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agricultural robotics
Gert Kootstra, Wageningen University & Research, The Netherlands

1  Introduction

Like any autonomous system, an agricultural robot is in continuous interaction 
with the environment. There are two aspects to this interaction: the robot 
senses the environment and it acts on the environment. To decide on 
appropriate actions to fulfill its task, the robot needs to understand the state 
of the environment. That is, it needs to know about the relevant aspects of 
the environment that influence the decision-making process. Some of this 
knowledge might be expert knowledge describing facts or regularities that are 
generally true. However, as the agricultural environment is uncertain, variable, 
cluttered, and constantly changing, a fundamental part of the knowledge about 
the state of the environment needs to be extracted from the sensor data. The 
process to extract relevant information from sensor data is called perception.

Modern robots are equipped with numerous sensors, which can be 
divided into proprioceptive and exteroceptive sensors (Siegwart et al., 2011). 
Proprioceptive sensors measure quantities related to the internal state of the 
robot, such as the temperature of its electronics, battery charge, motor speed, 
and joint angles. Exteroceptive sensors measure quantities of the robot’s 
environment, such as light intensity, distance, sound amplitude, and the 
earth’s magnetic field. Although all these sensors are relevant to develop an 
autonomous agricultural robot, this chapter focuses on the use of vision-based 
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sensors and range sensors providing two-dimensional (2D) and three-
dimensional (3D) images of the environment, as these are the predominant 
exteroceptive sensors used in current robotics. Using such sensors, notably 
vision cameras and LiDAR sensors, a wealth of information about the spatial 
arrangement and spectral properties of the environment can be extracted 
through the process of visual perception.

Robotic perception in agriculture faces two major challenges: the challenge 
of dealing with variations in the environment and the challenge of operating with 
incomplete information. This chapter discusses advances in visual perception 
for agricultural robotics with respect to these two challenges and it provides an 
outlook on future research to better deal with the challenges. The aim of the 
chapter is to give a broad and comprehensive overview of current academic 
literature on this topic, to provide insights into the main research directions, 
and to propose directions for future research. Examples given in this chapter 
are mainly for arable, greenhouse, orchard, and livestock farming, as the author 
has personal expertise in these areas, but it must be noted that forest robotics 
is facing similar challenges. For an overview of forest robotics, the reader can 
refer to Billingsley et al. (2008) and Oliveira et al. (2021).

In Section 2, a short introduction to visual perception will be given, including 
a description of different sensors and sensor systems with their advantages and 
disadvantages and a set of typical perception tasks. Section 3 describes the 
main challenges for visual perception in the agricultural domain. Approaches 
to deal with these challenges presented in the literature are then discussed in 
subsequent sections. Section 4 discusses methods to deal with variation with 
a focus on the use of deep neural networks, and Section 5 discusses methods 
to deal with incomplete information, motivating the need for active perception. 
Section 6 proposes future research directions and the chapter is concluded in 
Section 7.

2  A short introduction to visual perception in 
agriculture

Visual perception is defined as the process to extract relevant information 
about the environment for the operation of the robot based on data from 
imaging sensors. This section covers different imaging sensors often used in 
agriculture (Section 2.1), image acquisition on robotic platforms (Section 2.2), 
and the visual information extracted from the sensors (Section 2.3).

2.1  Imaging sensors

Imaging sensors detect electromagnetic radiation and form an image to 
represent that information. An image is a 2D array with pixels representing 
the intensity of the radiation. Imaging sensors exist for different parts of 
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the electromagnetic spectrum, such as radar, X-ray scanners, and Teraherz 
cameras. However, for agrirobotic applications, typically, cameras are used for 
wavelengths in the visual and (near) infrared (NIR) spectrum to get information 
about natural objects in the robot’s surroundings under natural or artificial 
lighting. Hence, the remainder of this chapter discusses these camera systems. 
The camera measures the light reflected by the objects.

Red-green-blue (RGB) color cameras are popular for robotic systems. 
The quality, price, size, and energy efficiency of these sensors have improved 
drastically in the past decades with the introduction of mobile phones. They 
allow to get color information about the surroundings of the robot in high 
spatial resolution. This provides sufficient information to detect objects in the 
agricultural environment and to get geometrical and color information about 
these objects needed to make decisions for navigation and operation. In 
environments with natural illumination, such as arable fields or greenhouse, 
there can be high differences in the intensity in reflectance of sun-lit and shadow 
parts of the scene, which can cause over- or under-exposure of camera images. 
To deal with the large intensity difference between sun and shadow, cameras 
with a high dynamic range can be used, for instance, to segment vegetation 
and soil in the images (Suh et al., 2018a). Such high-intensity differences can 
also be prevented by using covers and artificial lighting (e.g. Arad et al., 2019).

To get more information about the status of the crop or its produce, spectral 
imaging systems (also called imaging spectroscopy) can be used. Where RGB 
cameras use three spectral bands (corresponding to red, green, and blue), 
spectral cameras use multiple bands in the electromagnetic spectrum, in some 
cases ranging up to hundreds of spectral bands (Polder and Gowen, 2021). 
In the past, this technique would be referred to as multi- or hyper-spectral 
imaging, but nowadays the term ‘spectral imaging’ is preferred (Polder and 
Gowen, 2021). The cameras provide high spectral resolution, combining the 
benefits of imaging systems with spectroscopy, allowing chemometrics to 
assess the chemical composition. Information about pigments in plants or 
fruits, such as chlorophyll or carotenoids, can be obtained from the visible part 
(400–700 nm) and information about, for instance, sugars, proteins, and water 
can be obtained from the NIR part (700–2500 nm). This can, for instance, be 
used for disease detection (Mishra et al., 2020; Polder et al., 2019) to establish 
food safety and quality (Qin et al., 2013) or to quantify variations in fish feeding 
behavior (Zhou et al., 2017). The downside of spectral cameras is the higher 
price and the lower spatial resolution.

For robots to be able to operate in the agricultural environment, it is 
important that they get 3D information about objects in the environment. To 
this end, depth cameras or light-detection-and-ranging (LiDAR) sensors are 
used (Horaud et al., 2016). Depth cameras, often in combination with color 
(so-called RGB-D cameras) get depth information typically from triangulation 
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using stereo vision (comparing left and right camera images) or using project 
light (comparing an emitted pattern with the reflected pattern observed in a 
camera image). LiDAR is based on the time-of-flight principle, where the time 
it takes for an emitted laser beam to reflect back in the sensor is measured to 
get depth. Although a LiDAR is strictly speaking not an imaging sensor, it can 
be used as such in combination with an RGB camera. Both RGB-D cameras 
and LiDAR can provide 3D point clouds, which are a set of points with their 
3D position coordinates. Active 3D camera systems, like LiDAR and projected-
light cameras, emit light onto the environment. These systems sometimes have 
trouble in outdoor situations with strong sun light interfering with the projected 
light or rain and snow disturbing the distance measurements, although the 
quality of these sensors is rapidly improving, making outdoor applications 
possible. Stereo-vision cameras are passive sensors that have no trouble 
dealing with outdoor situations. However, the downside of stereo vision is the 
lack of 3D information on non- or low-textured surfaces. Using 3D information 
allows, for instance, fruit detection and localization in orchards (Fu et al., 2020) 
or 3D localization and size estimation for robotic harvesting of broccoli heads 
in arable fields (Blok et al., 2021).

2.2  Image-acquisition systems

The acquisition of imaging data can be done with different robotic devices that 
can generally be divided into mobile robots – unmanned aerial vehicles (UAVs) 
and unmanned ground vehicles (UGVs) – and robotic arms (Corke, 2017). 
Unmanned aerial vehicles are often used for monitoring and phenotyping 
applications on arable fields (Tsouros et al., 2019; Xie and Yang, 2020; 
Chlingaryan et al., 2018). They have the advantage that they can easily cover 
large areas in a short time. Despite the high flying altitudes, modern high-
resolution cameras still allow sub-centimeter pixel resolution, sufficient to 
monitor individual plant growth of, for instance, cabbage and pumpkin (Jamil 
et al., 2022). The downside of UAVs, however, is that they need relatively stable 
weather conditions and have a limited flight time. Furthermore, due to limited 
payload and the disturbance of the crop when flying at low altitudes, UAVs are 
not very suitable to perform operations.

Unmanned ground vehicles are able to get much closer to the crops, 
providing higher resolution imaging data and allowing robotic operations. 
Autonomous weeding robots, for instance, typically classify plants and detect 
their location based on high-resolution color and/or depth data to determine 
spraying actions (Ruigrok et al., 2020) or mechanical weeding actions (Pretto 
et al., 2021). Other examples are mobile robots in orchards for yield prediction 
(Bargoti and Underwood, 2017), and autonomous harvesting (Silwal et al., 
2017; Williams et al., 2019). Another advantage of a UGV for image acquisition 
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is the potential to use artificial light and a cover to shield off ambient light. The 
resulting controlled illumination conditions improve perception, for instance, 
to detect the subtle visual changes caused by potato diseases (Polder et al., 
2019). In other work, a strong short-range flashlight is used to minimize the 
effect of ambient light, for instance, Arad et al. (2019).

Eye-in-hand systems, where a camera is mounted on a robot arm, make 
it possible to easily reposition the camera to observe a target object from 
different viewpoints, providing more complete information and dealing with 
occlusions (Hemming et al., 2014). In Barth et al. (2016), an eye-in-hand setup 
was developed to actively search for bell peppers to harvest in a greenhouse. 
Using visual servoing, the robot could subsequently find an optimal pose for 
harvesting (Arad et al., 2020). Using an array of nine cameras in the robot’s 
hand, the next viewpoint that provided the most unoccluded view on the object 
of interest could be determined, which iteratively resulted in the best local view 
on the object (Lehnert et al., 2019). The topics of multi-view perception and 
active vision are discussed in more detail in Section 5.

Besides the use of the above-mentioned mobile robots, fixed image-
acquisition systems are often used for plant phenotyping or monitoring tasks 
in confined spaces. Examples are Gantry systems that transport cameras and 
other sensors over the crop, a so-called sensor-to-plant system, for instance, 
Chaudhury et al. (2019), sometimes used in combination with a mobile robot 
(Nicolas et al., 2016), and plant-to-sensor systems, where plants are transported 
to a sensor station for detailed scanning, for instance, (Golbach et al., 2016; 
York, 2019). It must also be mentioned that the robotic imaging systems do not 
necessarily need to be fully autonomous, but can, for instance, also be mounted 
on implements that are still navigated with human assistance.

2.3  Visual information

The purpose of the image-acquisition system is to provide relevant information 
to the robot about the objects in its environment. On the one hand, this 
concerns information that is relevant to control the robot’s actions, for instance, 
the detection and locations of plants or trees to navigate through a row 
(Bonadies and Gadsden, 2019; Blok et al., 2019), or the location of a ripe fruit 
to perform harvesting actions (Zhao et al., 2016). On the other hand, it concerns 
information that needs to be provided to the farmer or a management system, 
such as the count of apple blossoms to determine thinning actions and predict 
future yield (Bulanon et al., 2020) or the plumage condition of chickens to 
prevent welfare issues (Lamping et al., 2022).

Three types of information are distinguished that are relevant to extract 
from image data: (1) spatial information about objects, (2) information about 
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object properties, and (3) temporal information about objects. These types of 
information are discussed in the next paragraphs.

Object pose is an example of spatial information. Typical, object pose is 
defined as the 3D position and 3D orientation (six-dimensional pose) of an 
object. Methods have been developed, for instance, to predict the pose of 
fruits to provide information for grasping (Wagner et al., 2021; Guo et al., 
2020). When there is rotational symmetry in the fruits, the dimensionality of 
the pose can be reduced to, for instance, 5D for apples (Kang et al., 2020). 
For animals, often another definition of pose is used. Animal pose is typically 
defined by a set of key points representing different body parts, providing 
information about the posture, for instance, Mathis et al. (2018) and Russello 
et  al. (2022). Also, the object shape can be relevant, for instance, to grade 
kiwifruits (Fu et al., 2016), to determine the size and dimensions of orchard 
trees for variable-rate spraying (Zhang et al., 2018; Abbas et al., 2020), to 
estimate heifer height and body mass of young cows (Nir et al., 2018), or to 
estimate feed intake of individual cows (Saar et al., 2022). Furthermore, the 
spatial arrangement of objects in the environment is important information 
for robot operation, for instance, information about the location of trees for 
navigation in orchards (Blok et al., 2019), information about crop rows for 
localization and navigation in arable fields (Winterhalter et al., 2021), and the 
spatial arrangements of fruits to plan harvesting actions (Kurtser and Edan, 
2020).

Object properties are visual and geometrical properties that provide 
information about the objects themselves. Some of these properties are low-
level features that can directly be observed, such as color properties and 
texture, and others are more high-level features that can be derived from low-
level features, such as ripeness and the detection of diseases. In Halstead et al. 
(2018), for instance, the ripeness of bell peppers on the plant is estimated from 
color images. Other examples are the detection and classification of defects 
of broccoli heads in the field based on color images (Blok et al., 2022), the 
detection of the potato virus Y on potato plants based on spectral images 
(Polder et al., 2019), and the automatic scoring of the body condition of dairy 
cows (Spoliansky et al., 2016).

Temporal information is crucial when analyzing the gait of animals. Based 
on video frames, the animal pose can be determined, for instance, for cows 
(Russello et al., 2022) and poultry (Doornweerd et al., 2021). By tracking the 
animal over time, the changes of the pose provide information about the gait, 
which can be used as a welfare indicator (Nasiri et al., 2022). Also for robot 
perception, it can be important to track objects over time, for instance, to 
prevent double counts when assessing fruit yield in a greenhouse (Smitt et al., 
2021; Halstead et al., 2018; Halstead et al., 2021).
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3  Challenges in visual perception for agricultural 
robotics

In the previous section, many examples of agricultural robotic systems have 
been discussed. However, despite the active research field, there are not many 
commercially successful agricultural robots on the market yet. This is a sharp 
contrast with, for instance, the automotive or electronics industry, where many 
robots are operational in the production line to date. The main difference 
between the agricultural and automotive environment is the level of control 
over the environment. The environment for robots working in an automobile 
factory is completely under control, with controlled lighting, clean rooms, 
identical objects, and full knowledge about the location and shape of all the 
objects. This provides the robot with complete knowledge of the environment, 
which eliminates any uncertainties, allowing even pre-programmed behaviors. 
The agricultural environment, on the other hand, is far less structured, giving rise 
to uncertainty about the state of the environment. These uncertainties stem from 
variations in the objects and environmental conditions, and from incomplete 
information about the environment (Kootstra et al., 2020; Kootstra et al., 2021). 
In Kurtser and Edan (2018), a statistical model was developed to model the 
detectability of bell peppers depending on factors like the viewing distance and 
viewing angle. Their analyses clearly illustrate both the challenge of incomplete 
information and the variation over different greenhouses and cultivars of bell-
pepper plants. Both challenges will be discussed in the next subsections.

3.1  The challenge of variation

The agricultural task environment contains a lot of variation. Four different types 
of variation are distinguished (Kootstra et al., 2020; Kootstra et al., 2021): (1) 
object variation, (2) environmental variation, (3) variation in cultivation systems, 
and (4) task variation.

 1 The object variation is a consequence of natural variation. Every instance 
of a plant, fruit, vegetable, or animal is unique in appearance, geometry, 
mechanical properties, and behavior. Already within one species, the 
variation can be substantial and it is even more apparent between 
species. Also, non-living matter, such as soil comes in many different 
variations.

 2 The environmental variations are, for instance, differences in weather 
conditions, causing differences in illumination (brightness and color) and 
humidity, and also deliberate changes made to the physical environment 
throughout production cycles, such as plowing and irrigation.

 3 Different farmers use different cultivation systems. Apple trees, for 
instance, can be grown in orchards using the tall spindle system, v-trellis 
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system, or espalier support system, and animals can be raised outdoors 
in a meadow or indoors in a barn.

 4 Task variation is caused by the need for farmers to use a robot not for 
one single task, but for a variety of different tasks. A robot that can be 
used for harvesting, deleafing, and rehanging of tomato plants, for 
instance, has more economical value to a grower than a robot that is 
specialized in harvesting only.

All these different sources of variation cause a lot of uncertainty for the robots 
operating in agricultural environments. Specifically, for visual perception, 
it results in a lot of variation in the appearance of the objects in the images 
and point-cloud data. This requires that perception methods can deal with 
this variation and that they can generalize to new environments. In Ruigrok 
et  al. (2023), the generalization of a deep neural network in the agricultural 
context was tested using imaging data from many different sugar-beet fields, 
containing, among others, variation in cultivar, soil type, growth stage, and 
weed pressure. It was shown that even state-of-the-art deep neural networks 
suffer from a loss in performance when tested on a new field, the so-called 
generalization gap. Such a gap was also found when applying a trained neural 
network on a new variety of broccoli (Blok et al., 2020). In Section 4, approaches 
to deal with variation are discussed.

3.2  The challenge of incomplete information

An agricultural robot has only partial information about the environment due to 
(1) sensor limitations and (2) occlusions.

 1 Apart from the limits in which sensors operate, such as the spectral wave 
lengths and field of view, imaging sensors occasionally fail in agricultural 
environments, especially under uncontrolled illumination. Examples are 
overexposure due to direct sun light, under exposure due to strong 
shadows, and lens flares. Image data are also often noisy, which is 
particularly apparent in depth data, which is incomplete at untextured 
surfaces and near object boundaries.

 2 When objects are occluded, they are hidden from the camera view by 
other objects or by the object itself (self-occlusion). Especially in cluttered 
environments, such as orchards and high-wire greenhouses, occlusions 
form a substantial challenge for robots to perform their tasks. A study of 
the visibility of bell peppers in a greenhouse showed that even with a 
requirement of only 50% visibility, at best 69% of the fruits were visible 
in the images (Hemming et al., 2014). Combining five viewpoints could 
raise this to a 90% detection rate. Similarly, in Boogaard et al. (2020), 36 
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viewpoints per plant were needed to reliably observe the leaf and fruit 
nodes in cucumber plants. Bulanon et al. (2009) analyzed the visibility 
of fruits on orange trees and reported that for a single viewpoint, only 
19–47% of the fruits were visible, while combining 9 viewpoints resulted 
in 91% visibility.

In Section 5, approaches to deal with incomplete information, specifically with 
occlusion, are discussed.

4  Dealing with the challenge of variation

Deep neural networks boosted the ability of agricultural robots to deal with 
variation, as will be discussed in Section 4.1. However, even with the use of 
deep learning, variation in agricultural environments remains a problem as the 
generalization of perception methods is not sufficient. Section 4.2 discusses 
different approaches in the literature to minimize the generalization gap.

4.1  The era of deep learning

Generally speaking, a machine vision algorithm consists of two parts; a feature-
detection part to extract relevant image features from the camera images and a 
decision-making part, where the features are used to perform perception tasks, 
such as segmentation, classification, or object detection. For many decades, 
developments in both parts were focused around hand-crafted algorithms. 
Many powerful feature extractors were developed, such as the scale-invariant 
feature transform (SIFT) (Lowe, 2004) and pyramids of histograms-of-gradients 
(Bosch et al., 2007), which could be used, for instance, to match the current 
camera image with features of objects stored in a database. Later, the decision-
making part was replaced with machine learning algorithms. In (Suh et al., 
2018b), for instance, a support-vector machine, random forest and neural 
network were used to classify sugar-beet and potato plants based on a bag-of-
visual-words model using SIFT features. A downside of these methods, however, 
is that the quality of the machine vision algorithm is limited by the quality of the 
image features. And it turned out to be very challenging to develop feature 
algorithms that are invariant to various variations in the appearance of objects 
in agricultural environments.

With the success of AlexNet (Krizhevsky et al., 2012) in the ImageNet 
competition (Russakovsky et al., 2015), a new class of methods started to 
dominate the field of machine vision; those based on deep learning, specifically 
on convolutional neural networks (CNNs). With a combination of convolutional 
layers, pooling layers, and fully collected layers, these networks can jointly learn 
feature extraction and decision-making. With end-to-end learning, machine 
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vision tasks can be optimized based on a large training set with images and 
corresponding desired output values (Goodfellow et al., 2016).

These techniques also revolutionized machine vision for robotic 
applications in agriculture. In a survey of 40 studies on the use of deep learning 
for machine vision tasks in agriculture and food production, it was concluded 
that deep neural networks outperform other existing techniques (Kamilaris and 
Prenafeta-Boldu´, 2018). Zhu et al. (2018) provided an overview of deep learning 
for the use of smart agriculture. Deep neural networks were shown to be able 
to detect seven different types of fruits in Sa et al. (2016) using a multi-modal 
version of Faster R-CNN based on RGB and NIR images. Also when dealing with 
3D point clouds, deep neural networks have shown their benefits (Boogaard 
et al., 2021; Shi et al., 2019) although in the 3D domain, more classical feature-
based methods are still competitive (Dutagaci et al., 2020).

However, even with the use of deep neural networks, a generalization gap 
is often observed, limiting the extent to which agricultural robots can deal with 
variations in the environment. The difference in the distribution of the images 
in the training set and that of the new images during execution is causing a 
drop in performance. This was, for instance, observed when dealing with a new 
cultivar of broccoli (Blok et al., 2020) and when confronted with a new sugar-
beet field with, among others, a variation in cultivar, soil types, growth stages, 
and illumination (Ruigrok et al., 2023). This limitation to deal with variation 
is a showstopper for commercial applications, as these need a guaranteed 
performance in any situation occurring in practice. Falling back on non-deep-
learning approaches with limited but more predictable behavior can then be 
preferred. This calls for methods to minimize the generalization gap.

4.2  Minimizing the generalization gap

This subsection discusses a few approaches to minimize the generalization gap.

4.2.1  Transfer learning and image augmentation

To allow deep neural networks to generalize better to new situations – that is, to 
let them deal better with the variation present in the agricultural environment – it 
is important to apply regularization techniques, especially when there is limited 
available training data. Transfer learning, the process of first training a neural 
network based on a large general image dataset, such as ImageNet, followed 
by fine-tuning on a specific dataset in the relevant domain, was shown to also 
be beneficial for agriculture tasks (Chen et al., 2020; Thenmozhi and Reddy, 
2019). Another common method is to apply image augmentation to increase 
the variation of the training set. This was shown, for instance, to increase the 
level of generalization to a new species of broccoli in Blok et al. (2020) and 
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improve the identification of sheep (Hitelman et al., 2022). Smart sampling 
techniques during learning can improve performance in the presence of class 
imbalance (Boogaard et al., 2022).

4.2.2  Composition of the training set

The generalization gap arises when the distribution of images in the training set 
is not covering the distribution of images that are encountered during execution 
(or in the test set). Figure 1 illustrates a two-class classification problem with 
the total distribution covering all possible variations in the shaded green 
and red areas. On the left, you see a typical situation, where training data is 
taken from only a limited set of different conditions (fields, cultivars, etc.). In 
such situations, there is a high change that the trained perception method is 
confronted with new situations that cannot be handled. One way to improve 
the quality of the training set is to take more training samples from the training 
conditions (bottom of Fig. 1). This does cover a somewhat larger part of the 
total distribution. However, large parts are still not covered. Getting training 
data from more different conditions is more effective to cover a larger area of 
the total distribution (top of Fig. 1). However, both are needed to properly deal 
with all variations that can be encountered during execution. This illustration 
matches with the results found in Ruigrok et  al. (2023), where data from 25 
different fields with sugarbeet and potato plants were collected, with variation 
in cultivars, spoil types, growth stages, and weed pressure, to train a deep 
neural network for plant detection. Keeping the number of training images 
fixed to 500, the performance on the five independent test sets was shown to 
increase significantly when training data were used from more different fields. 

Figure 1 An illustration of the two ways to improve the quality of the training set. The 
shaded green and red areas symbolize the total distribution of all possible images of 
plants A and B. The darker areas illustrate the distribution of the training data. The training 
data can better cover the total distribution by adding more samples of the same fields, 
but more importantly, by adding more variation by adding data from new fields.
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The performance was further improved by including more training images. This 
shows the importance to have sufficient variation and samples in the training 
set in order to minimize the generalization gap.

4.2.3  Incremental learning

However, even when using all training data from 20 different fields, a significant 
generalization gap was shown for some of the test fields that still contained 
something unique not found in the training fields (Ruigrok et al., 2023). This 
generalization gap could effectively be mitigated using incremental learning, 
where the neural network trained on the large and varied data set was fine-
tuning on only a small number of training images from the specific field. The 
same was observed in Blok et al. (2020), where only a handful of images were 
needed to successfully fine-tune an instance-segmentation network to detect 
broccoli heads of a new cultivar.

4.2.4  Active learning

To obtain a high-quality dataset, it is important to add the right samples to the 
training data, that is, to add training samples that better cover the variation 
in possible future encounters. Randomly adding new training samples runs 
the risk of adding redundant samples containing information that was already 
covered in the training set. Instead, a different strategy is needed to select 
the most relevant new training samples, allowing the perception methods to 
achieve greater accuracy with fewer labeled training samples. This is important, 
especially in the field of agricultural robotics, where there is plenty of unlabeled 
data, but where it is difficult and time-consuming to get high-quality annotated 
data.

Active learning refers to a set of methods that allow machine learning 
methods themselves to choose the training data from which to learn (Settles, 
2012). The general concept is illustrated in Fig. 2. Based on an initial training 
set, an active-learning model is trained. This model is then applied to all the 
data in a large pool of unlabeled images. For each unlabeled image, the 
method provides a prediction-uncertainty value. These are then used to select 
a number of new images that the method is most uncertain about, which are 
then labeled by a human (the oracle) to add as new data to the training set. 
Doing this in an iterative manner, allows the active learner to establish a high-
quality training set.

The key in active learning is to estimate the prediction uncertainty of 
the model, also called the epistemic uncertainty (Kendall and Gal, 2017). In 
Bayesian neural networks, the epistemic uncertainty is modeled by including 
a distribution over the weights of the network, basically capturing the set 
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of all plausible models given the training data. With more training data, the 
estimation of the model weights typically becomes more certain. However, to 
keep things tractable, usually an approximation of this Bayesian formulation 
is used by applying Monte-Carlo dropout (Gal and Ghahramani, 2016). In this 
procedure, multiple stochastic forward passes are applied to the same input. 
In each inference run, random dropout is applied, which basically disables 
part of the network connections at random. Prediction uncertainty can then be 
obtained by measuring the variation in the predictions made in the multiple 
stochastic forward passes, for instance, using the variance of the predictions 
for regression or using entropy for classification. Building upon Morrison et al. 
(2019), in Blok et al. (2022) Monte-Carlo dropout was used to estimate model 
uncertainty for an instance segmentation task of the detection of broccoli heads 
and the classification of different defects. Here, dropout was applied solely in the 
different heads of the Mask R-CNN network, not in the feature extraction part, 
speeding up computation time. The overall epistemic uncertainty consisted of 
semantic uncertainty (class), spatial uncertainty (bounding-box and mask), and 
uncertainty in object presence.

Using the epistemic uncertainty for active learning resulted in significantly 
better performance with the same amount of training data compared to the 
random selection of training data (Blok et al., 2022), indicating a better selection 

Figure 2 An illustration of the active-learning cycle for a classification task (green/red). 
The initial training set covers only part of the total distribution that can occur in reality 
(shaded green and red parts). Starting from this initial training set, the perception model 
is trained. This model is then applied to all available unlabeled images or during run-
time. The images that the model is most uncertain about are then selected for human 
annotation to create an improved new training set. This process is continuously repeated.
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of training data using epistemic uncertainty. This was further supported by 
the fact that the method selected more images containing underrepresented 
classes, resulting in a more balanced training set. A similar active-learning 
approach was taken in Chandra et  al. (2020) to improve the performance 
of a deep neural network for panicle detection in cereal crops. Older work 
applied active learning to classical machine learning methods to classify 
crops and weeds using spectral imaging data (Pantazi et al., 2016). However, 
it must be noted that active learning is not always successful. In Rawat et al. 
(2022), active learning outperformed random sampling in only one of three 
semantic segmentation tasks for fruit detection. This might be caused by the 
composition of the datasets and the specific uncertainty metric used. More 
research is needed to ensure effective active learning in all cases.

Active learning is a human-in-the-loop machine learning approach 
(Monarch, 2021). By combining the expertise of human annotators with the 
ability of the machine to process large amounts of data, this hybrid approach 
allows the efficient selection of training data. Moreover, it allows live-long or 
continuous learning, where the agricultural robot asks for human assistance 
whenever it is uncertain about its own perception, becoming more and more 
capable to deal with the variation in agricultural environments.

4.2.5  Unsupervised and self-supervised

Where labeled data is costly to acquire, the costs of getting unlabeled data 
are typically quite low, for instance, by using UAVs to acquire images of fields. 
Unsupervised learning methods can exploit large unlabeled datasets by 
finding patterns in the data in order to learn good representations of the data. 
In dos Santos Ferreira et al. (2019), for instance, unsupervised deep clustering 
methods were used on two large image datasets with weed plants, which 
allowed the unsupervised training of visual features that were representative 
of the data. This was then combined in a semi-supervised approach, where 
human annotators annotated the clusters, greatly reducing the amount of 
human annotations needed, while achieving high classification results.

Another use of unsupervised methods is dimensionality reduction. Auto 
encoders are a popular way to reduce the dimensionality of image data and 
to capture the most important patterns in the data. This was applied to disease 
detection on peach leaves in Bedi and Gole (2021). They used a convolutional 
auto-encoder to learn a latent/embedded representation of the images, which 
was then used as input for a simple CNN to classify images as healthy or 
diseased, combining the power of unsupervised and supervised learning.

Self-supervised learning is another brand of unsupervised methods that 
gaining a lot of momentum and was promoted by LeCun and Misra (2022). 
Like supervised learning, these methods also learn from input–output pairs, but 
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different from supervised learning, these outputs are not provided by human 
annotation, but collected by the system itself from the unlabeled data. This can 
be framed as predictive learning, for instance, by learning to predict one part 
of the image based on another part (image completion), or by predicting the 
future based on the past using temporal data.

Contrastive learning is a self-supervised learning approach where a network 
is trained to learn an embedding that minimizes the distance between images 
from the same domain (positive samples) while maximizing the distance between 
images from different domains (negative samples). These positive and negative 
samples can be taken, for instance, from datasets of different crops, or a positive 
pair can be made with an image and a heavily distorted/augmented version of 
that image, while the negative pair are two different images. This way, contrastive 
learning results in a meaningful feature representation of the images capturing 
essential patterns in the unlabeled data. This principle was used in the agricultural 
domain, for instance, in Güldenring and Nalpantidis (2021), such an approach 
was applied for unsupervised pre-training of a CNN, which was then fine-tuned 
for a downstream task (plant classification) on a small amount of labeled data. 
This was shown to outperform conventional methods that use pre-training based 
on ImageNet, especially when limited amounts of labeled data are available.

4.2.6  Synthetic data and generative learning

The lack of training data to get robust perception models that generalize 
well can also be solved by enriching the training set using synthetic data. In 
Turgut et al. (2022), 3D synthetic rosebush models were successfully used to 
pre-train 3D point-based deep neural networks for plant-part segmentation. 
Using realistic 3D structural plant models, Barth et al. (2018) and Barth et al. 
(2019) rendered a large set of synthetic images to bootstrap training of a CNN 
for the segmentation of plant parts for a bell-pepper harvesting robot. They 
further increased the realism of these images using a generative adversarial 
network (GAN), more specifically CycleGAN (Barth et al., 2020). A conditional 
GAN was used in (Abbas et al., 2021) to generate additional synthetic images 
of tomato leaves, boosting the performance of a CNN for disease classification. 
A similar approach was taken in Arsenovic et  al. (2019) using StyleGAN to 
generate additional synthetic images. Although several successes of the use 
of GANs to generate additional training data are reported in the literature, van 
Marrewijk et al. (2022) noted that in some studies, the evaluation was not sound 
as the GANs themselves were trained on data outside of the original training 
set, giving an unfair advantage over training on only the original set. They also 
concluded that the advantage of using synthetic data from a GAN is limited 
and time spent on setting up the GAN and optimizing the hyperparameters 
might be better spent on labeling some additional training data. Hence, the 
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effectiveness of using generative learning to improve the generalization of 
neural networks needs to be further investigated.

5  Dealing with the challenge of incomplete 
information

Section 5.1 discusses some passive approaches to deal with incomplete 
information. However, as discussed in Section 5.2, multi-view and active-vision 
approaches have been proposed that allow agricultural robots to actively 
gather more information about the environment to minimize the information 
gap.

5.1  Passive visual perception

Despite the fact that robots have the ability to actively gather new information, 
most of the work on machine vision for agricultural applications have focused 
on passive perception, that is, trying to get as much information out of a single 
image. Whenever the objects of interest are well visible in the image, that 
approach is perfectly valid. However, when the objects are not well visible in 
the image, for instance, due to sensor noise, flares, or because the objects are 
partially or completely occluded, a passive approach is inadequate.

To some extent, deep neural networks can deal with partial occlusions 
using a single image by developing and training them to be robust to occlusion 
and even to predict the occluded parts. In Li et al. (2022), for instance, a method 
was developed for the localization of partially occluded apples. Blok et  al. 
(2021) trained a neural network to predict the complete 2D mask of partially 
occluded broccoli heads, improving the size estimation. Similarly, the full 3D 
point cloud, including the non-observable parts, could be predicted from 
monocular images (Zeng et al., 2018). Others used a conditional GAN to learn 
to generate non-occluded versions of images with occluded grape bunches 
(Kierdorf et al., 2022).

Although these methods gain some improvement in performance, 
they can only predict the occluded parts based on patterns observed in the 
training data. If there is sufficient regularity or symmetry in the shape of the 
objects, this can work well. However, many agricultural objects are quite 
irregular, making it much more challenging to accurately predict the occluded 
parts, which is often needed for robotic operation. Furthermore, in agricultural 
production, anomalies and deviations from the norm are often relevant 
features, which cannot be predicted from partial information at all. Moreover, 
in cluttered environments, many objects are heavily or even fully occluded. In 
a bell-pepper greenhouse, for instance, in 31% of the cases, less than half of 
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the fruit surface was visible in the images (Hemming et al., 2014), many were 
even completely hidden from view. To properly deal with such situations, the 
information gap needs to be minimized by allowing robots to gather more 
information.

5.2  Minimizing the information gap

This subsection discusses a few approaches to minimize the information gap.

5.2.1  Multi-view visual perception

Hemming et al. (2014) showed that in a cluttered environment, the detection of 
bell peppers was significantly improved when combining multiple viewpoints 
with an eye-in-hand system; going from 69% for a single viewpoint to 90% for 
five viewpoints. In Sa et al. (2017), a fixed scanning path was applied to acquire 
a more complete 3D point-cloud reconstruction of a bell pepper from multiple 
viewpoints to be used to guide the harvesting operation. A similar approach 
was taken in Barth et al. (2016), where apart from a 3D reconstruction, the scan 
was used to find the best view on the to-be-harvested bell pepper.

In (Halstead et al., 2018), a vision system was developed to estimate the 
yield in a bell-pepper greenhouse. They developed a multi-view approach 
with the robot taking images while traversing the crop row. To prevent double 
counting and to deal with fruits that are (partially) occluded in some frames, 
a multi-object tracker was implemented, based on the overlap in object 
detections in consecutive frames. The tracking method was improved in Smitt 
et al. (2021) using the reprojection of the object mask in the current frame to 
the expected location in the next frame using depth data and wheel odometer. 
This method was further refined and applied in two different use-cases in 
Halstead et  al. (2021). Kurtser and Edan (2018) analyzed the detectability of 
bell pepper depending on viewing distance and angle, which can be used to 
select more profitable sets of viewpoints to increase detectability. Not only can 
multiple views increase the chance of having the objects of interest in view, 
they can also be used to improve the detection. Observing plants from ten 
different camera viewpoints, for instance, did not only result in more complete 
3D reconstructions but it also improved the plant-part segmentation (Shi et al., 
2019). Van Essen et al. (2022) showed that fruit maturity classification could be 
improved by dynamically selecting additional viewpoints. In van Essen et  al. 
(2021), the species classification of fish on a conveyor belt was improved by 
tracking the fish over multiple frames and combining the predictions of a neural 
network probabilistically. Russello et al. (2021) showed that the pose estimation 
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of partially occluded walking cows could be improved with a temporal network 
including multiple video frames.

It is clear that multi-view perception has many advantages over passive 
perception. Still, the viewpoints in the above-mentioned studies are set in 
advance by the developer and not tuned to the current situation, which does 
not guaranty that the required information is acquired. To further improve 
perception, agricultural robots would benefit from actively viewing the world.

5.2.2  Active visual perception

Using a matrix of nine cameras connected to the end effector of a robot, 
Lehnert et al. (2019) developed a visual servoing method that determines the 
next viewpoint to get a less occluded view of a bell pepper. This system was 
used to train a deep neural network to predict the next viewpoint from just one 
camera image (Zapotezny-Anderson and Lehnert, 2019).

The downside of visual-servoing approaches is that they require a non-
occluded starting viewpoint and can get stuck in local optima. Next-best-view 
(NBV) planners based on occupancy grids can deal with this, as they are based 
on a calculation of information gain that guides the robot to explore unseen 
parts of space. As illustrated in Fig. 3, based on a current reconstruction of 
the scene, the robot evaluates a few candidate viewpoints to then choose 
the viewpoint with the highest expected information gain. In Zaenker et  al. 
(2021), this was, for instance, used to detect fruits on a number of plants in a 
small simulated greenhouse. It showed beneficial to combine the global NBV 

Figure 3 An illustration of the active-perception next-best-view paradigm. The robot has 
a current reconstruction of the world (a tomato plant in this case), which represents the 
seen and unseen parts of space. Based on this, a prediction can be made of the expected 
information gain from different new viewpoints, in order to select the best next view.
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planning with local view planning based on visual servoing (Zaenker et al., 
2021). Burusa et al. (under review) added an attention mechanism to efficiently 
reconstruct specific plant parts and showed that it outperformed random and 
fixed multi-view approaches.

The NBV planning could be further optimized and accelerated using deep 
reinforcement learning, providing additional coverage of unexplored space 
and new information about the relevant parts as a reward to train the system 
(Zeng et al., 2022). Alternatively, in Han et al. (2022), the information gain for 
new viewpoints was learned by a network in a supervised manner, acquiring 
the training data by comparing the reconstruction to a known 3D point cloud 
of the object.

5.2.3  Sensor fusion

Instead of redirecting the same sensor, the challenge of incomplete information 
can also be approached by combining different complementary sensor 
modalities. The detection of immature citrus fruit, for instance, was boosted by 
combining color and thermal images (Gan et al., 2018). Semantic segmentation 
of apple trees (Kang and Wang, 2023) and cucumber plants (Boogaard et al., 
2021) was improved with a fusion of 3D and color data. For the automatic 
identification of plant diseases using UAVs, the fusion of thermal and spectral 
imaging was often successful (Neupane and Baysal-Gurel, 2021).

6  Directions for future research

Sections 4 and 5 discuss approaches to deal with the challenges of variation 
and incomplete information. However, the challenges are far from being 
resolved and future research needs to further progress along these lines. There 
are some suggestions for future research on the short term to better deal with 
the challenges, and some suggestions for future research on the long term to 
get to a higher level of autonomy in agricultural robotics.

6.1  On the short term: dealing better with variation and 
incomplete information

From this review, it is clear that the perception for agricultural robotics has 
greatly improved in the past decade. Building upon the progress in the field 
of deep learning, the performance of machine vision algorithms improved 
significantly and methods became more robust to variations present in the 
agricultural environment. However, as discussed in Section 3, the challenge of 
variation is not yet solved. Similarly, progress in the general field of robotics 
provided methods for multi-view and active perception, yet, the challenge of 
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incomplete information remains for robots to effectively deal with cluttered 
agricultural environments. In this subsection, a few specific directions for future 
research are being discussed.

6.1.1  Quality of training set

It was shown in Ruigrok et  al. (2023) that the generalization of deep neural 
networks to new situations greatly benefits from a rich and varied training set. 
This calls for better sharing of labeled datasets. Even research institutes are 
cautious with sharing their data, but especially companies consider data the 
new gold. Although this is possibly true, keeping the data private hampers 
progress in the field. Moreover, many of the small startups that currently enter 
the field are too small to collect rich-enough datasets to deal with all the variance 
present in agricultural environments. Alternatively, datasets can be enriched 
using image augmentation. Currently, mainly general augmentation methods 
are applied, which are suboptimal or sometimes even harmful in a specific 
domain (Balestriero et al., 2022). Instead, domain-specific augmentation can 
improve the generalization of the perception methods (e.g. Su et al., 2021; 
Ratner et al., 2017).

6.1.2  Active learning and uncertainty

Perception models need to become better aware of the uncertainty in the 
prediction. This is important to improve the safety and reliability of agricultural 
robots. When uncertain, actions can be postponed, new observations can be 
acquired or human assistance can be called to prevent errors. The latter might 
sound like a weak option, and fully autonomous systems are indeed the aim, 
but for the coming decade, robots need the assistance of humans to operate 
over long periods of time and in many different environments. More research 
on human-in-the-loop systems therefore needs to be done. Not only on the 
topic of active learning but also on effective interfaces to minimize the human 
effort to assist the robot (Monarch, 2021).

6.1.3  Unsupervised learning

In his cake analogy, Yann LeCun views machine intelligence as a cake, with 
reinforcement learning as the cherry on top, supervised learning as the icing, 
and unsupervised learning as the bulk of the cake (LeCun, 2016). In other 
words, unsupervised learning is essential to create intelligent systems. It allows 
to exploit large sets of unlabeled data, typically available also in agriculture, 
to learn powerful low-dimensional representations of the data, which allows 
efficient supervised learning of downstream tasks based on small labeled 
datasets. To unlock the power of unsupervised learning, more research is 
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needed in the development and application of unsupervised techniques like 
predictive learning, contrastive learning, deep clustering, domain adaptation, 
and self-supervised learning.

6.1.4  Use of domain knowledge

The completely data-driven deep-learning approaches ignore the available 
domain knowledge to solve agricultural tasks. Combining data-based and 
model-based methods would allow to put constraints on the learning process 
to achieve better performance especially when training data are limited. This 
can be done, for instance, by adding domain knowledge to create synthetic 
data based on models, for instance, using plant models (Turgut et al., 2022; 
Barth et al., 2019), to include specific image features as additional input (Liu 
et al., 2021; Milioto et al., 2018), or to use domain knowledge in the loss 
function to enforce consistency of the network predictions, such as geometrical 
and temporal constraints for pose detection (Dabral et al., 2018). Domain 
knowledge can also be used to deal with missing information, for instance, by 
using leaf templates to reconstruct plant leaves in occluded scenarios (Marks 
et al., 2022).

6.1.5  Active perception

Robots have the ability to control their own sensory input. This fact is hardly 
explored in current agricultural-robotic research, which instead focuses 
predominantly on the processing of single images. As discussed in Section 5, 
multi-view and active NBV planning improves the performance of perception 
methods, especially in occluded environments. Further research is needed 
to make these methods even more effective, for instance using attention 
mechanisms (Burusa et al., under review), adding prior knowledge for 
effective object search, or allowing robots to learn optimal view planning from 
their own experience (Zeng et al., 2022; Han et al., 2022). The robot’s active 
capabilities can also be used in an active learning setting, where the robot 
actively plans a path to collect useful training data to be labeled by a human 
(Rückin et al., 2022). The next step is to develop interactive object learning, 
where a robot actively explores objects in the environment to learn and 
improve its perception models without or with minimal human intervention 
(Lyubova et al., 2016).

6.2  On the long term: autonomous agricultural robotics

With the research directions described earlier, in the next decade, the field 
can develop perception methods for agricultural robots to robustly perform 
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specific tasks, such as harvesting fruits or removing weeds. These robots will 
probably work semi-autonomously, needing occasional input from a human 
operator. On the long term, however, robots are needed that can perform 
multiple tasks and operate fully autonomously. This requires the next level of 
artificial intelligence, going beyond the understanding of a single domain to 
mastering multiple domains. Some first steps in generalizing over different 
tasks have recently been taken with Gato, a generalist agent (Reed et al., 2022). 
However, it also requires a true understanding of the world, going beyond 
patterns extracted from training data to grounding the external world in the 
robot’s own sensorimotor system (Harnad, 1990). This research challenge is 
enormous, and I definitely do not want to claim to know the solution. However, 
there are a few principles that I believe are important to reach this goal.

Most importantly, perception and action need to be tighter integrated 
to achieve sensorimotor coordination. When a robot takes an action, it 
immediately results in a change of the sensory observations. When the robot 
changes its position, it gets a new view of the world, and when it interacts with 
objects, it changes the state of the objects. This applies not only to the sense 
of vision but to all senses. When a robot interacts with an object, for instance, 
it receives visual feedback about its actions, but also tactile and auditory. For a 
robot to truly understand the world, it needs to be able to predict the sensory 
consequences of its actions, the so-called sensorimotor contingencies (O’Regan 
and Noë, 2001). This requires that the robot has a model of the world containing 
knowledge about the state and how this will change as a consequence of an 
action, including object affordances containing the knowledge of the actions 
that can be applied to objects and the resulting effects of these actions (Gibson, 
2014; Krüger et al., 2011). This world model needs to be continuously updated 
to be kept in sync with the physical world based on new sensory observations 
and experiences of the robot.

The predominant sense–think–act cycle in robotics then needs to 
change to an act-predict-sense-compare cycle, where the predictions of the 
consequences of actions are compared to the new observations after applying 
the action. When the predictions are correct, the world model is correct and the 
next planned action can be executed. When the predictions do not match the 
observations, the world changes differently than expected, requiring attention 
to update the model. This is in line with current theories on human cognition 
(see, e.g. Clark, 2015).

The consequences of actions applied to an object can be learned by the 
robot autonomously by interacting with that object, thereby grounding the 
object in its sensory-motor experience (Harnad, 1990; Pfeifer and Bongard, 
2006). This process of playful manipulation of the world allows the robot to learn 
causality (Pearl, 2019). Furthermore, during execution, the robot continuously 
observes the sensory consequences of actions, allowing self-supervised and 
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life-long online learning of the prediction models. Importantly, the robot 
should not only be equipped with visual sensors but also with other sensory 
modalities.

Inspiration for robot learning can furthermore be taken from developmental 
psychology on how humans learn to perceive and interact with the world 
(Cangelosi and Schlesinger, 2015; Lungarella et al., 2003). An important aspect 
is that learning is incremental, starting from learning basic skills, like moving 
your hand to an object in space and grasping that object, which allows learning 
about objects in the world and on which more complex skills can be built, like 
harvesting all ripe apples in an orchard. Initially, learning is more constraint due 
to limitations in the sensorimotor system and through scaffolding by caretakers, 
simplifying the learning process, which gradually becomes less constraint 
to learn more complex relations. Another aspect is that of curiosity. When a 
certain skill is learned and predictions of the sensory consequence can be 
made successfully, it is time to explore the world for new challenges.

With this sensorimotor learning, robots can start to understand the world 
from their own perspective in an unsupervised way. This builds the foundation 
for further learning. To connect to the human world and perform a variety 
of agricultural tasks, future robots will no longer be programmed, but learn 
from human demonstrations (Ravichandar et al., 2020). Similar to how infants 
learn, imitation learning will provide a common taxonomy of the world and 
bootstrap learning of tasks. With this in place, robots can learn to fine-tune 
the execution of tasks with their own body morphology using reinforcement 
learning (Kober et al., 2013; Arulkumaran et al., 2017). These three levels of 
learning (unsupervised, supervised, and reinforced) correspond to the three 
ingredients of LeCun’s cake analogy.

7  Conclusion

To conclude this survey of the advances of visual perception for agricultural 
robotics, it can be observed that current robots can operate in environments 
that are relatively structured and controlled. The challenges of variation and 
incomplete information, however, hamper the application of agricultural robots 
on a larger scale. If the amount of variation increases, for instance, by going 
to a variety of fields, the generalization of current perception methods is not 
yet good enough to be commercially applied. At the same time, when the 
amount of occlusion increases in cluttered environments, such as high-wire 
greenhouses and orchards, current robots are not able to locate all relevant 
objects. To improve future agricultural robots, a number of promising research 
directions to deal with the challenges of variation and incomplete information 
have been provided. This will allow the field to develop robots that can 
successfully perform specific tasks in agricultural environments in the coming 
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decade. To achieve more versatile robots that can perform any task on a farm, 
steps need to be taken to get closer to artificial general intelligence in the 
coming decades. As an important principle, robot perception should no longer 
be studied in isolation, but in tight integration with the robot’s actions within the 
framework of sensorimotor systems. Furthermore, for effective learning, robots 
should be able to explore the world and learn from their own experiences.
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