Improving dairy herd health

Edited by Professor Emeritus Émile Bouchard
University of Montreal, Canada
Contents

Series list x
Acknowledgements xvii
Introduction xvii

Part 1 Principles

1 Key issues in dairy herd health management 3
John Remnant, James Breen, Peter Down, Chris Hudson and Martin Green, University of Nottingham, UK

1 Introduction 3
2 Key features of herd health management 5
3 Concepts in measuring disease and performance 8
4 Using data in herd health management 10
5 Herd health management in practice: initiating change 14
6 Herd health management in practice: implementing change 18
7 Summary 21
8 Where to look for further information 21
9 References 21

2 Key issues and challenges in disease surveillance in dairy cattle 27
Lorenzo E. Hernández-Castellano, Klaus L. Ingvartsen and Mogens A. Krogh, Aarhus University, Denmark

1 Introduction 27
2 Theory of disease surveillance 28
3 From disease surveillance toward disease prevention 31
4 High-risk periods for dairy cows 34
5 Biomarkers of disease risk 36
6 Interventions and economic value of surveillance systems 41
7 Future perspectives 43
8 Where to look for further information 44
9 References 44
Contents

3 Advances in techniques for health monitoring/disease detection in dairy cattle 53
Michael Iwersen and Marc Drillich, University of Veterinary Medicine Vienna, Austria

1 Introduction 53
2 Shift in the veterinary profession 54
3 Information management systems 57
4 On-farm diagnostic tests 61
5 Electronic devices and precision livestock farming technologies 65
6 Case study: detecting subclinical ketosis in dairy cows 68
7 Conclusion and future trends in research 84
8 Where to look for further information 87
9 References 88

4 Data-driven decision support tools in dairy herd health 101
Victor E. Cabrera, University of Wisconsin-Madison, USA

1 Introduction 101
2 Big data and decision analysis 103
3 Whole-dairy-farm systems simulation 107
4 The University of Wisconsin-Madison Dairy Management website 108
5 Data-driven decision support tools: mastitis as a case example 111
6 Conclusion 115
7 Where to look for further information 116
8 References 116

Part 2 Prerequisites

5 Advances in understanding immune response in dairy cattle 121
Bonnie Mallard, Mehdi Emam, Shannon Cartwright, Tess Altwater-Hughes, Alexandra Livernois, Lauri Wagter-Lesperance, Douglas C. Hodgins and Heba Atalla, University of Guelph, Canada; Brad Hine, CSIRO Livestock & Aquaculture, Australia; Joshua Aleri, Murdoch University, Australia; and Andrew Fisher, University of Melbourne, Australia

1 Introduction 121
2 Genetics for dairy health 126
3 Epigenetics 133
4 Heat stress, climate change and immunity 138
5 Crossbreeding and immunity in dairy cattle 141
6 Colostrum and calf health 141
7 Conclusion 147
8 Where to look for further information 149
9 References 149

6 Dairy cattle welfare and health: an intimate partnership 163
Clive Phillips, Curtin University Sustainable Policy (CUSP) Institute, Australia

1 Introduction 163
2 The welfare implications of common dairy cow diseases 165
3 Subclinical diseases 168
4 Stress and immune function 169
5 Mental health 170
6 Case study: the health and welfare of cows in Indian shelters 173
7 Summary 176
8 Future trends in research 176
9 Where to look for further information 181
10 References 183

Part 3 Health at different stages in the life cycle

7 Optimising reproductive management to maximise dairy herd health and production 191
Norman B. Williamson, Massey University, New Zealand

1 Introduction 191
2 Grouping animals to measure individual animal reproduction limits 193
3 Measuring reproductive performance 196
4 Production-related reproductive indices for pasture-based seasonally calving herds 197
5 Diagnostic reproductive indices for pasture-based seasonally calving herds 198
6 Production-related reproductive indices in year-round calving herds 200
7 Indices used to diagnose causes of inadequate herd reproduction 201
8 Monitoring bull breeding 204
9 Management of herd limits to reproduction: anoestrus 205
10 Clinical examination and treatment of anoestrous cows 207
11 Improving oestrus detection 214
12 Controlled breeding programmes for oestrus synchronisation 216
13 The role of nutrition in limiting and optimising reproduction 221
14 Managing abortion 224
15 Conclusion and future trends 226
16 Where to look for further information 226
17 References 227
Contents

8 Managing dry cow udder health 231
Päivi J. Rajala-Schultz, University of Helsinki, Finland; and Tariq Halasa, University of Copenhagen, Denmark

1 Introduction 231
2 Mammary gland involution 232
3 Milk cessation methods: impacts of gradual versus abrupt milk cessation 234
4 Dry cow therapy 242
5 Other dry cow management practices 251
6 Conclusion and future trends 253
7 Where to look for further information 255
8 References 255

9 Managing calves/youngstock to optimise dairy herd health 265
John F. Mee, Teagasc, Ireland

1 Introduction 265
2 Costs of heifer rearing 266
3 Targets for heifer rearing 267
4 Start of the dairy herd health lifecycle 268
5 Impacts of calfhood nutritional management on subsequent dairy herd health 277
6 Impacts of calfhood diseases on subsequent dairy herd health 281
7 Role of vet in communicating best practice in youngstock management 284
8 Conclusion and future trends 286
9 Where to look for further information 286
10 References 288

10 Managing replacement and culling in dairy herds 299
Albert De Vries, University of Florida, USA

1 Introduction 299
2 Culling definitions, culling risks and culling reasons 300
3 Poor health and conformation as risk factors for culling 301
4 Herd effects on the risk of culling 303
5 Heifers 304
6 Cost of culling 304
7 Economic decision-making 306
8 Environmental impact 311
9 Future trends in research 313
10 Where to look for further information 313
11 References 314
Part 4 Particular health issues

11 Optimizing udder health in dairy cattle
Theo J. G. M. Lam, Royal GD Animal Health and Utrecht University, The Netherlands; and Sarne De Vliegher, M-team, Ghent University and MEX™, Belgium

1 Introduction 323
2 Mastitis diagnosis 326
3 Mastitis immunology 330
4 Antimicrobial treatment of mastitis 332
5 Preventive management 337
6 Milking machine and milking 339
7 Conclusion and future trends 341
8 Where to look for further information 346
9 References 347

12 Optimising foot health in dairy cattle
Nick J. Bell, The University of Nottingham, UK

1 Introduction 351
2 Claw horn disruption – a paradigm shift 364
3 Aetiopathogenesis of white line bruising and lesions 370
4 Aetiopathogenesis and control of digital dermatitis 373
5 Summary and critical control points 375
6 Case study 376
7 Emerging diseases and future concepts 380
8 Where to look for further information 381
9 References 382

13 Preventing bacterial diseases in dairy cattle
Sharif S. Aly and Sarah M. Depenbrock, University of California-Davis, USA

1 Introduction 395
2 Pathogen host environment: an overview 398
3 Disease detection 416
4 Risk assessment tools 427
5 Future trends in research 436
6 Where to look for further information 441
7 References 442

Index 457
Introduction

Increasing concern about over-reliance on antibiotics (resulting in antimicrobial resistance), as well as broader concerns about animal welfare, have put greater emphasis on preventative measures in maintaining the health of farm animals. Herd health management programmes take a population approach based on quantitative epidemiology which makes it possible to assess disease risk and, as a result, prevent and manage diseases more effectively. This volume reviews key challenges in dairy herd health management.

Part 1 covers the principles of dairy herd health management, such as the key issues in herd health management and challenges in disease surveillance of dairy cattle as well as the advances in techniques for health monitoring and disease detection in dairy herds. Part 2 focuses on the prerequisites of dairy herd health management, specifically the advances in understanding immune response and the relationship between dairy cattle welfare and health. Chapters in Part 3 cover herd health at different stages of the life cycle. Discussions on optimising reproduction and transition cow management to maximise dairy herd health are included. Chapters also examine managing calves and managing replacement and culling to optimise dairy herd health. The final part of the book examines various ways to optimise dairy herd health, covering areas such as optimising udder health, hoof health, preventing bacterial diseases and the ways data-driven decision support tools can be used in dairy herd health.

Part 1 Principles

Chapter 1 reviews key issues in dairy herd health management. Dairy herd health management is assessing, monitoring and improving the health of dairy cows at a population level. Good herd health management takes a holistic approach and is ongoing and cyclical. All members of the dairy farm team and their advisors are involved, decisions are informed by data generated by the herd. These data may come from numerous sources. The data are processed and analysed to monitor cow health, target investigations and evaluate progress. To make lasting change on farms, advisors must communicate appropriately with farm managers to understand behaviour and motivate change. This chapter reviews these aspects of dairy herd health management, giving practical suggestions on how to get started, how to incorporate herd health management into business models and how to maintain momentum.

The next chapter provides an overview of the different aspects concerning disease surveillance programs. Chapter 2 describes a specific and conceptual framework related to disease surveillance of production diseases within the individual herd, including both animals and farmers. Regarding farmers, this
chapter focus on the justification and purposes for doing disease surveillance as well as the possible decisions and actions they can take to enhance the efficiency of the disease surveillance programs. It also discusses some of the most novel biomarkers that can be potentially used to identify pre-clinical disease states, which will have the potential to minimize the negative effects of production diseases. Finally, the chapter looks into the future perspectives and possible challenges that future automated disease surveillance systems will need to face in order to keep an optimal animal health, performance and welfare within the individual herd.

The subject of Chapter 3 is advances in techniques for health monitoring and disease detection in dairy cattle. It starts by reviewing how the focus in the veterinary profession has shifted from the treatment of acutely diseased animals to more proactive management, which includes the use of epidemiological tools to identify risk factors for animal health, welfare and production. The chapter then reviews information management systems and the different on-farm diagnostic tests that can be performed to provide the necessary data on dairy herd health. A section discussing the use of electronic devices and precision livestock farming techniques is also provided. The chapter also provides a case study which describes how subclinical ketosis was detected in dairy cows.

The final chapter of Part 1 examines the use of data-driven support tools in dairy herd health. Chapter 4 begins by describing the development process of data-driven decision support tools for dairy herd management with an emphasis on real-time continuous data integration and its applications on dairy herd health. It includes concepts on big data analysis, expert systems, and artificial intelligence towards more sustainable dairy farm production systems.

Part 2 Prerequisites

Part 2 opens with a chapter that reviews advances in understanding immune response in dairy cattle. Chapter 5 begins by analysing the genetics for dairy health, specifically focusing on the importance of identifying the most appropriate measure of disease resistance to ensure the desired dairy health outcome. The chapter also discusses epigenetics and how epigenetic mechanisms are integral to improving dairy immune responses. A section on environmental stresses that dairy cattle encounter is also provided, specifically heat stress and climate. Crossbreeding and immunity in dairy cattle is also discussed. The chapter also examines the importance of colostrum in calf health and emphasises the importance of ensuring early colostrum ingestion for calf survival. The chapter concludes by stressing how cattle have played a key role in immunology and why it is critical for dairy producers to identify cattle with a high immune response.
Chapter 6 discusses the intimate partnership between dairy cattle welfare and health. It begins by examining the welfare implications of common dairy cow diseases such as lameness, mastitis, metritis, acidosis, ketosis and other production-related diseases. It also addresses the impact of subclinical diseases as well. Stress and immune function is also discussed, followed by a review of how mental health can impact the welfare of dairy cattle. A case study on the health and welfare of cows in Indian shelters is also included.

Part Health at different stages in the life cycle

Chapter 7 reviews optimising reproductive management to maximise dairy herd health and production. Reproduction is central to the operation of a dairy herd through initiating lactation and providing replacement animals and offspring for sale. This chapter outlines the steps required to detect reproductive problems and limitations in cows and herds. It then elaborates some strategies to overcome limits to reproductive health and production concentrating on detecting cows requiring attention through record monitoring, analysing herd records to monitor reproduction and identify areas that limit performance and providing strategies to deal with these limits. The main limits addressed are anoestrus and inadequate oestrus detection that are addressed through education of farm workers, aids to oestrus detection and the use of planned breeding programs to induce and control oestrus and breeding. Nutritional causes of limited reproductive performance are also considered as well as strategies to limit abortion.

The next chapter assesses managing dry cow udder health. The dry period lays a foundation for a successful next lactation, especially from the udder health perspective. It is a high-risk period for acquiring new intramammary infections (IMI), but it also provides an excellent opportunity for eliminating existing subclinical infections. The way cows are dried off and milking is halted at the end of lactation impacts the involution process, mammary health and cow comfort. Chapter 8 reviews the current knowledge about the impact of milk cessation methods (abrupt vs. gradual dry-off) on mammary involution, udder health and cow comfort. The importance of dry cow therapy is discussed, especially in the light of current global concerns related to antibiotic resistance.

Chapter 9 focuses on managing calves to optimise dairy herd health. The chapter demonstrates how calve management can play a critical role in optimising herd health. It starts by discussing the costs of heifer rearing and how good early life management can reduce the costs of heifer rearing. The chapter also discusses the importance of setting targets for heifer rearing, focusing specifically on data management, data recording and benchmarking. It then goes on to discuss managing dairy cattle at the start of the herd lifecycle and how this can have significant effects on calf health. Sections on the impact
of calfhood diseases and nutritional management on dairy herd health are also provided. The chapter also addresses the role of vets in communicating best practice in calve management, then concludes by highlighting the impact of better calf management on overall herd health.

The subject of Chapter 10 is managing replacement and culling in dairy herds. Approximately one third of dairy cows are replaced every year. Replacement of dairy cattle is an important part of the cost of dairy production and an environmental sustainability concern. Primary culling reasons are reduced health and fertility. Reduced welfare often proceeds culling. The chapter focuses on factors that affect replacement and culling in dairy herds with a focus on cows. The act of culling is simple, but the risk factors and economic considerations are complex. The chapter first presents some data on culling risks and reasons, explores more in depth the effects of poor health on culling, and presents aspects of economic decision-making regarding culling and replacement decisions.

Part 4 Particular health issues

The first chapter of Part 4 covers optimising udder health in dairy cattle. Chapter 11 begins by reviewing mastitis, inflammation of the mammary gland, which is generally caused by bacterial infections, is one of the most important and most studied diseases in dairy cattle. Diagnostic approaches are discussed with specific attention for the bacteriological causes of the disease. Subsequently immunological aspects of intramammary infections will be reviewed. Because treatment of mastitis is unavoidable at some point in time in most dairy herds, attention is given to treatment of mastitis with an emphasis on different types of antibiotics and antibiotic resistance. The most important part of udder health management, however, is the preventive management. From that perspective, breeding, housing and nutrition are shortly discussed, as are the milking machine and milking procedures. Finally, attention is given to problem solving once mastitis has led to a herd level problem and some future trends are discussed.

Chapter 12 examines optimising foot health in dairy cattle. The chapter begins by reviewing the importance of lameness then goes on to discuss claw horn disruption. It also reviews aetiopathogenesis of white line bruising and lesions, which is then followed by a section on aetiopathogenesis and control of digital dermatitis. A case study on an 800 cow Holstein herd with a sudden rise in sole ulcers and white line lesions is also included. The chapter concludes with an overview of the emerging diseases in dairy cattle.

The final chapter of the book discusses preventing bacterial diseases in dairy cattle. Chapter 13 begins by examining state of the art disease prevention in dairy cattle, focusing specifically on bovine respiratory disease (BRD). The
chapter uses the disease triangle as a basis for discussion, emphasising how disrupting certain parts of the triangle can prevent diseases. It first focuses on bacterial and viral pathogens associated with BRD and the role of the host and the role of the environment in bacterial infection. The chapter then goes on to discuss the importance of disease detection and how various tools can be used to help prevent diseases such as BRD. A discussion on risk assessment tools is also provided. The chapter concludes by highlighting the importance of considering all factors of the disease triangle when looking at ways to prevent diseases.
Chapter 1

Key issues in dairy herd health management

John Remnant, James Breen, Peter Down, Chris Hudson and Martin Green, University of Nottingham, UK

1 Introduction

Dairy herd health management involves assessing, monitoring and improving the health of dairy cows at a population level. This is an approach advocated internationally in areas with an industrialized dairy production (Alawneh et al., 2018; Ansari-Lari et al., 2010; Barkema et al., 2015; Cannas da Silva et al., 2006; Galon et al., 2010; Noordhuizen and Wentink, 2001). Since the benefits of maintaining a healthy, efficient productive dairy herd are so wide-ranging, it is difficult to understand why the concept of ‘herd health’ hasn’t been more firmly embedded in dairy industries throughout the world. This chapter outlines some of the key beneficiaries and outcomes of adopting a successful herd health program.

1.1 The farmer

The economic benefits of maintaining a healthy herd are clear. Substantial financial losses in dairy production are often associated with key endemic diseases such as mastitis, lameness and infectious conditions as well as suboptimal nutrition and reproduction (Geary et al., 2012; Kossaibati and
Esslemont, 1997; Liang et al., 2017; Mahnani et al., 2015). For dairies to be a sustainable business, farms must be profitable and good cow health is one major element of the financial equation (Edwards-Jones, 2006). However, the benefits of herd health to the farmer extend beyond just monetary considerations. Other reasons farmers may wish to have healthy livestock include: pride in a well-run business, the core belief that animal well-being is important, a dislike of wastage, increased ease of management through not having to deal with sick or under-performing stock and altruism - the knowledge that disease from their animals will not be passed to other animals on the farm or to other farms.

1.2 The environment

With concerns about climate change and its potential devastating impacts on much of the world, looking after our environment has become increasingly prominent. The global dairy sector is considered to be responsible for around 4% of total anthropogenic greenhouse gas (GHG) emissions although large variations are recognized between farms and regions (FAO, 2019). In many cases, improvements to herd health are acknowledged as one of several mitigation strategies to reduce emissions alongside fertilizer/slurry and soil management, optimal use of feeds and nutrition, improving the efficiency of energy and water consumption and genetics (Green et al., 2011). Health and productivity are known to vary considerably between herds, which suggests that there is often scope for improvement. Increasingly, the environmental impact attributed to individual farms is being measured and benchmarked and, although tools for such analyses have scope for substantial improvement, this trend is likely to continue. Indeed, it is likely in the relatively near future that benchmarking of environmental impact will play a major role in the auditing of dairy farms and the sales of dairy products, for example, the ‘proAction’ initiative by the Dairy Farmers of Canada (https://www.dairyfarmers.ca/proaction).

1.3 The cow

Beyond the importance of herd health in terms of farm economics and the environment, the most compelling reason to improve herd health is probably cow welfare. Dairy cows are sentient beings, and it is right that we should care for them throughout their lives by looking after their health and welfare. It is clear that good health plays a pivotal role in good welfare whilst poor health is often a reason for compromised welfare of dairy cattle. Most diseases and conditions have an important impact on cow welfare, but we draw particular attention to lameness, mastitis, periparturient disease, dystocia and delayed treatment as being potentially substantial welfare issues. Good welfare, however, extends beyond good health. There is increasing awareness that
welfare should not only include minimizing negative experiences but also incorporate enhancement of positive aspects of the lives of cows. As an example, a ‘quality of life framework’ has been proposed by the UK Farm Animal Welfare Council (FAWC, 2009) identifying five opportunities for positive welfare in farmed animals: comfort, pleasure, confidence, interest and a healthy life. Although research into positive aspects of the welfare of dairy cattle is still limited, it is likely to become of increasing importance in the future. A modern dairy herd health program should include every aspect that influences the welfare of cows.

1.4 The citizen

The consumer and wider society have a legitimate interest in how food is produced, both from the perspective of whether the products they consume are produced in a manner they find acceptable as well as the extent to which farming itself affects the natural environment (Boogaard et al., 2008; Cardoso et al., 2017; Jackson et al., 2020). The fact that it involves care and management of live animals adds complexity to ethical assessments of livestock farming. Important issues that must be considered include food security, affordability and choice, animal welfare, impacts on local and wider landscapes and environments as well as the problem of antimicrobial resistance. The relative importance of these different factors depends on regional, economic and cultural differences. However, animal welfare should be an essential element underpinning any herd health program. Even though citizens in many parts of the world are separated from farming in terms of their own experience and understanding, it is still essential to take full account of wider social attitudes about how animals are farmed. An active, successful herd health program should help address these attitudes and provide a clear route in demonstrating high levels of health, welfare and husbandry on dairy farms. Improving health, welfare and husbandry are likely to improve other areas important to the citizen. As well as the environmental benefits from reduced emissions and antimicrobial use should be reduced by herd health management. Preventing, and therefore reducing, diseases is likely to reduce antimicrobial use on farms, thereby reducing the selection pressure for antimicrobial resistance (Hyde et al., 2017, 2019).

2 Key features of herd health management

In this section, we outline some key aspects of herd health management that are consistent between farms, countries and advisors. These features provide the foundation of herd health management. We also assess the particular role of veterinary practitioner within the herd health management team.
2.1 Population level focus

Herd health management is essentially applied epidemiology. The health and welfare of a herd are monitored at a population level, with interventions made to prevent disease and improve the health and welfare of the whole herd. This contrasts with considering health at an individual cow level by making a diagnosis and treatment plan for a sick animal. Both approaches are important. However, it is the population-level approach that distinguishes herd health management. This may not be immediately obvious to many veterinary practitioners whose training is traditionally weighted heavily toward the former rather than the latter. The population-level nature of herd health management tends to result in more preventive approaches compared to individual cow medicine although the two are linked. Individual animal diagnoses should commonly lead to considerations of disease issues at the herd level.

2.2 A holistic approach

In addition to being at a population level, herd health management considers the goals and motivations of farmers and the dairy business. A deep understanding of the owner’s or manager’s aspirations for the herd and farm as well as an understanding of the system in use are essential to ensure that recommendations are relevant to the dairy business being advised.

2.3 Data driven

Herd health management is informed by the regular and systematic collection and analysis of data from the farm. These data may consist of farmer records of management or treatments, external records such as those collated by milk quality laboratories from Dairy Herd Improvement (DHI) testing or data from cow and environmental sensors. These data are used to inform on-farm investigations and observations to identify and then manage risk factors. Effective herd health management relies on these data to facilitate on farm investigations and to drive high-quality decision-making.

2.4 Ongoing and cyclical

Effective herd health management is not a one-off intervention. Herd health management is a cyclical and iterative process. This distinguishes herd health management from both one-off problem-solving visits and occasional visits to audit compliance with standards and/or protocols for quality assurance. These alternative approaches have their merits and may be integrated into a wider herd health management program, but its continuous and iterative nature is what distinguishes herd health management. Herd health management relies
Index

AA. see Arachidonic acid (AA)
Abrupt dry-off 235
Accelerated involution 236–237
Acidosis diseases 167
Acquired immunity 403
Active involution 233
Adaptive immune system 331, 403
Advanced ketosis monitoring 70–71
 electronic hand-held devices and influencing factors
 BHB concentrations 80
 BHB measurements 76–77
 performance of 78–79
 temperatures 79
 test strips 76–77
milk composition
 dairy herd improvement associations (DHIA) 80
 Fourier-transform infrared (FTIR) 80–82
 Herd Navigator 81
 in-line systems 81
 subclinical ketosis (SCK) 80–81
sensor-derived animal behavior and data integration
 algorithm 84
 clinical diagnosis 83–84
 health index score (HIS) 83–84
 time budget 83
 traditional semi-quantitative tests 71, 76
AFC. see Age at first calving (AFC)
AgDH. see Data warehouse (AgDH)
Age at first calving (AFC) 277–278
bovine respiratory disease (BRD) 281–282
calf diarrhoea 281
Dystocia 281
Aged cow cost 310
Airway bacterial sampling methods in cattle, summary of 422
Aminoglycosides 334
AmpC type β-lactamases 335
AMR. see Antimicrobial resistance (AMR)
AMU. see Antimicrobial use (AMU)
Annual culling rates 300
Anoestrous cows 194
corpus luteum present
 embryonic death 207–208
 examination 207
 heifer disease 208
 silent oestrus 208–209
 suboestrus 208–209
follicular/cystic structures 212
inactive ovaries 209–212
calcium/phosphorus ratio 211
copper deficiency 211–212
energy deficiency 210–211
freemartinism 209–210
genitalia 209
phosphorus deficiency 211
pseudo-hermaphrodite 210
treatment 211
underfeeding and stress 210
syndrome treatment
cyclical activity 213
examination groups 212–213
programmes 213
submission rates 213–214
Ante-mortem airway sampling methods 424
Antibiotic susceptibility testing 425–426
Antimicrobial resistance (AMR) 335, 395
Antimicrobials 328
Antimicrobial susceptibility monitoring 426–427
antibiotic resistance 426
antimicrobial stewardship 426
bacterial resistance 426
multimodal approach 426
resistance gene identification 426
surveillance 426
surveillance efforts for AMR 426
Antimicrobial use (AMU) 265
Arachidonic acid (AA) 369
Bacterial diseases in dairy cattle, preventing BRD complex 397–398
disease detection 416–427
future trends in research 436–440
pathogen host environment 398–416
risk assessment tools 427–436
Bacterial identification 424–425
Bacterial pathogens, role of coinfections 401–402
host role 402–409
H. Somni 400
influences on host immunity 409–412
M. haemolytica 399
Mycoplasma species 400–401
other bacteria associated 401
P. multocida 399–400
respiratory microbial communities 402
Bacterial resistome 426
Bacteriological culture 328–330
Basic herd risk profile 429
BCS. see Body condition score (BCS)
Bedding hygiene 414
Beef cows 274
Beef semen 307
β-lactam antibiotics 333
β-lactam inhibitors 333
Bibersteinia trehalosi 398, 401
Biotin deficiency 371–372
Blanket DCT
for coliform pathogens 243
existing IMI, cure of 244–245
new IMI, risk of 244–245
protective capability of 243
B-lines 420
BMEs. see Bovine mammary epithelial cells (BMEs)
BnAb. see Broadly neutralizing antibody (bnAb)
BoCV. see Bovine coronavirus (BoCV)
Body condition score (BCS) 268
BoHV1. see Bovine herpes virus 1 (BoHV1)
Bovine coronavirus (BoCV) 401
Bovine herpes virus 1 (BoHV1) 401
Bovine immune system
AgENCODE 135
ENCODE project 135
FAANG 135
immuno-epigenomic field 136
vs. microRNAs
bovine mammary epithelial cells (BMEs) 137
evolutionary conservation 137
high-throughput sequencing 137
HPC fate decisions 137
ingenuity pathway analysis (IPA) 138
multi-omics approach 136
phenotypic and functional transformations 135
Bovine mammary epithelial cells (BMEs) 137
Bovine respiratory disease (BRD) 396
Bovine respiratory syncytial virus (BRSV) 283, 401
Bovine viral diarrhea (BVD) 271–273, 401
control and prevention herd management plan 434–436
database search features 436
sample size inputs 435
modifiers 438–440
scoring systems 416–419
BRD. see Bovine respiratory disease (BRD)
BRD Risk Assessment Tool 428
Breathing quality 417
Brix optical refractometer 275
Broadly neutralizing antibody (bnAb) 124–126
colostrum 145–146
Bronchoalveolar lavage (BAL) 422–423
BRSV. see Bovine respiratory syncytial virus (BRSV)
Business, time pyramid of 324
BVD. see Bovine viral diarrhoea (BVD)
Cabergoline. see prolactin inhibitors
CA BRD scoring system 419
Calf blood Ig concentrations 276
Calf growth 304
Calf housing management practices 431–432
Calf nutritional management factors affecting age at first calving (AFC) 278–279
affecting lifetime productivity 280–281
Calf respiratory disease 414
Calf resuscitation 271
Calf value opportunity cost 311
California BRD scoring system 416, 417, 432–434
for post-weaned dairy calves 419
risk scores 433
score application 433
Spanish translation of 418
California Mastitis Test (CMT) 249
Calves 404
Calves/youngstock, management
calfhood diseases, impacts of 281-284
calfhood nutritional management, impacts of 277-281
heifer rearing
costs of 266-267
targets for 267-268
start of dairy herd health lifecycle 268-277
vet, role of 284-285
Canadian 5-point score 354
Casein hydrolyzate 236
Cephalosporins 333, 335
Claw horn disruption (CHD) 364-370
Climate change 138-141
Clinical Laboratory Standards Institute (CLSI) 421
Clinical mastitis 247
Cloxacillin 335
CLSI. see Clinical Laboratory Standards Institute (CLSI)
Club cells 403
CMT. see California Mastitis Test (CMT)
Coinfections 401-402
Coliforms 233
Colostrogenesis 233
Colostrum 405
and calf health 141-142
broadly neutralizing antibody (bnAb) 145-146
cellular components 144
colostral defensins 146-147
genetics quality and absorption 143
vs. IgG 144
management and failure, passive transfer 142-143
natural antibody (NAb) 145
pasteurization and heat-labile components 144-145
periparturient vaccination 143-144
hygiene 275
management 273-277, 430
Comet tails 420
Commensal microflora 403
Complete DCT. see Blanket DCT
Compton Metabolic Profile test 33
Copper sulphate 374
Cow comfort, improved 240-241
high milk yield 241
low milk yield 241
lying behaviour, changes in 241
vocalisations 241
Cow depreciation 305
Cows infected
contagious mastitis pathogens, interventions
infection pressure 342
milking and milking machine 342
environmental mastitis pathogens, interventions
host resistance 342
infection pressure 342
milking and milking machine 342
Cow tracks and stockmanship 372
Crossbreeding and immunity 141-142
Cytokine production 331
Dairy cattle production 395
Dairy cattle welfare and health case study (Indian shelters) 174
problems 173
public support 175
touched 175
useful and productive 173
vs. Western dairies 173, 175
diseases, welfare implications 165
acidosis 167
infectious diseases 168
ketosis 167
lameness 165-166
mastitis 166
metritis 166-167
production diseases 167-168
respiratory diseases 168
future trends 176-181
key components 164
mental health 170
anxiety and fear 172-173
contentment 173
depression 172
pain 170-172
stress and immune function
cortisol 169-170
genetic variation 170
subclinical diseases 168-169
summary 176
The World Animal Health Organisation (OIE) 163-164
Dairy herd health, management issues
the citizen 5
the cow 4–5
data usage in
decision making 12–14
sources of 10–12
description 3
disease and performance measurement concept 8
the affected population 9
the eligible population 8–9
incidence rate 9
prevalence 10
the environment 4
the farmer 3–4
features of 5
data driven 6
holistic approach 6
multifactorial 7
ongoing and cyclical 6–7
population level focus 6
team based 7
veterinary practitioners 7–8
implementing change practice
business models 19–20
getting started 18–19
maintaining momentum 20–21
initiating change practice
barriers 14–15
farms 14
motivating change 17–18
understanding behavior on farms
15–16
Dairy herd improvement associations
(DHIA) 80
Dairy Herd Improvement SCC 336
Dairy Herd Information Association
(DHI) 300
DairyMGT.info 108–109
Dam parity 275
Data-driven decision support tools
advancements 101
big data and analysis
computers and software network 103–104
data analyses 105
data collection 104
data warehouse (AgDH) 104–105
the evolving issues around decision making 106
the growing importance 106–107
new tools backing decision making 105–106
programmatic interface 104
University of Wisconsin (UW)-Dairy Brain 103
conclusions 115–116
frameworks 102
integrated production system 102
mastitis case example
clinical onset prediction 112–115
cost 111
real time integrated 115
risk of, first lactation 111–112
The University of Wisconsin dairy management tools 103
The University of Wisconsin-Madison Dairy Management website
decision-making 108
limitations of decision support tools 109–110
nutrition and feeding management 108
online decision 108
opportunities for decision support tools’ suites 110–111
somatic cell count (SCC) 109
whole-dairy-farm systems simulation 107–108
Data warehouse (AgDH) 104–105
DCT. see Dry cow therapy (DCT)
Deep nasopharyngeal swab (DNPS) 422
DHI. see Dairy Herd Information Association (DHI)
DHIA. see Dairy herd improvement associations (DHIA)
Diaminopyrimidines 334
Digital cushion (DC) thickness 369–370
Digital dermatitis 352, 361, 373
Disease prevention
challenges 31
Compton Metabolic Profile test 33
future animals 32
herd navigator-system 34
production losses 32
progression 32
systematic clinical examinations 33
Disease risk biomarkers
behavioral ketosis 37
lipopolysaccharides (LPS) 37
physiological imbalance 36
criteria 36
milk in
BHB measurements 38
calcium concentrations 39–40
Gradual dry-off 235
Gradual involution 233
Gradual vs. abrupt milk cessation, impacts of 234–236
Gram-negative bacteria 336
Guarded nasopharyngeal swab 422

HACCP. see Hazard Analysis of Critical Control Points (HACCP)

Hairy wart form 363
Hazard Analysis of Critical Control Points (HACCP) 326
Health index score (HIS) 83–84
Health monitoring/disease detection techniques
 electronic devices
 biological information 65
 biosensors 65
 measures 65–66
 future trends
 consultants 84
 examination 85
 holistic approach 86
 on-farm health monitoring 85
 PLF technologies 86
 sensor technologies 85
 veterinary medicine 86–87
health and welfare 54
information management systems 57–58
 data collection and disease definition 58–59
 national database 59–61
on-farm diagnostic tests 61
 available tests overview 64–65
 validation and test performance, tools and devices 61–64
precision livestock farming (PLF) technologies
 continuous and automated 66
 development 67–68
 management procedures 66
 measurements 67
 sensors 67
production processes 53
stockmanship 54
subclinical ketosis detection
 advances monitoring 70–84
 non-esterified fatty acids (NEFAs) 68
 prevalence and impact 68–70
veterinary profession shift
demands and expectations 54
epidemiology 56–57
health and productivity 55
herd health management 55
Heat stress 138–141, 410
Heifer calves 283
Heifer mastitis, ten-point program 344
Heifer rearing 266
Hepatized lung 420
Herd Life 307
Herd Navigator 81
Herd replacement costs 305
Herd-specific plan 427
HIS. see Health index score (HIS)
Histophilus somni 398, 400
Holstein-Friesian youngster rearing, targets 267
Hoofmap zones 359
Hoof trimmers 359
Hoof trimming method 365
Host immunity 415
 influences on
 genetics 411–412
 nutrition 410–411
 stress 409–410
 upregulators 412
Host resistance 337
Housing and social group changes 251–252
Hypothalamic pituitary axis (HPA) 409

ICAR. see International Committee for Animal Recording (ICAR)
IDV. see Influenza D (IDV)
Ig absorption 274
Immune cells 234, 331
Immune response advancement
 broadly neutralizing antibody (bnAb) 124–126
 cattle role immunology 121–122
 cellular components 122–123
 climate change 138–141
 conclusion 147–149
 genetics
 EBVs, AMIR and CMIR 127
 genomic selection 130
 preferred breeding goa 126–127
 reductionist models, disease resistance regulation 131–132
 resistance 126
 heat stress 138–141
 immunity 138–141
 immunocompetence selection, pasture-based production
 competence and feed efficiency 129
HIR technology 128
investigations 128-129
phenotyping methodology 129-130
testing protocol 128
natural antibody (NAb) 124
Immunity 138-141
Infectious diseases 168
Influenza D (IDV) 401
Ingenuity pathway analysis (IPA) 138
Inhaled endotoxin 414
Innate immunity 403
Interferon γ (IFN γ) 331
Interleukins 331
International Committee for Animal Recording (ICAR) 359
International Dairy Federation 249
Inter-staff communication 285
Interventions
dry period, elevated infection incidence
host resistance 343
infection pressure 343
dry period, low cure rates
dry cow treatment 343
host resistance 343
Intramammary infections 239-240
dry period susceptibility 234
Involution process 232-233
IPA. see Ingenuity pathway analysis (IPA)
Johne's disease 428
Keep value 305
Keratin-plug formation 238-239
Ketosis diseases 167
Lack of maturity cost 309-310
Lactocrine hypothesis 277
Lactoferrin 233
Lameness diseases 165-166, 303
duration 356-358
epidemiology 356
importance of 351-353
incidence 356-358
lesions 359-361
prevalence 356-358
scores 355
scoring systems 353-356
section on recording, summary of 361-364
Lameness scoring systems 353-356
Leukotoxin (LKT) 399
Lifetime productivity 279-280
Lincosamides 334
Lipopolysaccharides (LPS) 37
LKT. see Leukotoxin (LKT)
Locomotion score 354
LPS. see Lipopolysaccharides (LPS)
Lung tissue culture 422-423
Lymphocytes. see Immune cells
MacConkey agar no. 3 329
Machine milking 339
Macrolides 334
Macrophages. see Immune cells
Magnesium chloride 414, 432
MALDI-TOF technology 424
Management cycle 352
Managing dry cow udder health
mammary gland involution 232-234
milk cessation methods 234-242
other dry cow management practices 251-253
therapy 242-251
Mannheimia haemolytica 398-399
Manson and Leaver Score 354
Mastitis diseases 166, 329
data decision support tools
clinical onset prediction 112-115
cost 111
real time integrated 115
real time integrated decision support tools 115
risk of, first lactation 111-112
Maternal micronutrient status pre-calving 268
Maternity pen management 429
Matrix metalloproteinases 367
Mature body weight (MBW) 267
MDM. see Muramyl dipeptite (MDM)
Metagenomics 425
Metritis diseases 166-167, 302
MIC. see Minimum inhibitory concentration (MIC)
Micronutrient imbalances 269
Milk Bulk Tank SCC tool 109
Milk feeding 431
Milk fever 302
Milking 339-340
Milk leakage 238-239
Milk-out process 339
Milk production 232, 240
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk recording programs 301</td>
</tr>
<tr>
<td>Milk samples 329</td>
</tr>
<tr>
<td>Milk synthesis 232</td>
</tr>
<tr>
<td>Milk yield at dry-off 236, 239–240</td>
</tr>
<tr>
<td>Minimum inhibitory concentration (MIC) 425</td>
</tr>
<tr>
<td>Minnesota Easy4Cast plate 250</td>
</tr>
<tr>
<td>Modified live viral (MLV) 406</td>
</tr>
<tr>
<td>Motivating a change 252–253</td>
</tr>
<tr>
<td>MR feeding level 279</td>
</tr>
<tr>
<td>M-score 361</td>
</tr>
<tr>
<td>Muramyl dipeptite (MDM) 412</td>
</tr>
<tr>
<td>Mycobacterium avium subsp. paratuberculosis 428</td>
</tr>
<tr>
<td>Mycoplasma bovis 398, 400–401</td>
</tr>
<tr>
<td>NAb. see Natural antibody (NAb)</td>
</tr>
<tr>
<td>Nafcillin 335</td>
</tr>
<tr>
<td>Nasal swab (NS) 421</td>
</tr>
<tr>
<td>National Mastitis Council (NMC) 326</td>
</tr>
<tr>
<td>Natural antibody (NAb) 124</td>
</tr>
<tr>
<td>colostrum 145</td>
</tr>
<tr>
<td>NEFAs. see Non-esterified fatty acids (NEFAs)</td>
</tr>
<tr>
<td>Neonatals infections 273</td>
</tr>
<tr>
<td>Neospora caninum 271</td>
</tr>
<tr>
<td>Neosporosis 273</td>
</tr>
<tr>
<td>Neutrophils. see Immune cells</td>
</tr>
<tr>
<td>NMC. see National Mastitis Council (NMC)</td>
</tr>
<tr>
<td>Non-esterified fatty acids (NEFAs) 68</td>
</tr>
<tr>
<td>Non-lactating (dry) period 232</td>
</tr>
<tr>
<td>Non-steroidal antiinflammatory drugs (NSAIDs) 369</td>
</tr>
<tr>
<td>Northern San Joaquin Valley (NSJV) 397</td>
</tr>
<tr>
<td>NS. see Nasal swab (NS)</td>
</tr>
<tr>
<td>NSAIDs. see Non-steroidal antiinflammatory drugs (NSAIDs)</td>
</tr>
<tr>
<td>NSJV. see Northern San Joaquin Valley (NSJV)</td>
</tr>
<tr>
<td>Nymphomaniac cows 194</td>
</tr>
<tr>
<td>Oestrus</td>
</tr>
<tr>
<td>breeding programmes 216–217</td>
</tr>
<tr>
<td>synchronisation 216–217</td>
</tr>
<tr>
<td>combination programmes 221</td>
</tr>
<tr>
<td>gonadotrophin-prostaglandin programmes 220–221</td>
</tr>
<tr>
<td>pre-synchronisation and resynchronisation programmes 221</td>
</tr>
<tr>
<td>progesterone programmes 217–219</td>
</tr>
<tr>
<td>progaglandin programmes 219–220</td>
</tr>
<tr>
<td>detection improvement aids 216</td>
</tr>
<tr>
<td>detectors 214–215</td>
</tr>
<tr>
<td>duration and intensity 214</td>
</tr>
<tr>
<td>observation and ignorance 214–215</td>
</tr>
<tr>
<td>signs 215</td>
</tr>
<tr>
<td>teaser animals 216</td>
</tr>
<tr>
<td>OIE. see The World Animal Health Organisation (OIE)</td>
</tr>
<tr>
<td>On-farm culturing 330</td>
</tr>
<tr>
<td>Opsonization 331</td>
</tr>
<tr>
<td>Optimal milk production level 241–242</td>
</tr>
<tr>
<td>Optimising foot health in dairy cattle case study 376–380</td>
</tr>
<tr>
<td>Claw horn disruption (CHD) 364–370</td>
</tr>
<tr>
<td>critical control points 375–376</td>
</tr>
<tr>
<td>digital dermatitis, aetiopathogenesis and control of 373–375</td>
</tr>
<tr>
<td>emerging diseases and future concepts 380–381</td>
</tr>
<tr>
<td>lameness 351–353</td>
</tr>
<tr>
<td>white line bruising and lesions, aetiopathogenesis of 370–373</td>
</tr>
<tr>
<td>Optimising reproductive management abortion management diagnosis 224–225</td>
</tr>
<tr>
<td>laboratory examination 225</td>
</tr>
<tr>
<td>linking epidemiological factors 225</td>
</tr>
<tr>
<td>proportion 224</td>
</tr>
<tr>
<td>tissue 225</td>
</tr>
<tr>
<td>bull breeding monitoring conception rates 205</td>
</tr>
<tr>
<td>efficiency 204–205</td>
</tr>
<tr>
<td>insemination 204</td>
</tr>
<tr>
<td>semen quality 205</td>
</tr>
<tr>
<td>time of mating 205</td>
</tr>
<tr>
<td>clinical examination and treatment, anoestrous cows 207</td>
</tr>
<tr>
<td>corpus luteum present 207–209</td>
</tr>
<tr>
<td>follicular/cystic structures 212</td>
</tr>
<tr>
<td>inactive ovaries 209–212</td>
</tr>
<tr>
<td>syndrome treatment 212–214</td>
</tr>
<tr>
<td>diseases 193</td>
</tr>
<tr>
<td>efficient dairy farms 192</td>
</tr>
<tr>
<td>future trends 226</td>
</tr>
<tr>
<td>grouping, individual limits measurement 193–194</td>
</tr>
<tr>
<td>abnormal discharges cows 195</td>
</tr>
<tr>
<td>anoestrous cows 194</td>
</tr>
<tr>
<td>nymphomaniac cows 194</td>
</tr>
<tr>
<td>post-partum check cows 194–195</td>
</tr>
<tr>
<td>pregnancy check cows 195</td>
</tr>
<tr>
<td>pregnancy rechecks 195</td>
</tr>
<tr>
<td>inadequate diagnose causes</td>
</tr>
</tbody>
</table>

© Burleigh Dodds Science Publishing Limited, 2021. All rights reserved.
Index

conception risks 203–204
first service interval 201–202
oestrus detection 202–203
pregnancy rate 204
milk production 192
nutritional limits and optimising 221
energy intake and balance 222
macrominerals 223
plant and fungal toxins 221–222
protein 222–223
trace elements 223–224
oestrus detection improvement aids 216
detectors 214–215
duration and intensity 214
observation and ignorance 214–215
signs 215
teaser animals 216
oestrus synchronisation, breeding programmes 216–217
combination programmes 221
gonadotrophin-prostaglandin programmes 220–221
pre-synchronisation and resynchronisation programmes 221
progesterone programmes 217–219
prostaglandin programmes 219–220
performance measurement 196–197
seasonally calving herds
diagnostic reproductive 198–200
histogram 198
InCalf programme 197
measure 198
production-related reproductive indices 197
systems 191–192
year-round calving herds
calving intervals 200–201
conception interval 201
culling rate 200–201
index 200
Paradigm shift 395
Parainfluenza type 3 (PI3) 401
Passive immunity 403–406
Pasteurella multocida 398–400
Pathogen detection/sampling techniques 421
PCR. see Polymerase chain reaction (PCR)
Penicillin 333
Perinatal infections
neonatal infections 273
In utero infections 271–273
management 269
mortality 271
Period prevalence 358
Peripartum maternal hypocalcaemia 269
Phagocytosis 331
PLF. see Precision livestock farming (PLF)
Pneumonia 420
Polymerase chain reaction (PCR) 328
Polymorphonuclear cells (PMN). see Immune cells
Post-milking teat disinfection 340
Pre-calving management
calf health 268–269
colostrogenesis, effects of 274–275
Precision livestock farming (PLF)
continuous and automated 66
development 67–68
management procedures 66
measurements 67
sensors 67
Previous lameness event 358
Pre-weaning ADG 280
Proactive treatment of cows with lesions 375
Production diseases 167–168
Production reproductive indices seasonally calving herds 197–198
year-round calving herds 200–201
Productive Life 307
Proinflammatory cytokines 331
Prolactin 233
Prolactin inhibitors 235
Quantitative trait locus mapping 411
Refractometry 275
Replacement and culling in dairy herds, management
culling cost 304–306
culling definitions 300–301
culling reasons 300–301
culling risks 300–301
economic decision-making 306–311
environmental impact 311–313
heifers 304
herd effects 303–304
poor health and conformation 301–303
Replacement cost 309

© Burleigh Dodds Science Publishing Limited, 2021. All rights reserved.
Index

Respiratory diseases 168
Respiratory microbial communities 402
Respiratory microbiota, cattle 415
Retained placenta 302
Rifamycins 334
Risk assessment questionnaire 428-432
Rubber matting 373
Salvaged cows 300
SCC. see Somatic cell count (SCC)
SCK. see Subclinical ketosis (SCK)
Scours 415
Seasonally calving herds
 diagnostic reproductive indices 198-200
 production reproductive indices 197-198
Selective DCT
 bacteriological testing 250
 cows, selection of 249
 false-negative result 250
 false-positive result 251
 milk production 248
 SCC effect 248
Selenium 275
Serum immunoglobulin 404
Single radial immunodiffusion (SRID) 275
Slats 372-373
Slaughter 300
Smart phone application 434
Snatch calving 276-277
SNS. see Sympathetic nervous system (SNS)
Sole bruising 352
Sole ulcer 352, 378-379
Somatic cell count (SCC) 109, 237, 324, 327-328
Sprecher back arch score 354
Staphylococcus aureus 242, 327, 335
Steady state involution 233
Stochastic modelling 353
Streptococci 335
Streptococcus spp. 234
agalactiae 242
Subclinical ketosis (SCK) 80-81
Subclinical mastitis 247
Sulfonamides 334
Sympathetic nervous system (SNS) 409
TDM. see Trehalose 6,6′-dimycolate (TDM)
Teat-canal closure 238
Teat liners 339
Teat orifice 330
Teat sealants (TSs) 232
Temperature-humidity index (THI) 275
Thoracic auscultation 420-421
Thoracic ultrasound 419-421
Thoracocentesis 422-423
TKT agar 329
Trained immunity 412
Transtracheal wash (TTW) 422-423
Trehalose 6,6′-dimycolate (TDM) 412
Treponema spp., 373
Treponemes 375
Trueperella pyogenes 398
TSS. see Teat sealants (TSs)
TTW. see Transtracheal wash (TTW)
Tumor necrosis factor α (TNF α) 331
see also Proinflammatory cytokines
Udder health 237-238
dairy cattle optimizing
 antimicrobial treatment of
 mastitis 332-337
 approaching herd health
 problems 341-345
 mastitis diagnosis 326-330
 mastitis immunology 330-332
 milking machine and milking 339-340
 preventive management 337-339
 milk cessation methods 237
 milk yields 237
 new infection rate 237-238
 Oliver report 237
UK AHDB mobility score 354
The University of Wisconsin dairy
management tools 103
The University of Wisconsin-Madison Dairy
Management website
decision-making 108
limitations of decision support
 tools 109-110
 nutrition and feeding management 108
 online decision 108
 opportunities for decision support tools’
 suites 110-111
 somatic cell count (SCC) 109
Vaccination 332, 431
Vaccines 406-408
Veterinarians 253
Veterinary practitioners 284
Veterinary vaccine
research design and implementation 408-409
trials 409
Viral pathogens 401
Warwick survey report 360
Water trucks 432
Welfare implications 165
acidosis diseases 167
infectious diseases 168
ketosis diseases 167
lameness diseases 165-166
mastitis diseases 166
metritis diseases 166-167

production diseases 167-168
respiratory diseases 168
WGS, see Whole genome sequencing (WGS)
While line lesion 352
White line assessment 379
Whole genome sequencing (WGS) 425
Whole milk (WM) vs milk replacer (MR) 279
Wisconsin (WI) BRD scoring system 416
The World Animal Health Organisation (OIE) 163-164
Youngstock rearing 267
Zero risk scores 431, 432