Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series list</td>
<td>xii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xvii</td>
</tr>
<tr>
<td>Introduction</td>
<td>xviii</td>
</tr>
<tr>
<td>Part 1 Agroforestry practices</td>
<td></td>
</tr>
<tr>
<td>1 Agroforestry practices: riparian forest buffers and filter strips</td>
<td>3</td>
</tr>
<tr>
<td>Richard Schultz, Thomas Isenhart, William Beck, Tyler Groh and Morgan Davis, Iowa State University, USA</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>2 Riparian forest buffers</td>
<td>4</td>
</tr>
<tr>
<td>3 Riparian forest buffer design and function</td>
<td>7</td>
</tr>
<tr>
<td>4 Special design considerations and management</td>
<td>11</td>
</tr>
<tr>
<td>5 Assessing buffer performance</td>
<td>16</td>
</tr>
<tr>
<td>6 References</td>
<td>18</td>
</tr>
<tr>
<td>2 Agroforestry practices: windbreaks</td>
<td>21</td>
</tr>
<tr>
<td>Gary Wyatt, Amanda Sames, and Diomy S. Zamora, University of Minnesota, USA</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>21</td>
</tr>
<tr>
<td>2 Overview of windbreak benefits</td>
<td>22</td>
</tr>
<tr>
<td>3 Tree and shrub selection and planting</td>
<td>23</td>
</tr>
<tr>
<td>4 Windbreak design to reduce wind speed and snow drift</td>
<td>25</td>
</tr>
<tr>
<td>5 Windbreaks and particulate capture</td>
<td>28</td>
</tr>
<tr>
<td>6 Windbreaks and odor mitigation</td>
<td>29</td>
</tr>
<tr>
<td>7 Windbreaks and wildlife conservation</td>
<td>31</td>
</tr>
<tr>
<td>8 Future trends and conclusion</td>
<td>32</td>
</tr>
<tr>
<td>9 Where to look further information</td>
<td>32</td>
</tr>
<tr>
<td>10 References</td>
<td>33</td>
</tr>
</tbody>
</table>

© Burleigh Dodds Science Publishing Limited, 2019. All rights reserved.
3 Managing hedgerows to optimise ecosystem services in agroforestry systems

Penka Tsonkova and Christian Böhm, Brandenburg University of Technology Cottbus-Senftenberg, Germany; Rico Hübner, Technical University of Munich, Germany; and Julia Ehritt, Nature and Biodiversity Conservation Union Brandenburg, Germany

1 Introduction 39
2 Methodological framework 41
3 Ecosystem services associated with hedgerows 42
4 Categorisation of existing hedgerows 47
5 Condition of ecosystem services according to hedgerow category 52
6 Key constraints to contemporary hedgerow management 59
7 Case study: opportunities for utilisation and further development of existing hedgerows to enhance multiple ecosystem services 61
8 Summary and future trends 80
9 Acknowledgements 81
10 Where to look for further information 81
11 References 82

4 Temperate alley cropping systems

Diomy S. Zamora, University of Minnesota, USA; Samuel C. Allen, New Mexico State University, USA; Kent G. Apostol, Independent Researcher and Editor, USA; Shibu Jose, University of Missouri, USA; and Gary Wyatt, University of Minnesota, USA

1 Introduction 89
2 Potential of alley cropping 91
3 Design considerations 92
4 Functions/benefits of alley cropping 96
5 Competition for growth resources 101
6 Evaluating system performance: the case of the pecan-cotton alley cropping system 107
7 Future trends and conclusion 111
8 Where to look for further information 112
9 References 113

5 Agroforestry practices: silvopastoralism

Gerardo Moreno and Victor Rolo, INDEHESA, Institute for Silvopastoralism Research, University of Extremadura, Spain

1 Introduction 119
2 Silvopastoral systems (SPs) 122
3 Importance of trees for livestock production 127
4 Trees for biodiversity and ecosystem services 134
5 Designing and managing silvopastures 141
6 Summary 144
7 Future trends in research 145
8 Where to look for further information 146
9 References 147

6 Agroforestry practices: forest farming 165
Kenneth Mudge, Cornell University, USA

1 Introduction: setting the scene 165
2 What is forest farming? 166
3 Estimating yields in forest farming 169
4 Site selection and characteristics 170
5 Growing mushrooms 175
6 Shiitake mushroom cultivation 178
7 Growing woodland medicinal plants 182
8 Ginseng cultivation 183
9 Growing fruits, nut trees and shrubs 190
10 Cultivating tree syrups 194
11 Nursery crops in forest farming 195
12 Case study: overcoming limitations at the MacDaniels Nut Grove Forest Farming Research and Education Center 201
13 Case study: from ramps to riches 203
14 Summary 206
15 References 206

7 Modelling agroforestry systems 209
Paul Burgess and Anil Graves, Cranfield University, UK; Silvestre García de Jalón, Basque Centre for Climate Change (BC3), Spain; João Palma, MV Agroecology Research Centre, Portugal; Christian Dupraz, INRA-System, University of Montpellier, France; and Meine van Noordwijk, World Agroforestry Centre (ICRAF), Kenya

1 Introduction 209
2 Current state of agroforestry modelling 210
3 Example of how agroforestry modelling can enhance sustainability 222
4 Current agroforestry modelling needs and potential trends 228
5 Acknowledgements 230
6 Where to look for further information 230
7 References 231

8 Tree planting and management in agroforestry 239
Lydie Dufour, INRA, France

1 Introduction 239
2 Choice of tree species 241
Part 2 Agroforestry ecosystem services

9 A holistic approach to sustainable agriculture: trees, science and global society 275
Roger R. B. Leakey, International Tree Foundation, UK

1 Introduction 275
2 Trees: an underutilized resource for agriculture 276
3 Trees: prerequisites for the use of underutilized indigenous species 277
4 Science: priorities in agroforestry research 280
5 Global society: meeting the need for sustainable intensification 287
6 Conclusions 292
7 References 294

10 The role of biodiversity in agroforestry and other types of smallholder farming 301
Mary Ng’endo, World Agroforestry Centre (ICRAF), Kenya; and Shonil A. Bhagwat, The Open University, UK

1 Introduction 301
2 The multiple dimensions of food security 302
3 Food security in the context of global environment change: the food system concept 303
4 Multifactor food security promotion 307
5 Conclusion 311
6 Where to look for further information 311
7 References 312

11 Agroforestry: a system for improving soil health 317
S. H. Anderson and R. P. Udawatta, University of Missouri, USA

1 Introduction 317
2 Biological properties critical for soil health 319
3 Physical properties critical for soil health 321
4 Chemical properties critical for soil health 328
5 Conclusion 329
6 Future trends 330
7 Where to look for further information 330
8 References 331
Part 3 Agroforestry products

12 Agroforestry for hardwood timber production 337
J. W. ‘Jerry’ Van Sambeek, formerly of USDA Forest Service
Northern Research Station and University of Missouri Center
for Agroforestry, USA

1 Introduction 337
2 Impact of ground cover on tree growth 339
3 Growing-space requirements 341
4 Pruning recommendations and practices 345
5 Log and wood quality 351
6 Summary 355
7 Future trends in research 356
8 Where to look for further information 356
9 References 357

13 Agroforestry for the cultivation of nuts 365
Michael A. Gold, University of Missouri, USA

1 Introduction 365
2 Nut-based agroforestry systems 366
3 Key challenges facing nut-based agroforestry systems 368
4 Genetic improvement of nut trees 369
5 Management of temporal and spatial tree and crop interactions 370
6 Orchard design and management 372
7 Pest management in nut tree alley cropping 373
8 Financial decision support tools 374
9 Policy support 375
10 Case studies 375
11 Conclusion and future trends 377
12 Where to look for further information 378
13 References 379

14 Agroforestry for fruit trees in Europe and Mediterranean
North Africa 385
Pierre-Éric Lauri, INRA, France; Karim Barkaoui, CIRAD, France;
Mohammed Ater, Abdelmalek Essaadi University, Morocco; and
Adolfo Rosati, CREA, Italy

1 Introduction 385
2 Extent and classification of fruit tree-based agroforestry systems
(FT-AFS) in Europe and in Mediterranean North Africa 387
3 Emblematic FT-AFS in Europe and in Mediterranean North Africa 391
4 Reinventing FT-AFS 398
5 The possible interest of multistrata FT-AFS 404
Part 4 Tropical agroforestry

15 Moving up the scale: challenges in tropical agroforestry
John Lynam, Independent Consultant

1 Introduction 421
2 The challenge of agroforestry in agroecological intensification 422
3 The challenge of agroforestry in sustainable landscapes 427
4 The challenge of policy in support of agroforestry 430
5 The challenge of developing agroforestry at scale 432
6 Future trends and conclusion 434
7 Where to look for further information 435
8 References 436

16 Tropical tree domestication in agroforestry
Damase Khasa and Alain Atangana, Université Laval, Canada

1 Introduction 439
2 Tropical tree domestication principles and techniques 440
3 Domesticated tree species 444
4 Case study: participatory domestication of Allanblackia floribunda, a high-value agroforestry tree species in Central Africa 452
5 Conclusion 455
6 Acknowledgements 457
7 Where to look for further information 458
8 References 458

17 Tropical agroforestry and ecosystem services: trade-off analysis for better design strategies
Rolando Cerda, CATIE (Centro Agronómico Tropical de Investigación y Enseñanza), Costa Rica; Luis Orozco-Aguilar, The University of Melbourne, Australia; Norvin Sepúlveda, CATIE (Centro Agronómico Tropical de Investigación y Enseñanza), Costa Rica; Jenny Ordoñez and Geovana Carreño-Rocabado, CATIE (Centro Agronómico Tropical de Investigación y Enseñanza) and World Agroforestry Centre (ICRAF), Costa Rica; and Freddy Amores, Willan Caicedo, Samuel Oblitas and Eduardo Somarriba, CATIE (Centro Agronómico Tropical de Investigación y Enseñanza), Costa Rica
<table>
<thead>
<tr>
<th>Contents</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>467</td>
</tr>
<tr>
<td>2 Overview on ecosystem services provided by tropical agroforestry</td>
<td>469</td>
</tr>
<tr>
<td>3 Practical approaches to assess trade-offs between different ecosystem</td>
<td>475</td>
</tr>
<tr>
<td>services, and between ecosystem services and biodiversity</td>
<td></td>
</tr>
<tr>
<td>4 Case study: application of trade-off analysis to derive better design</td>
<td>480</td>
</tr>
<tr>
<td>strategies for agroforestry systems</td>
<td></td>
</tr>
<tr>
<td>5 Acknowledgment</td>
<td>497</td>
</tr>
<tr>
<td>6 Where to look for further information</td>
<td>497</td>
</tr>
<tr>
<td>7 References</td>
<td>497</td>
</tr>
<tr>
<td>Index</td>
<td>511</td>
</tr>
</tbody>
</table>
Introduction

The United States Department of Agriculture (USDA) defines agroforestry as: ‘the intentional mixing of trees and shrubs into crop and animal production systems to create environmental, economic and social benefits’. Agroforestry seeks to balance the protection of forest resources, the exploitation of the ecosystem services that trees can contribute to agriculture and the role of agroforestry in diversifying the range of agricultural products and markets. The book provides a comprehensive review of ways of optimizing particular agroforestry practices, from riparian forest buffers and windbreaks to alley cropping, silvopasture and forest farming. In addition, the volume summarises current research on ecosystem services delivered by agroforestry in such areas as habitat conservation and soil health. The book also assesses research on optimising agroforestry products such as timber, nuts and fruit. The main focus of the book is on temperate agroforestry, but it also reviews particular issues facing agroforestry in the tropics.

Part 1 Agroforestry practices

The first part of the volume addresses agroforestry practices. The subject of Chapter 1 is riparian forest buffers and filter strips. Riparian forest buffers are planned combinations of trees, shrubs, grasses, forbs and bioengineered structures adjacent to or within a stream channel designed to mitigate the impact of land use on the stream or creek. At the landscape level, riparian forest buffers link the land and aquatic environment and perform vital ecological functions as part of the network of watersheds that connect forest, prairies, agricultural and urban lands. Following an introduction to the concept of riparian forest buffers, the chapter examines forest buffer design and function. The chapter discusses the distinct management zones in a riparian forest buffer, including undisturbed forest, managed forest and shrubs, and runoff control (grasses and forbs). The chapter concludes with sections on special design considerations and management, as well as ways of assessing buffer performance.

Chapter 2 moves on from riparian buffers to consider the role of windbreaks. Windbreaks, also known as vegetative environmental buffers (VEB) or shelterbelts, are a common feature of agricultural systems around the world. These strips of trees, shrubs and other perennial or annual vegetation perform a number of functions, including providing protection from the wind for homesteads, livestock and crops; reducing soil erosion; providing protection from drifting snow; providing wildlife habitat; and enhancing aesthetics in agricultural landscapes. The chapter offers an overview of the benefits of windbreaks and examines the process of tree and shrub selection and planting.
The chapter looks at designing windbreaks to reduce wind speed and snow drift, as well as describing the use of windbreaks for particulate capture, odor mitigation and wildlife conservation.

Chapter 3 shifts the focus to managing hedgerows in order to optimise ecosystem services in agroforestry systems. Hedgerows are composed of trees and/or shrubs and serve as natural fences, often between pastures and arable fields. The chapter discusses the importance of hedgerow management and maintenance to enhance multiple ecosystem services such as biomass production, wind and water protection, habitat provision and landscape aesthetics. It develops a categorisation of existing hedgerows, applicable to linear woody-features such as hedgerows, windbreaks and riparian buffer strips, and evaluates the condition of each category with respect to multiple ecosystem services. The chapter considers different measures for improving hedgerow conditions and provides guidelines for hedgerow restoration and management. The chapter includes a case study on hedgerow management, focusing on estimating the biomass potential of hedgerows and the implementation of a restoration and management strategy to selected hedgerows in two different scenarios.

The subject of Chapter 4 is temperate alley cropping systems. The implementation of modern agricultural practices has largely excluded trees from the rural landscape, causing negative environmental impacts. Alley cropping, an agroforestry practice where agricultural crops are grown simultaneously with long-term tree crops, helps mitigate negative environmental impacts and offers a promising land-use alternative to conventional farming for temperate regions. The chapter provides an overview of economic and ecological benefits, challenges, and major considerations of implementing these practices within North America. To illustrate the key issues, the chapter focuses on a system performance evaluation of a pecan-cotton system in the southern United States.

Chapter 5 moves on to consider silvopastoralism, a traditional agroforestry practice that is still used across the world for raising livestock, particularly in lands with a combination of grass understory and a sparse cover of trees and/or shrubs. The woody component plays multiple roles such as providing a forage resource, shade and shelter for livestock and delivering products such as timber, firewood or cork, for example. The chapter describes silvopastoral systems from around the world. The chapter also includes a section on the role of trees in promoting ecosystems services such as carbon sequestration, water quality and biodiversity conservation. The chapter concludes with a discussion of how to design and manage silvopastures.

Staying with the theme of diverse agroforestry, Chapter 6 examines forest farming. This is a relatively low-tech agroforestry practice for the cultivation of shade-tolerant non-timber forest products (NTFPs) such as medicinal plants, mushrooms, fruits, nuts, tree syrups and/or nursery stock. It is an ecologically
sustainable way for forest owners to generate income, while maintaining forest health (also known as productive conservation). The chapter introduces the concept of forest farming with sections on both estimating yields and how to select sites for such practices. The chapter discusses the products with the greatest potential for income generation, such as shiitake mushrooms (*Lentinula edodes*), where logs begin yielding relatively soon after their inoculation, and American ginseng (*Panax quinquefolium*) which has greater income generating potential even though it requires many years before it begins to yield. Other NTFPs are also covered including medicinal plants, fruits, nuts and tree syrups. The chapter concludes with two case studies, one on the forest farming of tree nuts, and the other on the production of wild leeks (*Allium tricocchum*).

Moving from specific practices to an overview, Chapter 7 looks at the modelling of agroforestry systems, which can be highly complex in nature. The chapter examines the current state of agroforestry modelling before going on to describe two European agroforestry projects that involved modelling, the Silvoarable Agroforestry For Europe (SAFE) project and the AGroFORestry that Will Advance Rural Development (AGFORWARD) project. Looking towards the future, the chapter also considers current agroforestry modelling needs and potential trends.

The final chapter in the section, Chapter 8, deals with tree planting and management in agroforestry. The pattern of tree planting and tree management play an important part in the sustainability of an agroforestry system, as they determine the intensity of competition between trees and crop and the quality and quantity of wood production. The chapter focuses on the plantation and management of temperate agroforestry systems combining timber trees and herbaceous crops. The chapter covers choice of tree species, techniques of tree planting, plantation maintenance and approaches to tree pruning and thinning.

Part 2 Agroforestry ecosystem services

Opening the second part of the volume, which focuses on agroforestry ecosystem services, Chapter 9 turns to the relationship between trees, science and global society. Despite great advances in our understanding of the environmental, social and economic role of trees in farming systems, much work still remains to be done, especially regarding the wider adoption of agroforestry practices. The chapter offers an overview of tree agroecology, tree domestication, the commercialization of trees and the relevance of development studies to this field. The chapter assesses the potential for up-scaling the exploitation of trees as a sustainable resource and examines relevant issues connected with government policy and agribusiness.
Following this overview, Chapter 10 homes in on the role of agroforestry in habitat conservation and biodiversity. Agricultural biodiversity, commonly referred to as agrobiodiversity, focuses on agricultural habitats and food production landscapes. Adopting a multi-dimensional approach to their management is essential to ensure the sustainability of agricultural habitats. The chapter describes the application of the food system concept in providing a framework to enable such a multi-dimensional approach. The chapter outlines the multiple dimensions of food security and places food security in the context of global environment change. Finally, the chapter explains the concept of multifactor food security promotion.

The focus of Chapter 11 is on agroforestry as a system for improving soil health. Introducing agroforestry into agroecosystems can be an important method to help promote soil quality through its influence on soil physical, chemical and biological properties. The chapter highlights the benefits of agroforestry systems on soil properties important for soil quality. These include critical soil biological, physical and chemical properties important for maintaining and improving soil health. The chapter outlines the critical soil biological properties important for energy and nutrient transformations, as well as critical soil physical properties including soil density, porosity, water retention, pore-size distributions, hydraulic conductivity, infiltration, and thermal properties. The chapter shows that improving these parameters can reduce losses of sediment, nutrients and pesticides from land to water, and enhance soil water storage.

Part 3 Agroforestry products

The third part of the volume is dedicated to the diverse products of agroforestry. Chapter 12 examines the contribution of agroforestry to hardwood timber production. Managing hardwood trees for high-quality sawlogs within the agroforestry practices of alley-cropping, silvopasture, forested riparian buffers and upland (windbreaks) buffers means intensively managing relatively wide-spaced trees and a ground cover as a companion crop on the same unit of land. The chapter synthesizes available information on managing such trees for the production of veneer and high-quality sawlogs. The chapter includes sections on the impact of ground cover on tree growth and growing space requirements for hardwoods. The chapter also looks at pruning recommendations and practices, since pruning is essential for the production of high-quality logs of most species in any agroforestry practice. The chapter concludes with a section on log and wood quality and the general requirements of veneer logs.

The section then moves on to an assessment of the cultivation of nuts in Chapter 13. Row crop agriculture covers over 1.28 billion hectares of land
globally. Though extremely productive in terms of yield, annual cropping systems rely on external inputs of energy, nutrients, and pesticides, leading to a suite of ecological consequences. The chapter focusses primarily on the opportunities and challenges associated with alley cropping practices involving overstory nut crops as one element of the solution to address global needs for food production which is both economically viable while enhancing ecosystem services. The chapter examines key challenges facing nut-based agroforestry systems, looking at the genetic improvement of nut trees as well as the challenge of managing temporal and spatial tree and crop interactions. The chapter addresses orchard design and management, pest management in nut tree alley cropping, and financial decision support tools.

The final chapter in Part 3 is Chapter 14 which reviews agroforestry for fruit trees. Although fruit trees are considered as high value for agroforestry and are the primary driver of agroforestry adoption worldwide, they are still underrepresented in agroforestry systems in temperate regions compared to the tropics. This chapter illustrates the large diversity of fruit tree-based agroforestry in Europe and in the Mediterranean North Africa. The chapter then describes the most common species-based (apple, olive) and place-based (e.g. oasis) agroforestry systems in these regions. Finally, the chapter discusses key biological and agronomical requirements of fruit trees that have to be considered when implementing successful fruit-tree based agroforestry systems. It reviews current trends in the design of agronomically and ecologically-sound fruit tree-based agroforestry systems.

Part 4 Tropical agroforestry

The volume’s final section deals with agroforestry in tropical areas. Chapter 15 addresses the challenges involved in tropical agroforestry. From its early beginnings, agroforestry has moved from a ‘technology in search of a problem’ to a principal solution to critical global agendas, including climate smart agriculture, agroecological intensification, land rehabilitation, and provision of ecosystem services. The chapter addresses the challenges associated with agroforestry in agroecological intensification and sustainable landscapes. The chapter considers the challenge of developing policies in support of agroforestry, and the challenge of developing agroforestry at scale.

The subject of Chapter 16 is tropical tree domestication in agroforestry. The chapter examines the principles and techniques of tropical tree domestication, covering identification of species for domestication, selection of ‘plus trees’ and vegetative propagation methods. The chapter then provides examples of key tree species that have been targeted for domestication in the Amazon Basin (Bactris gasipaes, Capirona, Guazuma crinita and Inga edulis) and the Congo Basin (Irvingia gabonensis, Irvingia wombolu, safou, Ricinodendron heudelotii, ...
Cola acuminata, Cola anomala, Cola nitida and Prunus africana). The chapter concludes with a case study on participatory domestication of Allanblackia floribunda, a high value agroforestry tree species in Central Africa.

The volume’s final chapter, Chapter 17, looks at trade-off analysis for better design strategies in tropical agroforestry and ecosystem services. A large body of research has documented a wide list of provisioning and regulating services that can be provided by tropical agroforestry systems (AFS). The chapter offers an overview of ecosystem services delivered by tropical AFS, and presents practical approaches for trade-off analysis between ecosystem services and plant biodiversity for better design (or re-design) and management of AFS. The chapter highlights the main provisioning and regulating services provided by tropical AFS (covering pest and disease regulation, nutrient cycling and soil quality, carbon sequestration and water regulation). The chapter gives an overview of practical approaches to assess trade-offs provides a case study of trade-off analysis in practice.
Part 1

Agroforestry practices
Chapter 1

Agroforestry practices: riparian forest buffers and filter strips

Richard Schultz, Thomas Isenhart, William Beck, Tyler Groh and Morgan Davis, Iowa State University, USA

1 Introduction

Intensive agriculture as practiced in much of the Temperate Zone around the world is not very friendly to the environment. Non-point source (NPS) pollution from this kind of agriculture has created major water quality issues for surface waters that originate or flow through these areas (Veum et al., 2009). In many landscapes in the Midwestern United States, more than 85% of the land is devoted to row crop agriculture or intensive grazing (Burkart et al., 1994). Small farms continue to be consolidated into larger farms in response to the need for economies of scale. In states east of the Rocky Mountains, vast areas are used to produce wheat, maize, soybeans and sorghum and to graze cattle (NRCS-USDA). Farm equipment that is operated by one person continues to become more sophisticated and able to cultivate and harvest larger and larger fields. The cost of the equipment and of labour further supports the continued expansion of large crop fields which are dependent on significant use of fertilizers and pesticides to optimize yields. In addition, to diversify income streams, farmers may fence off areas such as those along tightly meandering streams that are not suited to intensive crop production and graze livestock that usually have access to the streams within the fenced pastures. Livestock access to streams can do major damage to streambanks and stream water quality.
These trends of more intensive use of all available land in agricultural regions are likely to continue with the growing world population. Increased surface run-off laden with sediment and agrochemicals and streambank collapse continue to provide higher and more frequent peak stream flows. These are characterized by high sediment and agrochemical loads that result in more flooding, incision and widening of stream channels, reduction of base flows and reduction in water quality and the quality of aquatic ecosystems.

Despite our best efforts, it is unlikely that significant reduction in nutrient and sediment loading to surface waters will be achieved through voluntary, traditional in-field management alone (Dinnes et al., 2002). Increased use, by some farmers, of techniques such as cover crops, frequent side-dressing of small amounts of fertilizer, slow release fertilizer to promote soil and water quality, nutrient cycling efficiency and crop productivity have been studied as a way to reduce nutrient and sediment loading to surface waters and some farmers are using them (Snapp et al., 2005). However, they have some disadvantages, including increased farming costs, delay of spring soil warming and making it more difficult to predict nitrogen (N) mineralization, creating challenges to widespread adoption of such practices (Roesch-McNally et al., 2017).

The Natural Resources Conservation Service (NRCS) of the United States Department of Agriculture (USDA) National Water Quality Initiative is designed to provide both in-field and edge-of-field practices such as buffer and filter strips to promote soil health, reduce erosion and lessen nutrient run-off (https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/water/?cid=stelprdb1047761). One of the major NRCS Conservation Practice Standards is the Riparian Forest Buffer Standard (Practice 391). In those watersheds where the programme has been available, over 3600 farmers have taken advantage of the programme (Brewer, 2002). However, in the first 8 years of the programme, only 825,000 acres of farmland in the priority watersheds were enrolled with 11 impaired water bodies improved to the point of being removed from the US Environmental Protection Agency Impaired Waters List (USEPA 303(d) list). There are more than 390 million acres of cropland in the United States, many of them in need of conservation practices that protect surface waters (USDA 2012 Census of Agriculture).

2 Riparian forest buffers

Riparian forest buffers are an agroforestry practice that, when properly applied to the agricultural landscape, can enhance and diversify farm income opportunities, improve the environment and create wildlife habitat (Schultz et al., 2009). By developing an understanding of the interactions between the
trees, shrubs and native prairie plants or introduced grasses, buffers can be designed to capture most surface run-off before it reaches the stream channel while also stabilizing the banks of the stream channel.

Riparian forest buffers are planned combinations of trees, shrubs, grasses, forbs and bioengineered structures adjacent to or within a stream channel designed to mitigate the impact of land use on the stream or creek. At the landscape level, riparian forest buffers link the land and aquatic environment and perform vital ecological functions as part of the network of watersheds that connect forests, prairies, agricultural and urban lands. By establishing and managing the trees, shrubs, grasses and forbs in the riparian zone, water quality and the aquatic ecosystems can be maintained or enhanced and the impact of floods can be mitigated. However, to be effective, riparian buffers must include plants that are adapted to the soils, topography and flood regime of the riparian zone and the stream as well as the long-term management by the landowner.

A well-established and maintained riparian forest buffer can:

- protect and improve water quality;
- stabilize eroding streambanks;
- help reduce flood impacts;
- recharge shallow groundwater;
- supply diverse food and cover for upland wildlife;
- enhance biodiversity of the landscape;
- improve carbon sequestration;
- improve aquatic habitats for fish and other organisms; and
- generate farm income from products harvested from the buffer.

An overview of the environmental benefits of riparian and other types of buffers has been provided by Lovell and Sullivan (2006) and Gundersen et al. (2010). The role of riparian and other agroforestry techniques in preventing nutrient run-off and NPS pollution is reviewed in Udawatta et al. (2002, 2006, 2011), Lee et al. (2003) and Simpkins et al. (2003). The impact of riparian buffers in enhancing water quality, preventing sediment trapping and streambank erosion is discussed in Zaimes et al. (2004), Liu et al. (2008), Klapproth and Johnson (2009a) and Udawatta et al. (2010). The broader potential contribution of riparian buffers and forests to carbon sequestration is reviewed in Dybala et al. (2019), while the biodiversity and broader social benefits they provide are discussed in Klapproth and Johnson (2009b,c).

Before designing and establishing a riparian buffer, it is critical to understand upland plant communities and their present management, the objectives of the landowner interested in installing a riparian forest buffer and their willingness and ability to manage that buffer.
Landowner concerns associated with establishment of buffers can include concerns such as:

- how much can buffers reduce sediment and nutrient movement into a stream;
- can buffers be used to heal gullies;
- can buffers reduce streambank erosion and slow stream meandering;
- what kind of buffer vegetation produces the best wildlife habitat and fishery;
- will trees in a riparian forest buffer fall into the stream and back up water into crop fields and field drainage tiles;
- are buffers a source of weed seeds;
- are cool-season grass filters as effective as riparian forest buffers;
- will forest buffers attract beavers that build dams that back up water;
- will deer become a problem for crops;
- how much maintenance is required to keep a buffer functioning properly;
- will a buffer be damaged by floods;
- is fencing needed to keep livestock out of a buffer;
- how much land will be taken out of crop production or pasture; and
- can specific products be harvested from the buffer to offset income losses from the land and similar other questions.

Riparian buffers can take different forms in response to landowner objectives and concerns as well as the regional location of the streams being buffered. Riparian forest buffers in agricultural landscapes in the Eastern United States, for example, may contain narrow corridors of remnant forests along streams with little else being needed to create an effective buffer of crop field run-off other than a grass filter lying between the crop field and the existing forest buffer. In the arid and semi-arid west, riparian forest buffers may consist of narrow strips of native flood plain species that often lie between grazed shrub and short grass communities and the stream. In the agricultural belt of the Midwestern United States, riparian forest buffers often need to be established from scratch.

Because riparian forest communities naturally evolved in the most fertile and moist position of the landscape, they are often easy to reestablish. However, in many agricultural landscapes, land uses have changed the hydrology so dramatically that the hydrology of these communities cannot be restored to their original condition. Stream channels have been incised and widened by higher discharge resulting from greater surface run-off from crop fields and heavily grazed pastures. Channelization of meandering streams, field tiling of some landscapes and urbanization also have contributed to higher stormflows and lower base flows. In many cases, water tables have been lowered to the
point that the restored buffers require a plant community that did not naturally occur in that location. However, with proper planning and design the function of a healthy riparian forest community can be reestablished.

3 Riparian forest buffer design and function

Riparian forest buffers typically should be composed of three distinct management zones (Fig. 1):

- Zone 1: Undisturbed forest
- Zone 2: Managed forest and shrubs
- Zone 3: Run-off control (grasses and forbs)

These zones contain different kinds of plantings with different functions.

Zone 1 includes a zone of trees whose major function is to stabilize the streambank, provide a large long-term nutrient sink, help improve soil quality through annual leaf litterfall, provide vertical structure for wildlife habitat and potentially provide some shade to the stream channel to help stabilize daily stream water temperature especially if the desired fishery includes cold water demanding species such as trout (Table 1).

Trees should not be placed so close to the edge of the bank that they completely shade the stream throughout the whole day once they are mature.
The reason is that if the streambank is completely shaded, grasses needed to stabilize the bank will be difficult to establish and grow and bank erosion will continue with the chance that trees could fall into the channel creating problems. If, however, streams are large enough and there is a desire to create natural in-stream habitat, trees could be placed closer to the bank so that some large mature trees could fall into the channel to provide large woody debris that helps create important pool and woody in-stream habitat for a myriad of organisms. For this to happen, trees in Zone 1 would not be harvested during their life time. If in-stream large woody debris is not desired because

<table>
<thead>
<tr>
<th>Kind of plant</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prairie grasses/forbs</td>
<td>1. Slow water entering the buffer</td>
</tr>
<tr>
<td></td>
<td>2. Trap sediment and associated chemicals</td>
</tr>
<tr>
<td></td>
<td>3. Add organic carbon to a range of soil depth</td>
</tr>
<tr>
<td></td>
<td>4. Added carbon improves soil structure</td>
</tr>
<tr>
<td></td>
<td>5. Improve infiltration capacity of the surface soil</td>
</tr>
<tr>
<td></td>
<td>6. Above-ground nutrient sink needs annual harvest</td>
</tr>
<tr>
<td></td>
<td>7. Provide diverse wildlife habitat</td>
</tr>
<tr>
<td></td>
<td>8. Do not significantly shade the stream channel</td>
</tr>
<tr>
<td></td>
<td>9. Provide only fine organic matter input to stream</td>
</tr>
<tr>
<td></td>
<td>10. Can provide forage and other products</td>
</tr>
<tr>
<td>Shrubs</td>
<td>1. Multiple stems act as a trap for flood debris</td>
</tr>
<tr>
<td></td>
<td>2. Provide woody roots for bank stabilization</td>
</tr>
<tr>
<td></td>
<td>3. Litter fall helps improve surface soil quality</td>
</tr>
<tr>
<td></td>
<td>4. Above-ground nutrient sink needs occasional harvest</td>
</tr>
<tr>
<td></td>
<td>5. Adds vertical structure for wildlife habitat</td>
</tr>
<tr>
<td></td>
<td>6. Do not significantly shade the stream channel</td>
</tr>
<tr>
<td></td>
<td>7. Provide only fine organic matter input to stream</td>
</tr>
<tr>
<td></td>
<td>8. Can provide ornamental products and berries</td>
</tr>
<tr>
<td>Trees</td>
<td>1. Strong, deep woody roots stabilize banks</td>
</tr>
<tr>
<td></td>
<td>2. Litter fall helps improve surface soil quality</td>
</tr>
<tr>
<td></td>
<td>3. Long-lived, large nutrient sink needs infrequent harvest</td>
</tr>
<tr>
<td></td>
<td>4. Adds vertical structure for wildlife habitat</td>
</tr>
<tr>
<td></td>
<td>5. Vertical structure may inhibit buffer use by grassland birds</td>
</tr>
<tr>
<td></td>
<td>6. Shade stream, lowering temperature and stabilizing dissolved oxygen</td>
</tr>
<tr>
<td></td>
<td>7. Provide both fine organic matter and large woody debris to the channel</td>
</tr>
<tr>
<td></td>
<td>8. Can provide a wide variety of fibre products</td>
</tr>
</tbody>
</table>
of concern for development of log dams and increased water levels harvesting with replacement would need to be done.

Tree spacing in Zone 1 should also be wide enough to allow grass or some other kind of cover crop to grow under the trees. If that does not happen, bare soil will exist under the trees after the litter from the previous fall leaf drop has either decomposed or been washed into the stream by surface run-off or by floodwaters from out-of-bank stream flow. This is an important consideration since the riparian buffer has been designed to slow surface run-off by providing a frictional surface of plants completely covering the soil. If there is no permanent ground cover under the trees, soil erosion and even gullies will develop carrying sediment into the stream and weakening streambanks.

One other consideration for row spacing is the direction that the buffers run. Rows should be wider for tree and shrub rows that run east and west to allow a longer time for the sun to actually shine directly down to the soil level. Rows running north and south can be narrower because the sun shines down between the rows unimpeded by the shade from trees.

Species of trees to be planted in Zone 1 would depend on channel incision. If the channel is a natural channel that is in contact with its flood plain, meaning that flood events typically would occur once every 2–3 years, true riparian tree species should be selected because the water table in such a situation would be relatively close to the surface. If on the other hand the channel is deeply incised as happens in watersheds where flow regimes have changed because of land-use changes or climate change, both true riparian tree species and upland tree species could be planted. Upland species are often slower growing and longer-lived trees. Trees in this zone might also include fruit trees or even shrubs if there was a desire to provide a short-term income generating plant community. If the buffer was established with assistance from a government conservation programme, it may not be possible to sell harvested fruits until the enrolled programme has lapsed. Zone 1 is usually the widest zone occupying up to two-thirds of the width of the buffer.

Zone 2 combines planting of trees and shrubs. It both helps to manage floodwater and allows run-off to infiltrate or percolate into the soil so that waterborne nutrients or pollutants are absorbed and cleansed by the soil and vegetation. Zone 2 would be used if Zone 1 consisted of trees. Zone 2 would have several rows of shrubs again spaced far enough apart so that sunlight can reach the soil at least during part of the day.

These rows of multiple woody stems provide an important barrier for slowing floodwater that is moving out into the agricultural field and trapping debris brought by the floodwater. The debris may consist of a wide variety of objects including large woody debris that, if not trapped by the shrubs in Zone 2, would end up in the adjacent crop fields, physically damaging the crops and requiring time and money for the farmer to remove. The shrub species in
this zone can consist of edible berries and/or decorative woody florals such as red osier dogwood and curly willow. These are valuable components of the floral and decorating industries and can thus provide the farmer with income. The shrubs in Zone 2 also can provide a significant wildlife benefit to the buffer especially in attracting birds that may be important in helping to control pests in the adjacent crop fields. Bird species that are attracted to the shrub zone can be manipulated through the selection of shrub species that are planted.

Zone 3 is the zone adjacent to the crop field and the most important of the three zones. The zone is designed to provide high infiltration, sediment trapping and nutrient uptake ability while also dispersing any concentrated flow that runs into it. Native grasses and forbs provide the best buffering. They help to restore biological and physical soil quality to heavily used soils by adding large amounts of carbon to the profile from rapid turnover of roots that contain more than 70% of the total biomass of native prairie plant communities. This carbon plays a key role in redeveloping soil macro-aggregate structure that helps facilitate the high infiltration rates needed to get surface run-off into the soil profile. The carbon also serves as a substrate for increased soil microbial activity that is important both in building soil structure and processing some agricultural chemicals that move in the surface and groundwater (Dornbush et al., 2008).

Cool-season grasses are good at protecting the soil because, when water runs through the filter, they lie down, allowing the water to run over them and protecting the soil. However, they do not slow the flow of the water and are thus better adapted for use in grass waterways. Native grasses and forbs slow the water because their stiff stems seldom bend in response to surface run-off. This results in the majority of the sediment in surface run-off being dropped on the crop field at the edge of the buffer prior to the water moving through Zone 3. That sediment can be moved back upslope where it can be used by crops. The mix of native prairie grasses and forbs provides excellent habitat for prairie and forest edge wildlife such as pheasants and quail. In regions where hunting game is an activity, riparian buffers with a Zone 3 prairie strip and a Zone 2 shrub strip can provide excellent bird hunting opportunities that some landowners lease to hunters.

If a crop field has more than a 5–8% slope, a pure switch grass (*Panicum virgatum*) strip can be planted at the field edge of Zone 1 to slow the water. The deep rooting habit of the native prairie grasses and forbs creates a soil that has high infiltration rates. Even on soils that have been cultivated for many years and lost their surface soil structure, native prairie plants can recreate soil structure and porosity similar to that of the original undisturbed soil in 8–10 years (Marquez et al., 2004, 2019). Cool-season grasses such as fescue and brome take a significantly longer time to improve infiltration rates to the same depth as under a native plant buffer community.
Planning considerations during buffer design should include a strong focus on the landowners’ desires and objectives while also retaining the buffer’s ability to provide critical environmental benefits and services. Buffers designed for stabilizing collapsing streambanks in deeply incised channels should have the first rows of trees set back far enough from the edge of the bank to allow grass or other dense ground cover to grow both above and on the bank in full sunlight. In such cases, trees that have a propensity for producing large major roots with many smaller fibrous roots should be selected as these species’ root systems can provide the reinforcing structures that hold the banks in place. Buffers designed to maximize capture and filtration of crop field surface run-off should consist of native prairie grasses and forbs that provide stiff stems to slow water at the field edge of the buffer, dropping much of the sediment and then providing high infiltration rates to significant depths that allow the potentially nutrient laden water to be filtered through an active plant community root system.

4 Special design considerations and management

Design guidelines and planning tools for riparian forest buffers are provided by Bentrup (2008) and MacFarland (2017). While it is relatively straightforward to design a three-zone riparian buffer based on the above standard design, it is critical to fit that buffer to the actual landscape which often requires additional conservation practices that must be integrated with the buffer to make the system function to its maximum potential. To accomplish this integration of various potential conservation practices, design planning should include an on-the-ground walk-through with the landowner as well as an aerial photograph of the site that shows other conservation practices such as grass waterways and other problem areas such as field drainage tiles, gullies and areas of severe bank erosion and collapse. Recent advances in remote sensing have the potential to help buffer zone planning and management significantly (Herring et al., 2006; Goetz, 2006). Techniques such as high-resolution imaging and laser-based techniques can provide detailed information on buffer zone properties such as topography, buffer length, width and vegetation structure as well as stream flow.

As mentioned earlier, where there is severe bank erosion, Zone 1 trees should be set back from the bank edge to allow enough sunlight to support the growth of dense grass or other cover on the bank. Shrubs could replace trees in the first row or two of Zone 1 to reduce the potential of shading the stream. This is an important consideration in some prairie landscapes where warm-water streams exist and lowering water temperature is not desired. Replacing the first row or two of trees with shrubs may also be appropriate where there is significant landowner concern about large woody debris falling
into the stream which might raise water levels, thus backing up water into field drainage tiles.

If the region includes field drainage tiles such as those found on the Des Moines lobe and other recently glaciated regions in the Midwestern United States, a grass waterway of introduced cool-season grasses should be planted over the tile as it passes under the buffer unless the tile can be replaced by a section of solid tile that has no access holes or cracks that provide potential access to plant roots. The deep roots of the native plant community or of trees will access the field drainage tile and plug it to the point that it will no longer carry water from the wet areas of the upland crop field.

In areas where grass waterways from the upland intersect the riparian forest buffer, Zone 3 of the buffer should be expanded out into the crop field or at the expense of the other two buffer zones. Grass waterways are designed to carry surface run-off water safely downhill. When this fast-paced water approaches a buffer strip, it must be dramatically slowed to allow the water to infiltrate into the soil below the buffer. In such cases, Zone 3 should consist only of native grasses and forbs with a strip of native grasses without forbs right at the field edge of Zone 3. The grass waterway should be widened at the edge of the buffer, creating a pyramidal structure with the base against the buffer to allow water a place to slow and sit before it moves through Zone 3.

Buffer widths can vary depending on space available, soil and slope conditions and landowner objectives (Fig. 2). Dosskey et al. (2015) have developed AgBufferBuilder, a GIS tool to design buffer strips using digital elevation models and buffer area ratio relationships, to develop buffers that have a constant level of trapping efficiency along the extent of the buffer. Riparian buffers as narrow as 10–15 m can provide surface erosion control, but nitrogen (N) reduction in subsurface flow may require widths of 30–46 m depending on the soil type and the slope of the riparian zone. When working with the landowner, it is important to determine the number of up and down field passes a field operative can make with the equipment available. In a rectangular field, buffer widths should allow the farmer to end tillage and harvest passes up and down field in a way that will bring them back to the end of the field that they use for access to the field. If the stream meanders along the edge of the field, the buffer will need to vary in width to create the rectangular shape of the field.

The length of a riparian buffer system should ideally include both sides of the channel beginning in the headwaters of the watershed and extending continuously as far downstream as possible. Natural buffers can be part of the total length of a buffer system as long as they fall within the required widths needed to capture surface run-off and reduce the nutrient content of the subsurface flow to the channel. Leaving significant lengths of the channel without riparian buffers or some other kind of perennial cover can actually
create more problems for channel stability. If bank collapse takes place along unbuffered reaches of the channel, channel widths increase in that zone which causes water depths in the channel to decrease until the water hits a narrow channel that is stable because it is buffered. The turbulence caused by forcing the water into a narrower channel can increase undercutting and scouring along the buffered bank, causing it to collapse especially if the riparian buffer is relatively young.

Long-term management of the buffer is required to maintain its design functionality. No grazing should be allowed in Zones 1 and 2. If properly managed, flash or rotational grazing in dry soil conditions can be undertaken in a Zone 3 sown with cool-season grass. Some harvesting could be done in Zone 1 if the species used are stump or root sprouting species. If they are root sprouting species, row definition will be lost and woody tree stems could sprout into the Zone 3 grasses and forbs because tree roots extend laterally away from the bole to an average distance of one tree height from the base. Berries and shrub stems, to be used for ornamental purposes, can be harvested from Zone 2. Zone 3 cool-season grass could be cut for hay once in the growing season – ideally done in the season with the least potential flooding. More importantly, if Zone 3 consists of native grasses and forbs, it must be burned every 3–5 years.
to maintain the biodiversity of the plant community. If that is not done, invasive weeds or grasses, such as reed canary grass (*Phalaris arundinacea*), will find their way into the zone over time.

Riparian forest buffers may need to be used in conjunction with other riparian management practices such as streambank bioengineering, in-stream boulder weirs or constructed wetlands. Both streambank bioengineering and in-stream boulder weirs (Fig. 3) are designed to stabilize the channel by creating steps in the channel evolution process. In-stream boulder weirs are designed to slow down-cutting in the channel by creating a series of weirs in the channel with 1:4 slopes upstream of a series of cross-channel crest stones, and 1:20 slopes of rock downstream of the crest stones. Weirs are placed so that the upstream pool behind the crest stones of one weir are backed-up to the gentle downstream side of the weir upstream of that weir during base-flow. The goal is to reduce down-cutting and pool development downstream of the weir crest stones.

Streambank bioengineering is designed to stabilize eroding streambanks usually associated with a channel that needs to adjust to changes in discharge.

![Figure 3](image-url) Riparian management system practices including from top right: streambank bioengineering, in-stream boulder weir structures, intensive rotational grazing, constructed wetlands and riparian forest buffer that could also be designed as a saturated buffer. Source: reprinted with permission from Schultz et al. (2004) by American Society of Agronomy.
Channels that are down-cutting, with the streambanks being taller than can be supported by the bank soil or parent material, can result in the banks collapsing, thus widening the channel. Bioengineering techniques include use of both hard engineering materials such as boulders for toe control and grasses and woody cuttings placed into the bank wall (Figs. 4 and 5).

Figure 4 Streambank bioengineering on streambanks that were severely eroded. Bear Creek in Central Iowa, USA – A USDA National Research and Demonstration Site – 1998.

Figure 5 Boulder weir to control channel down-cutting by having a long gentle slope on the downstream side of the structure. Crest stones should be large stones that in the top layer allow fish to move over the crest. Boulder weirs are installed in a sequence with the upstream pool of the downstream weir backing water up to the long, gentle downstream rock sequence at base-flow conditions.
Saturated riparian buffers are a relatively new addition to the buffer portfolio (Fig. 6). In this practice, a field tile that intercepts field tile draining upslope areas is laid parallel to the field edge of the buffer (Jaynes and Isenhart, 2014). Water flowing into this tile moves out of the tile and through the riparian buffer subjecting it to the treatment of the soil and plant community. Nitrate reduction is as high as 90% in the water flowing through the buffer before reaching the stream.

Streamside buffers cannot remove materials from field drainage tiles that exit directly into a stream. But an acre of tile-intercepting wetland has been calculated to remove from 20 to 40 tons of N over a period of 60 years. Likewise, creating saturated buffers with field tile that is laid parallel to the field side of the buffer and intercepts field tile that drains the adjacent field can reduce the nitrate content by 90% (Jaynes and Isenhart, 2014).

5 Assessing buffer performance

Tracer tests and isotope evidence shows that denitrification is the major groundwater nitrate removal mechanism in the buffer system (Schultz et al., 2004). Stratigraphy below buffers can determine the effectiveness of nutrient
removal from shallow groundwater. With a shallow confining layer of till below a loamy root zone, buffers can remove up to 90% of the nitrate in groundwater. When the confining layer is found well below the rooting zone and porous sand and gravel are found between the till and the loam, residence time and contact with roots is dramatically reduced and buffers are unable to remove much nitrate from the groundwater. The difficulty in describing the stratigraphy below buffers makes it difficult to quantify the specific amount of remediation that a planned buffer might provide. To be able to measure in-stream water quality improvement, continuous buffers on both sides of the stream must extend at least 15 km.

Studies that have been conducted on the riparian forest buffers in the Bear Creek Watershed located on the Des Moines Lobe in Central Iowa in the United States have shown that a 7-m wide native grass filter strip on either side of the stream can reduce sediment loss to the stream by 95% and total nitrogen, phosphorous and nitrate and phosphate in the surface water by 60% (Schultz et al., 2004). This research suggests that adding a 9-m wide woody buffer to the grass filter results in removal of 97% of the sediment and 80% of the nutrients. There is also a 20% increase in removal of soluble nutrients with the added width (Simpkins et al., 2003; Lee et al., 2000, 2003). Riparian forest buffers can reach maximum efficiency for sediment removal in as little as 5 years and nutrient removal in as little as 10–15 years. Water can infiltrate in the soil up to five times faster in restored buffers in as little as 6 years after establishment compared to adjacent crop fields. Riparian buffer strips also have been shown to retain between 79% and 94% of the atrazine in run off from adjacent crop fields (Reungsang et al., 2005).

In terms of soil stability, it has been shown that buffered streambanks lose up to 80% less soil than row cropped or heavily grazed streambanks (Zai mes et al., 2004; Marquez et al., 2004). A study in the Central Claypan area of northeastern Missouri found that at the watershed scale, streambank erosion accounted for an average of 88% of the in-stream sediment and 23% of the N load on an annual basis suggesting the importance of using perennial vegetation to stabilize streambanks (Willett et al., 2012). Soils in riparian forest buffers contain up to 66% more total organic carbon in the top 50 cm than adjacent crop field soils (Tufekcioglu et al., 2003). Populus hybrids and switchgrass living and dead biomass sequester 3000 and 800 kg C ha⁻¹ and immobilize 37 and 16 kg N ha⁻¹, respectively. Riparian forest buffers have more than eight times more below ground biomass than adjacent crop fields. Buffer soils show a 2.5-fold increase in soil microbial biomass and a fourfold increase in denitrification in the surface 50 cm of soil when compared with the adjacent crop field soil.

Bird species’ use of buffers has shown that riparian forest buffers with a three-zone system of trees, shrubs and native grasses which provide a variety
of habitat structure will support over 40 different bird species over the year in central Iowa compared to 8–10 species in non-buffer agricultural riparian zones with row crop culture to within 5 m of the channel (Berges et al., 2010). If properly designed, riparian buffers can protect a stream from chemical and sediment pollution while providing both terrestrial and aquatic wildlife habitat in agricultural landscapes that are dedicated to producing annual crops to feed humans and livestock or to create biofuels that replace fossil fuels.

6 References

Brewer, M. 2002. Financial agents, water quality and riparian forest buffers. MS Thesis. Iowa State University, USA.

NRCS-USDA. The state of the land. Available at: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs143_012458.pdf.

Agroforestry: an Integrated Science and Practice. American Society of Agronomy, Madison, WI.

Index

AAfA. see Agroforestry Alliance for Africa (AAfA)
Adansonia digitata 293
African cherry 451-452
AFS. see Agroforestry systems (AFS)
AGFORWARD. see AGroFORestry that Will Advance Rural Development (AGFORWARD) project
AgMIP model 229
Agrarzahlen-VerpflichtungenVerordnung 59
Agricultural biodiversity. see Agrobiodiversity
Agricultural marginal land 168
Agricultural Production Systems Simulator (APSIM) framework 219
Agrobiodiversity 302, 306, 307
Agroforestry Alliance for Africa (AAfA) 289
Agroforestry Calculator 220
Agroforestry Estate Model 220
Agroforestry systems (AFS) 386, 405
Agroforestry Technical Assistance Facility (ATAF) 433
AGroFORestry that Will Advance Rural Development (AGFORWARD) project 222-224, 229, 408
Allanblackia stuhlmannii 293
Allelochemicals 106
Alley cropping 90, 338, 366, 368, 370, 373
see also Temperate alley cropping systems
ALWAYS silvopastoral model 217
AMAPmod 219
American ginseng (Panax quinquefolius) 184, 195
expenses and income for cultivating 186
field cultivation 184-187
methods for cultivating 184
morphology of 185
seedlings 188
site selection, cultivation 168
sustainability 188, 189
wildcrafted (collected from wild) 187-190
wild simulated 187
woods-cultivated method 187
Annuity (A), hedgerow management 64, 66, 74-78
Anti-erosion efficiency 248
ARBUSTRA model 220-222, 224
Asexual/clonal propagation. see Vegetative propagation
Asian ginseng (Panax ginseng) 184
ATAF. see Agroforestry Technical Assistance Facility (ATAF)
Bactris gasipaes fruits 293
Bactris gasipaes Kunth (Areceaeae) 445-446
Bactris gasipaes palm heart 293
Bare-rooted plants 254
Bare-root seedlings 254, 255
Barringtonia procura 293
BASic FORest simulator (BASFOR) tree model 217
Beech 177
Big gaps (BG) structure, hedgerow 50, 68, 70, 72
Biodiversity role
food security
global environment change 303-307
multiple dimensions 302-303
multifactor food security promotion
diverse local foods, stimulating high demand 310
diverse niche products, new markets risks 310-311
food and nutrition security 308
government role 309
longer-term commitments, institutions 309
smallholders support 307–308
overview of 301–302
Biomass volume, tree 43
Bio-mulch 257
Black alder 68, 74
Black cohosh (Actaea racemosa) 165
Black raspberry (Rubus occidentalis) 165, 166
Black walnut (Juglans nigra) 166, 169, 172, 190, 191
Bocages 391
Bolaina blanca 447
Boreal wood pasture 139
Bumps, bark distortions 352
Bush mango tree. see Irvingia gabonensis (Irvingiaceae); I. wombolu Vermoesen
Calycophyllum spruceanum (Benth.) Hook. f. ex K. Schum (Rubiaceae). see Capirona (Rubiaceae)
Canarium indicum 293
C. anomala K. Schum. see Kola nuts
CAP. see Common Agricultural Policy (CAP)
Capirona (Rubiaceae) 446–447
Capital recovery factor (CRF) 66
CCF. see Crown competition factor (CCF)
Chemical weeding 257–258
Cinderella species 276, 292
Civilian Conservation Corps and Works Progress Administration 22
Closed (C) structure, hedgerow 50, 70, 72
C. nitida (Vent.) Schott & Endl. (Sterculiaceae). see Kola nuts
CO2FIX model 213
Cola acuminata Schott & Endl. (Malvaceae). see Kola nuts
Common Agricultural Policy (CAP) 40
Cool-season grasses 10
Costa Rican cocoa 471
CRF. see Capital recovery factor (CRF)
Crown competition factor (CCF) 342–344
Curculio caryae (Horn) 374
Dacryodes edulis 293
Dacryodes edulis (G. Don) H.J. Lam. (Burseraceae) 449–450
DBH. see Diameter at breast height (DBH)
Deciduous canopy 173
Dehesa 125, 127
Densitometer 173
Diameter at breast height (DBH) 58, 61
Dust Bowl 22
Dynamic model development steps 214
Ecological focus areas (EFA) 40, 60
Ecosystem service motivation 407
Ecosystem services benefits 240
Ecotourism 169
Ectomycorrhizae 176
Ectomycorrhizal ascomycetes 176
EFA. see Ecological focus areas (EFA)
EI. see Erodibility index (EI)
Empirical models 211
EPTSH. see Equal proportion of trees and shrubs (EPTSH)
Equal proportion of trees and shrubs (EPTSH) 48, 49, 64, 67, 69, 70, 72
Erodibility index (EI) 91, 98
Erosion, mitigation of 175
Evergreen conifers 173
Exotic (E) naturalness 51, 54, 55, 68, 72, 77
Ezezang. see Ricinodendron heudelotii (Baill.) Pierre ex Pax
Facilitation 239
Fairy wand 183, 184
Farm crop diversity 182
Farm-SAFE models 220–222, 224, 225, 229
Federal Nature Conservation Act 59
Filter strip 3-18
Fodder trees and shrubs (FTS) 130, 131
Food accessibility 304-305
Food availability 304
Food security, defined 302–303
Food utilisation 305
Forage-SAFE 221
Forest canopy 166, 167
Forest farming
Case studies
MacDaniels Nut Grove Forest Farming Research and Education Center 201-203
ramps to riches, cultivation 203-205
description of 166–169
fruits, nut trees and shrubs, growing 190–194
light transmission/shading 172–174
mushrooms, growing 175–178
nursery crops in 195–201
overview of 165–166
plant hardiness zones 171
setting the scene 165-166
site selection and characteristics 170-175
slope and aspect 175
soil and water 174-175
tree syrups, cultivating 194-195
vertical stratification 174
woodland medicinal plants, growing 182-183
yields, estimating 169-170
Forest shade effect 167
‘FracRoot’ model 219
Fruit-crops agroforestry 390-391
Fruit-livestock agroforestry 389
Fruit trees, Europe and Mediterranean North Africa
challenges
biodiversity and genetics 405-406
FT-AFS and tree management design 406-407
emblematic FT-AFS 391-397
apple-based AFS, Europe 392-393
arganery and palm-based oasis, Morocco 395-397
olive-based AFS, Europe and Morocco 393-395
fruit tree-based agroforestry systems (FT-AFS) 387-391
multistrata FT-AFS 404-405
overview of 385-387
reinventing FT-AFS
biological specificities, fruit tree management 398-399
diversifying the ecosystem services 399-401
integrating animal benefits 401-404
FTS. see Fodder trees and shrubs (FTS)
Genotyping by sequencing 454
German Environmental Protection Act 46
Ginseng (Panax quinquefolius) 169, 170
cultivation of 182-190
see also American ginseng
Gliricidia-maize intercropping 219
Global Environmental Change and Food Systems (GECAFS) 304
Goldenseal (Hydrastis canadensis) 166, 183, 184
Green Revolution strategy 432
Guama. see Inga edulis Mart. (Fabaceae)
Guazuma crinita Mart. (Malvaceae). see Bolaina blanca
Hardwood timber production
ground cover impact, tree growth 339-341
 growing-space requirements 341-345
log and wood quality 351-355
overview of 337-338
pruning recommendations and practices 345-350
Hardy kiwi (Actinidia chinensis) 174
Hedgerows management, ecosystem services
categorisation 47-52
characteristics 57, 73
degree of naturalness 51-52
distribution 67-68
production function 69-70
structure 50-51, 67-68
tree and shrub species 68-69
types 48-50, 53
contemporary hedgerow management legal 59-60
profitability 60
development, multiple ecosystem services
data collection 61-63
hedgerow restoration and management 63-66
ecosystem services condition classification 52-54
multiple services 54, 71-72
ecosystem services with hedgerows 42-47
biomass production 43-44
habitat provision 45-46
landscape aesthetics 46-47
water production 45
wind production 44
methodological framework 41-42
overview of 39-41
prioritising services 58
utilisation and development 72-80
annuities 74-78
biomass utilisation and profitability 79-80
management 74
restructuring 78-79
Hedgerows Regulations 40
Hemispherical photography 172-173
Hi-sAFe model 218, 219, 229
Holistic approach, agriculture
global society, sustainable intensification 287-291
sustainable farming systems, trade-offs 290-291
overview of 275-276
priorities, agroforestry research 280-287
capacity building, applied science 286-287
capturing genetic variation 284-285
cultivars testing 285
post-harvest processing 285-286
tree biology 282-283
vegetative propagation advances 281-282
underutilized indigenous species, trees technical support 278-280
tree-to-tree variation, characterization 277-278
vegetative propagation 277
underutilized resource, trees 276-277
Honey locust (Gleditsia triacanthos) 172
Honey mushrooms (Armillaria mellea) 176
Hydraulic lift 104
Icecream-bean. see Inga edulis Mart. (Fabaceae)
IFP. see Integrated Fruit Production (IFP)
ILIs. see Integrated landscape initiatives (ILIs)
Inga edulis Mart. (Fabaceae) 447-448
Integrated Fruit Production (IFP) 400
Integrated landscape initiatives (ILIs) 427, 433
Intercropping 92, 97
Irvingia gabonensis (Irvingiaceae) 448-449
I. wombolu Vermoesen 448-449
Juglone 191
Kola nuts 451
Landcare Associations (LCA) 60
Land equivalent ratio (LER) 169, 170
Landschaftspflegeverbände 60
Land Use and Coverage Area frame Survey (LUCAS) database 387
LCA. see Landcare Associations (LCA)
Leafy canopy 167, 172
Leeward distance 26
Less porous windbreaks 25
Leucaena hedgerows 141
Lion’s mane (Hericium sp.) 175-176, 181
Livestock ranching 122
Living snow fences (LSFs) 23, 25, 27
Log moisture content (LMC) 178, 181
Lolium perenne 130
Lolium multiflorum 130
Maitake (Grifola frondosa) 176
Maple syrup 194
Mechanical weeding 258
Mixed herbs 293
Mixed (M) naturalness 51, 54, 55, 70, 72, 77, 80
Modelling agroforestry systems
allometric or regression models 211
architectural models, tree growth 219
complex agroforestry models 217-219
current state 210-222
farm-scale management decision models
adoption models 222
economic and social welfare models 221-222
financial models 220-221
system and farm decisions, qualitative models 219-220
flexibility, wider user community 219
landscape models 222
model complexity 215-216
modelling needs and potential trends 228-230
agriculture continuum models 228
agroforestry models and data 229-230
publicising and availability, models 228-229
research communities, models usage 229
societal assessments 230
stop developing computer model 229
models as tools 210-211
non-plant growth models 213
overview of 209-210
plot-based mechanistic models 213-219
simple tree and crop growth model examples 216-217
sustainability enhancement, example 222-228
criteria, establishing 223
existing models, review 223-224
models, new working version 225
models, use of 226-228
Monocropping 241
Montado 125
Morton Arboretum 191
Mulching 250, 256–257
Multi-row windbreaks 23, 26
Mushrooms 169
see also individual species
Nameko (Pholiota microspora) 176, 181
Native prairie grasses 10, 11
Ndjanssang. see Ricinodendron heudelotii (Baill.) Pierre ex Pax
Near natural (NN) naturalness 51, 54–56, 70, 72, 77, 80
Near-solid windbreaks 25
Net present value (NPV) 64, 66
Nitrogen (N) fertilizer 98, 104
Non-point source (NPS) pollution 3
Non-timber forest products (NTFPs) 166, 169, 173–175, 194
categories and examples of 167
shade-tolerant 168, 206
in silvopasture system 168
NPS. see Non-point source (NPS) pollution
NPV. see Net present value (NPV)
Nut cultivar 192
Nutrition security 303
Nuts cultivation
case studies 375–377
financial decision support tools 374–375
genetic improvement 369–370
nut-based agroforestry systems 366–368
key challenges facing 368–369
orchard design and management 372–373
overview of 365–366
pest management 373–374
policy support 375
temporal and spatial tree and crop
interactions management 370–372
Oak tree 74, 136, 177, 221
Ocular estimation 173
Organic farming 400
Ostrich fern (Matteuccia struthiopteris) 190
Overgrowths (catfaces) 352
Oyster (Pleurotus sp.) 175, 176, 181
Papaya (Carica papaya) 193
PAR. see Photosynthetically active radiation (PAR)
PARCH, crop model 218
Paullinia cupana 293
Pawpaw (Asimina trilobum) 166, 169, 192, 193
Payment for ecosystem services (PES) 424, 425
Peach palm. see Bactris gasipaes Kunth (Areaceae)
Pecan (Carya illinoinensis (Wangenheim) K. Koch) 374
Pejibaye palm. see Bactris gasipaes Kunth (Areaceae)
Perigord truffle (Tuber melanosporum) 176–177
PES. see Payment for ecosystem services (PES)
Photosynthetically active radiation 102, 108, 217
Pollarding
advantages and disadvantages 264
original experiment with pollards 265–266
practices 264
productions generated by 263
Polychoric-based principal component analysis 54, 55
Polyscale model 222
Pomertia pinnata 293
POPROM model 220, 221, 224
Prairie States Forestry Project 22
Predominantly shrub hedgerow (PSH) 48, 49, 64, 67, 70, 72, 78
Predominantly tree hedgerow (PTH) 48, 49, 64, 69, 70, 72, 78
Production systems, forest nursery
container production 199–200
field production 199
pot-in-pot (PIP) container production 200–201
Propagation, forest nursery 195–199
cutting 196–197
division 198
grafting 198
layering 197–198
Pruning 345
Prunus africana 293
Prunus africana (Hook.f.) Kalkman (Rosaceae). see African cherry
PSH. see Predominantly shrub hedgerow (PSH)
PTH. see Predominantly tree hedgerow (PTH)
Radial shakes 353
Ramps (Allium tricoccum) 190, 203–205
cultivation 205
growth habit 204
Index

Recalcitrant mushroom species 176
Red maple 178
Red oak 178
Research in development (RinD) 434
Resilience motivation 408
Ricinodendron heudelotii (Baill.) Pierre ex Pax 450
RinD. see Research in development (RinD)
Ring shakes 353
Riparian buffer strips 43, 45
Riparian forest buffers 4–7
design considerations and
management 11–16
establishment 6
glass, shrub and tree functions 8
overview of 3–4
performance 16–18
zone 1 (undisturbed forest) 7–9, 11
zone 2 (managed forest and shrubs) 9–10
zone 3 (run-off control) 10–13
RMSD. see Root mean square deviation (RMSD)
Root mean square deviation (RMSD) 476, 477, 488, 489
Rural Development Regulation 40
Rustic cocoa 473
SAFE project 229
Safou. see Dacryodes edulis (G. Don) H.J. Lam. (Burseraceae)
Santalum austrocaledonicum 293
Saturated riparian buffers 16
Sclerocarya birrea 283, 293
SDGs. see Sustainable Development Goals (SDGs)
Second Utz law of computer programming 229
Seedlings packaging types 252
Seed propagation 195, 196
Sexual propagation 195
SH. see Shrub hedgerow (SH)
Shiitake mushrooms 176, 177
cultivation 178–182
Shrub hedgerow (SH) 48, 49, 64, 67, 72, 78
Shrub layer 44, 48, 68
Shrub willows 24, 25
Silvoarable Agroforestry For Europe (SAFE) project 222–224
Silvopastoralism
carbon sequestration 134–136
design and management 141–144
Iberian dehesa 125–127, 139
improve water quality 136–138
objectives 122
overview of 119–122
promote biodiversity conservation 138–141
scientific studies 145–146
silvopastoral systems 122–127
trees importance, livestock production
effects, pasture production 127–130
as fodder resource 130–133
shading and sheltering effect 133–134
Silvopasture 168, 338
Small gaps (SG) structure, hedgerow 50, 67, 70, 72
Smallholder farming 301–311
food system concept application 304–307
Soil Changes Under AgroForestry (SCUAF) 213
Soil health (soil quality)
biological properties
soil carbon 319–320
soil enzymes 320–321
chemical properties
chemical adsorption 328–329
chemical transport reduction 329
overview of 317–319
physical properties
computed tomography-measured
macroporosity 323–325
density and porosity 321–322
infiltration 326–327
pore size distributions 323
saturated hydraulic conductivity
(Ksat) 325–326
seasonal plant water use 327
thermal properties 327–328
water retention 322–323
Sorptivity 326
Spatial heterogeneity 144
Spawn 178–180
Stability, food security 303
STICS crop models 218, 219
Stocking (or density) 341
Strength, Weaknesses, Opportunities and
Threats (SWOT) model 220
Stropharia 181
Sucrin. see Inga edulis Mart. (Fabaceae)
Sugaring process 194
Sugar maple (Acer saccharum) 170
Sustainable Development Goals (SDGs) 421
Index

Swale 174
Symphoricarpos albus 68

Temperate alley cropping systems
above ground competition, light 101–103
below ground competition
allelopathy 105-106
nutrients competition 104-105
water competition 103-104
companion crops selection 96
design complexities 106
ecological benefits
pest and disease protection 99-100
soil erosion control 98-99
water quality improvement 98-99
wildlife habitat enhancement 100-101
economic benefits
farm products and supplemental income diversification 96-97
food supply source 97-98
farm machinery and operating requirements 96
overview of 89-90
peach-cotton alley cropping
adoptability 110-111
environmental impacts 108-110
production (yield) 108
system 107-108
tree planting design, layout and orientation
between-row spacing and tree orientation 95-96
single species vs. mixed species 94
single vs. multiple-row sets 94-95
tree/shrub selection 92-93
Terminalia kaernbachii 293
TH, see Tree hedgerow (TH)
Trade-offs analysis, tropical agroforestry and ecosystem services
balancing guidelines 496-497
case study, Sentinel Landscape–El Tuma-La Dalia, Nicaragua 480-481, 491-492
advantages and limitations 493-494
balancing trade-offs 494-495
decision-making and optimization 495
ecosystem services 486
Spearman’s correlations 487, 490
structural features 484
data analysis 482
data collection 481
between ecosystem services and plant diversity
ecosystem services vs. shade canopy features 489-491
individual promising systems 489
magnitude 485-489
principal component analysis 483, 485
Spearman’s correlations and linear regressions 483-485
qualitative and quantitative data analysis
analytic hierarchy process 479
Bayesian approaches 480
multi-criteria approaches 479
multi-criteria decision analysis 479
quantitative analysis
individual systems identification, least trade-offs 478-479
linear and nonlinear regression analysis 476
magnitude estimation 476-477
principal component analysis 475-476
Spearman’s correlations analysis 476
stand basal area, competitive allocation 477-478
shade canopy features and indicators 481-482
Tree canopy density 96
Tree hedgerow (TH) 48, 49, 64, 69, 70, 72, 78
Tree planting and management
cutting and seedling 254-255
overview of 239-241
planting pattern
distance between rows 248-249
distance between trees on rows 249
tree density 247
tree rows orientation 247-248
plant maintenance
fertilisation 259
irrigation 259
non-crop strips management 258-259
weeding 256-258
plot picketing 250-251
seedling quality
age and dimensions 252-253
 genetic quality 251
morphological quality 253
plants types 252

© Burleigh Dodds Science Publishing Limited, 2019. All rights reserved.
Index

seedlings preparation 254
soil preparing 249–250
in spring and autumn 254
tree pruning
guidelines 260–261
pollarding (see Pollarding)
shape pruning 261–262
silvicultural pruning 262–263
tree species choice
one/ several species 241
species choice 241–247
for temperate agroforestry plantations 243–246
tree thinning 266–267
young tree protection 256
Tree Protection Regulation of the Elbe Elster 59
Triplochiton scleroxylon 283
Tropical agroforestry and ecosystem services
carbon sequestration 472–474
ecosystem services by agroecosystems 483
nutrient cycling and soil quality 471–472
overview of 467–468
pests and diseases regulation, coffee and cocoa 470–471
provisioning services 469–470
structure and plant diversity, sentinel landscape 482–483
trade-offs analysis (see Trade-offs analysis, tropical agroforestry and ecosystem services)
water cycle and water consumption regulation 474–475
Tropical agroforestry challenges in agroecological intensification 422–427
of developing agroforestry at scale 432–434
overview of 421–422
of policy in support 430–432
in sustainable landscapes 427–430
Tropical tree domestication of Allanblackia floribunda, in Central Africa 452–455
domesticated tree species 444–452
in the Amazon basin 445–448
in the Congo basin 448–452
overview of 439–440
principles and techniques 440–444
plus trees selection 441, 442
priority species identification 441, 442
trees integration 444
vegetative propagation methods development 443–444
Uncaria tomentosa 293
Vegetative environmental buffers 21, 29
Vegetative propagation 195, 196
Vertic Albaqualf (claypan soil) 323, 325
Visual site index 187
Vitellaria paradoxa 293
Wallhecken information system 80
Walnut canopy 169
Walnut toxicity 191
WaNuLCAS. see Water, Nutrient and Light Capture in Agroforestry Systems (WaNuLCAS) model
Warburgia salutaris 293
Water, Nutrient and Light Capture in Agroforestry Systems (WaNuLCAS) model 217, 218, 220
WCFSD. see World Commission on Forests and Sustainable Development (WCFSD)
Wedge-shaped windbreak 26
White truffle (T. magnatum) 177
Wildcrafting 187–188
Wild leeks. see Ramps
Windbreaks
benefits 22–23
density 24
design, reduce wind speed and snow drift 25–28
and odor mitigation 29–31
overview of 21–22
and particulate capture 28–29
tree and shrub selection 23–25
and wildlife conservation 31–32
Wine-cap (Stropharia rugoso-annulata) 176
Wood pastures 123, 124
Woody polycultures 389–390
World Agroforestry Centre (ICRAF) 439, 440, 446, 449, 457
World Commission on Forests and Sustainable Development (WCFSD) 439
Yield-SAFE model 216–218, 220, 224–226, 229

© Burleigh Dodds Science Publishing Limited, 2019. All rights reserved.