues and challenges 339–341
overview 241
plant interference 340
research trends 359–360
row width and seeding density 73–74
soil quality and 232–234
Wheat, herbicide-resistant weeds in 178–179
Wind-driven drift 134, 137, 154
Woad Warrior® 404
WRA. see Weed risk assessment (WRA)