Advances in ensuring the microbiological safety of fresh produce

Edited by Professor Karl R. Matthews, Rutgers University, USA
Contents

Series list x
Introduction xx
Acknowledgement xxiv

Part 1 Pathogenic risks

1 Advances in understanding contamination of fresh produce by *Salmonella* 3
 Shirley A. Micallef, University of Maryland, USA
 1 Introduction 3
 2 The diversity of the *Salmonella*-plant association 4
 3 *Salmonella* contamination of fruit and vegetables 6
 4 The metabolite landscape in the plant niche 7
 5 *Salmonella* on produce 9
 6 *Salmonella* strategies in the plant niche 16
 7 Conclusion 17
 8 References 17

2 Advances in understanding and presenting contamination of fresh produce by *Listeria monocytogenes* 33
 Xinyi Zhou and Wei Zhang, Illinois Institute of Technology, USA
 1 Introduction 33
 2 Pathogenicity and virulence 35
 3 *Listeria monocytogenes* outbreaks linked to fresh produce 38
 4 Sources of contamination in the fresh produce supply chain 41
 5 Case study: *Listeria monocytogenes* in cantaloupes 47
 6 Strategies to control *Listeria monocytogenes* in the fresh produce supply chain 48
 7 *Listeria monocytogenes* gene regulation and survival mechanisms 50
 8 *Listeria monocytogenes* adaptation to stress 52
 9 Biocontrol of *Listeria monocytogenes* 54
Contents

10 Novel processing technologies to control *Listeria monocytogenes* 56
11 Where to look for further information 58
12 Acknowledgements 59
13 References 59

3 Advances in understanding the contamination of fresh produce by pathogenic *Escherichia coli* 77
Karl R. Matthews, Rutgers University, USA
1 Introduction 77
2 Pathogenicity and virulence 79
3 Produce contamination with pathogenic *Escherichia coli* 81
4 Interaction of pathogenic *Escherichia coli* with produce 83
5 Produce outbreaks linked to pathogenic *Escherichia coli* 85
6 Food safety regulations and future actions 87
7 Conclusion 88
8 Where to look for further information 89
9 References 89

Part 2 Detection and risk assessment

4 Developments in rapid detection/high throughput screening techniques for identifying pathogens in food 97
Kannappan Arunachalam and Chunlei Shi, Shanghai Jiao Tong University, China
1 Introduction 97
2 Conventional methods 98
3 Molecular methods 101
4 Spectroscopic methods 112
5 Mass spectrometry methods 114
6 Optical phenotyping methods 115
7 Biosensor methods 116
8 Detection of parasites 120
9 Advantages and limitation of microbial detection method 121
10 Conclusion 124
11 Where to look for further information 124
12 Acknowledgements 125
13 References 125

5 Advances in modelling pathogen behaviour in fresh produce 137
Panagiotis N. Skandamis, Agricultural University of Athens, Greece
1 Introduction 137
2 Modelling spoilage of fresh produce 139
3 Modelling pathogen behaviour in fresh produce 142
4 Modelling transfer of pathogens during fresh produce processing

1. Introduction 151
2. Conclusion and future trends 155
3. Where to look for further information 156
4. References 156

5 Conclusion and future trends

1. Introduction 155
2. Conclusion and future trends 158

6 Where to look for further information

1. Introduction 156
2. References 156

7 References

1. Introduction 156
2. References 156

Part 3 Improving safety along the value chain

1 Advances in quantitative microbiological risk assessment for pathogens in fresh produce

Donald W. Schaffner, Rutgers University, USA; Marina Girbal, University of Barcelona, Spain; Matt Igo, Henry M. Jackson Foundation for the Advancement of Military Medicine, USA; and Kaitlyn Casulli, University of Georgia, USA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction 165</td>
</tr>
<tr>
<td>2</td>
<td>Microbial risk assessment of Listeria 166</td>
</tr>
<tr>
<td>3</td>
<td>Microbial risk assessment of Salmonella 170</td>
</tr>
<tr>
<td>4</td>
<td>Microbial risk assessment of E. coli 174</td>
</tr>
<tr>
<td>5</td>
<td>Microbial risk assessment of viruses 176</td>
</tr>
<tr>
<td>6</td>
<td>Conclusion and future trends 178</td>
</tr>
<tr>
<td>7</td>
<td>Where to look for further information 178</td>
</tr>
<tr>
<td>8</td>
<td>References 179</td>
</tr>
</tbody>
</table>

2 Advances in understanding sources of pathogenic contamination of fresh produce: soil and soil amendments

Alexis Omar, University of Delaware, USA; Manan Sharma, USDA-ARS, USA; and Kalmia E. Kniel, University of Delaware, USA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction 187</td>
</tr>
<tr>
<td>2</td>
<td>Pathogen survival in soils containing biological amendments 188</td>
</tr>
<tr>
<td>3</td>
<td>E. coli and Salmonella survival in manure dust 195</td>
</tr>
<tr>
<td>4</td>
<td>Prevalence of antibiotic resistance genes in manure-amended soils 196</td>
</tr>
<tr>
<td>5</td>
<td>Case studies 198</td>
</tr>
<tr>
<td>6</td>
<td>Recommendations 204</td>
</tr>
<tr>
<td>7</td>
<td>Conclusion 205</td>
</tr>
<tr>
<td>8</td>
<td>Future trends in research 205</td>
</tr>
<tr>
<td>9</td>
<td>Where to look for further information 207</td>
</tr>
<tr>
<td>10</td>
<td>References 207</td>
</tr>
</tbody>
</table>

3 The role of Good Agricultural Practices (GAPs) in preventing pathogenic microbial contamination of fresh produce

Thomas P. Saunders and Elizabeth A. Bihn, Produce Safety Alliance – Cornell University, USA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction 215</td>
</tr>
<tr>
<td>2</td>
<td>Evolution of Good Agricultural Practices from voluntary to regulation 217</td>
</tr>
</tbody>
</table>
Contents

3 Reasons for adopting Good Agricultural Practices 219
4 Why Good Agricultural Practices remain the foundation for fresh produce safety 220
5 Commitment and training 220
6 Scalability of Good Agricultural Practices 222
7 Feasibility of implementing Good Agricultural Practices 224
8 Assessing risks 225
9 Good Agricultural Practices: always room for improvement 236
10 Produce safety adds to farming stress 236
11 Good Agricultural Practices relevance for the future 238
12 Conclusion 239
13 Where to look for further information 239
14 Acknowledgement 240
15 References 240

9 Advances in sanitising techniques and their assessment for assuring the safety of fresh produce 245
Silvia Vanessa Camacho Martinez, Mahdiyeh Hasani, Lara Jane Warriner and Keith Warriner, University of Guelph, Canada

1 Introduction 245
2 Importance of post-harvest decontamination 246
3 Advances in post-harvest washing processes 248
4 Advances in non-aqueous decontamination methods 255
5 Considerations for developing a standard validation method for fresh produce decontamination methods 265
6 Conclusion and future trends in research 269
7 Where to look for further information 269
8 References 270

10 Developments in packaging techniques and their assessment for assuring the safety of fresh produce 281
Jinhe Bai, Gabriela Maria Olmedo and Xiuxiu Sun, USDA-ARS, USA

1 Introduction 281
2 Packaging for physical protection 282
3 Modified atmosphere packaging 284
4 Edible coatings and films 292
5 Active packaging 298
6 Future trends in research 304
7 Conclusion 308
8 Where to look for further information 309
9 References 310

© Burleigh Dodds Science Publishing Limited, 2023. All rights reserved.
11 The role of good manufacturing practice and hazard analysis and critical control point systems in maintaining the safety of minimally processed fresh produce

Carol A. Wallace, Jan M. Soon and Shingai P. Nyarugwe,
University of Central Lancashire, UK

1. Introduction 327
2. Key hazards in minimally processed fresh produce and lessons from previous outbreaks and incidents 329
3. Developments in good manufacturing practices for minimally processed fresh produce 334
4. The hazard analysis and critical control point system and minimally processed fresh produce 339
5. Conclusion and future trends 349
6. Where to look for further information 350
7. References 351

12 Improving safe consumer handling of fresh produce

Jennifer Quinlan and Melissa Kavanaugh,
Drexel University, USA

1. Introduction 359
2. Consumer produce consumption 360
3. Pathogens isolated from produce samples 362
4. Outbreaks and illnesses caused by produce 363
5. Organic produce 364
6. Farmers markets 366
7. Consumer knowledge and behaviours around safe produce handling and consumption 368
8. Produce safety and vulnerables and immunocompromised consumers 370
9. Fresh produce food safety handling recommendations and resources 371
10. Development of new and targeted education materials around produce safety: the need to include behavioural theories and formative research 373
11. Improving consumer’s handling of fresh produce: current needs and next steps 374
12. References 375

Index 383
Introduction

Increasing consumer demand for low-input cultivation and minimal processing has significantly increased the risk of microbiological contamination of fresh produce. This both presents a health risk to consumers and undermines trust in the food supply chain from farm to fork.

This volume reviews our current understanding of the main pathogenic risks to fresh produce, including their epidemiology, genetics and behaviour. The book is split into three parts: Part 1 chapters focus on understanding current pathogenic risks in fresh produce, specifically focusing on *Salmonella*, *Listeria* and *Escherichia coli*. Chapters in Part 2 examine developments in detection and risk assessment of pathogens, such as rapid detection/high throughput screening techniques, modelling pathogen behaviour and microbiological risk assessment for pathogens in fresh produce. Part 3 chapters address improving food safety along the value chain, specifically discussing sources of pathogen contamination, the role of good agricultural practices in preventing contamination, as well as developments in sanitising and packaging techniques. Chapters also discuss the role of good manufacturing practice, hazard analysis and critical control point systems to maintain fresh produce safety and improving safe consumer handling of fresh produce.

Part 1 Pathogenic risks

The book opens with a chapter that focuses on understanding contamination of fresh produce by *Salmonella*. Chapter 1 begins by first reviewing the various plant traits and agricultural practices that aid *Salmonella* association with fruit and vegetable crops. It also discusses the genetic strategies that *Salmonella* employs to compete in the plant niche. The chapter moves on to examine *Salmonella* in various types of produce, such as sprouts and microgreens, root, bulbous and stalk vegetables and leafy vegetables and fresh herbs. It also examines *Salmonella* in fruit, tree nuts and seeds. A section on *Salmonella* strategies in the plant niche is also provided.

The subject of Chapter 2 is advances in understanding and presenting contamination of fresh produce by *Listeria monocytogenes*. The chapter begins by first describing the pathogen’s pathogenicity and gene regulation, followed by an overview of recent *L. monocytogenes* outbreaks linked to fresh produce contamination. A section on the sources of fresh produce supply chain contamination is also included, focusing specifically on pre-harvest, harvest and postharvest contamination. The chapter includes a case study on *L. monocytogenes* contamination in cantaloupes, which is then followed by an
overview of current strategies used to control *L. monocytogenes* in the fresh produce supply chain. Sections on *L. monocytogenes* gene regulation, survival mechanisms and its adaptation to various forms of stress are also included. The chapter examines biocontrol of *L. monocytogenes* and also describes the novel processing technologies to control the pathogen.

The final chapter of Part 1 examines advances in understanding contamination of fresh produce by pathogenic *Escherichia coli*. Chapter 3 first describes the pathogenicity and virulence of *Escherichia coli*, then moves on to analyse produce contamination with pathogenic *E. coli*. The chapter then describes the interaction of pathogenic *E. coli* with fresh produce and highlights various produce outbreaks linked to pathogenic *E. coli*. A section on food safety regulations and future actions for *E. coli* contamination is also provided, focusing specifically on the research describing the pathogen’s growth and survival in soil and plants and current implications for pathogen control.

Part 2 Detection and risk assessment

Part 2 begins with a chapter that focuses on developments in rapid detection/high throughput screening techniques for identifying pathogens in food. Chapter 4 highlights current conventional methods in place for detecting foodborne microorganisms, focusing on techniques such as culture-based assay and immunoassays. The chapter goes on to review molecular methods such as polymerase chain reaction, loop-mediated isothermal detection, nucleic acid sequence-based amplification, recombinase polymerase amplification, DNA microarray and whole-genome sequencing. This is then followed by an overview of current spectroscopic methods, specifically Raman spectroscopy, Fourier-transform infrared spectroscopy, near-infrared spectroscopy and hyperspectral imaging spectroscopy. The chapter describes mass spectrometry methods such as matrix-assisted laser desorption/ionisation-time-of-flight mass spectrometry, optical phenotyping methods such as forward light scattering and flow cytometry and biosensor methods. Sections on the detection of parasites and the advantages and limitations of microbial detection methods are also included.

The focus of Chapter 5 is advances in modelling pathogen behaviour in fresh produce. Chapter 5 begins by first describing methods for modelling spoilage of fresh produce, which is then followed by an overview of current modelling methods for behaviour in fresh produce, focusing specifically on growth modelling and pathogen inactivation. A section on modelling transfer of pathogens during fresh produce processing is also included, highlighting how microbial transfer can be modelled between processing equipment and foods.
The next chapter draws specific attention to advances in quantitative microbiological risk assessment for pathogens in fresh produce. Chapter 6 takes a microorganism and historical perspective to review advances in quantitative microbial risk assessment of fresh produce. The chapter reviews microbial risk assessment research over the past 25 years, specifically focused on *Listeria monocytogenes*, *Salmonella*, *Escherichia coli* O157:H7 and Norovirus as important pathogens that have all caused outbreaks linked to fresh produce.

Part 3 Improving safety along the value chain

The first chapter of Part 3 reviews advances in understanding sources of pathogenic contamination of fresh produce, focusing specifically on soil and soil amendments. Chapter 7 first discusses pathogen survival in soils containing biological amendments, which is then followed by an examination of *E. coli* and *Salmonella* survival in manure dust. A section on the prevalence of antibiotic resistance genes in manure-amended soils is also provided, followed by that draw attention to outbreaks in fruit and vegetables in 2018 and 2020. The chapter also provides an overview of recommendations for the use of soil and soil amendments alongside the potential risk.

Chapter 8 draws attention to the role of Good Agricultural Practices (GAPs) in preventing pathogenic microbial contamination of fresh produce. The chapter begins by describing the evolution of GAPs from voluntary to regulation, then moves on to highlight the reasons for adopting these GAPs in fresh produce safety. A section on why GAPs remain the foundation for fresh produce is also provided, followed by an overview of commitment and training involved in the implementation of GAPs. The chapter reviews the scalability of GAPs and the feasibility of implementing them. A section on ways of assessing risks is also included, focusing specifically on practices such as worker training, preharvest, harvest and postharvest water, soil amendments, wildlife and domesticated animals, sanitation and storage and transportation. The chapter moves on to examine how GAPs can be improved, how produce safety can add to farming stress, as well as the relevance of GAPs for the industry in the future.

The subject of Chapter 9 is advances in sanitising techniques and their assessment for assuring the safety of fresh produce. The chapter first reviews the importance of postharvest decontamination, drawing attention to the limitations of postharvest washing. This is then followed by an analysis of the advances in postharvest washing processes such as monitoring chlorine concentration, predicting chlorine demand of wash waters, pre-oxidation of wash water and advances in alternative sanitisers. The chapter moves on to review non-aqueous decontamination methods such as electron beams, ultraviolet light, gas-phase decontamination, application of gas plasma and the gas-phase hydroxyl-radical process. Considerations for developing a
standard validation method for fresh produce decontamination methods are also reviewed.

Chapter 10 draws specific attention to developments in packaging techniques and their assessment for assuring the safety of fresh produce. The chapter begins by describing the current packaging methods in use for physical protection. It moves on to analyse the use of modified atmosphere packaging, focusing on the history and scope of the modified atmosphere packing concept, highlights the different types and packaging materials used, how a modified atmosphere is created and also the use of modified humidity packaging. A section on the use of edible coatings and films is also provided, followed by a section on active packaging methods.

The next chapter focuses on the role of good manufacturing practice (GMP) and hazard analysis and critical control point (HACCP) systems in maintaining the safety of minimally-processed fresh produce. Chapter 11 first examines the key hazards in minimally-processed fresh produce and lessons from previous outbreaks and incidents. It then goes on to review the developments in GMPs for application in minimally-processed fresh produce. A section on the application of HACCP system in minimally-processed fresh produce is also included. The chapter also considers current GMP and HACCP system practices to assure the safety of minimally-processed fresh produce.

The final chapter of the book focuses on improving safe consumer handling of fresh produce. Chapter 12 begins by first discussing consumer produce consumption, drawing specific attention to the consumption of high risk produce items. The chapter then moves on to review pathogens isolated from produce samples, which is followed by an analysis of outbreaks and illnesses caused by produce. A section on organic produce is also provided, focusing specifically on microbial quality of conventionally grown versus organic produce and foodborne outbreaks associated with organic foods. The chapter also provides an overview of farmers markets, comparing the quality of produce items from these markets to traditional retail and also identifies the foodborne illnesses that can occur due to farmers markets. Consumer knowledge and behaviours around safe produce handling and consumption is also discussed, followed by an overview of produce safety and vulnerable and immunocompromised consumers. The chapter includes an overview of fresh produce safety handling recommendations and resources, as well as a discussion on the need to include behaviour theories and formative research in the development of new and targeted education materials around produce safety.
Chapter 1

Advances in understanding contamination of fresh produce by *Salmonella*

Shirley A. Micallef, University of Maryland, USA

1 Introduction

Salmonella enterica is a member of the Enterobacteriaceae, a bacterial family that was last emended in 2016 based on genome- and multi-gene-based phylogenetic trees (Adeolu et al., 2016). The family contains other taxa of importance to public health (e.g. *Escherichia coli*, *Klebsiella*, *Enterobacter*, *Shigella* and *Citrobacter*). *S. enterica* is accepted as the type species of the genus *Salmonella* and comprises six subspecies, *S. enterica* subsp. *enterica* (I), *salamae* (II), *arizonae* (IIIa), *diarizona* (IIIb), *houtenae* (IV) and *indica* (VI) (Tindall et al., 2005). Food safety is primarily concerned with *S. enterica* subsp. *enterica* which is subtyped based on surface antigens yielding over 1500 serovars (Grimont and Weill, 2007) and can be divided into typhoidal (e.g. *S. enterica* serovar Typhi) and non-typhoidal (e.g. *S. enterica* serovar Typhimurium) types. Further strain differentiation within serovars has been resolved by DNA fingerprinting methods such as pulsed-field gel electrophoresis (PFPG) and multiple-locus variable numbers of tandem repeats analysis (MLVA), the most widely adopted techniques in source tracking before the advent of whole genome sequencing (WGS) (Tang et al., 2019). Typhoidal *Salmonella* has declined remarkably in many parts of the world although it continues to be a burden in some countries in Asia, Africa and Oceania (Stanaway et al., 2019). On the other hand, food safety concerns with non-typhoidal salmonellae,
which exhibit an astounding capacity to persist in various foods and in food production areas, constitute a primary concern on a global scale (Majowicz et al., 2010).

Non-typhoidal *S. enterica* subsp. *enterica* (hereafter referred to as *Salmonella*) is a diverse and adaptable taxon. Although best studied for its colonization and infection of vertebrate gastrointestinal tracts, *Salmonella* also colonizes insects such as flies and cockroaches (Nasirian, 2019; Wales et al., 2010) and can infect *Caenorhabditis elegans* (Aballay et al., 2000). Its implication in foodborne illness outbreaks involving fruit and vegetables also points to the ability of *Salmonella* to associate with plants (Callejón et al., 2015), supporting the notion that plants can serve as transitional hosts for this pathogen before returning to an enteric lifestyle, following ingestion of the colonised plant material by herbivores (Fletcher et al., 2013). In addition, *Salmonella* can persist in various environments including surface water, reclaimed wastewater, sediments and manure-amended soil (Callahan et al., 2019; Haley et al., 2009; Pornsukarom and Thakur, 2016; Sharma et al., 2020; Walters et al., 2013). Surveys of produce production areas where multiple samples types were collected for bacterial isolation suggest that surface water may present a more favourable habitat for *Salmonella* than soil (Bell et al., 2015; Gorski et al., 2011; Micallef et al., 2012). Mammals, birds, amphibians and reptiles are likely sources of environmental *Salmonella* as related strains have been recovered from wildlife and environmental samples (Gorski et al., 2011; Gruszynski et al., 2014). Once introduced in an environmental medium, *Salmonella* populations may be able to persist for prolonged periods independently from recurrent episodes of introduction (Čučak et al., 2018; Topalcengiz et al., 2020). Moreover, several studies have reported the co-existence of multiple *Salmonella* serovars (Callahan et al., 2019; Gorski et al., 2022), demonstrating the high diversity of *Salmonella* in the agro-environment, which probably increases the likelihood of contamination events. The risk of contamination of plant-based foods during production is linked to this diverse genetic pool in the environment, enhancing the probability of possessing traits that give various *Salmonella* strains the genetic mechanisms needed to successfully associate with plants.

2 The diversity of the *Salmonella*-plant association

Salmonellosis outbreaks have been linked to an impressive diversity of vegetable, fruit, nut, herb and spice crops. Examples of plant-based foods that have been contaminated with *Salmonella* leading to illnesses are given here and have included edible parts of plant members of the Solanaceae (tomatoes, peppers and paprika) (Barton Behravesh et al., 2011; Bennett et al., 2015; Lehmacher et al., 1995), the Cucurbitaceae (melons and cucumber) (Angelo et al., 2015; Laughlin et al., 2019; Walsh et al., 2014), the Rosaceae (nuts such
as almonds and stone fruit such as peaches) (CDC, 2020; Isaacs et al., 2005), the Fabaceae (alfalfa sprouts and peanuts) (CDC, 2009; Harfield et al., 2019; Kirk et al., 2004; Sheth et al., 2011), the Asteraceae (lettuce) (Lienemann et al., 2011), the Brassicaceae (arugula/rocket) (Nygård et al., 2008), the Caricaceae (papaya) (Hassan et al., 2019), the Alliaceae (onions) (McCormic et al., 2022), the Apiaceae (herbs such as cilantro and parsley) (Campbell et al., 2001), the Anacardiaceae (mango and pistachio nuts) (CDC, 2016, 2012) and others.

The United States Interagency Food Safety Analytics Collaboration (IFSAC) publishes source attribution estimates for human salmonellosis infections from all foods that occurred in the United States between 1998 and 2019 (IFSAC, 2021). _Salmonella_ was the cause of 61.6% of outbreaks from all foods, based on a method used to assess outbreaks caused by _Salmonella, E. coli_ O157:H7, _Listeria monocytogenes_ and _Campylobacter_ spp., with additional weight given to outbreaks occurring in the most recent 5 years (IFSAC, 2021). IFSAC categorizes plant-based foods as vegetable row crops (leafy greens), seeded vegetables (tomatoes, cucumber, pepper), fruit, other produce (such as nuts), sprouts and grains/beans (IFSAC, 2021). Plant-based foods accounted for 42.7% of all _Salmonella_ illnesses from all foods, with 13.5% of infections attributed to fruit, 12.6% to seeded vegetables, 7.3% to other produce, 4.2% to vegetable row crops, 4.2% to sprouts and 0.9% to grains and beans. Fruit was ranked the second-highest category for a number of cases after chicken, and seeded vegetables and other produce were ranked fourth and fifth, respectively, with the top five categories making up 63% of all illnesses. Despite proactive measures to minimize food safety problems through grower and industry guidance and government regulations, _Salmonella_ in fresh produce remains a concern of the highest priority for food safety.

Certain serovars are repeatedly associated with produce commodities (Jackson et al., 2013). Using the IFSAC categorization and according to the United States National Outbreak Reporting System (NORS) data for outbreaks occurring between 1999 and 2000, the serovars associated with the most outbreaks from plant-based food were primarily _Salmonella_ Newport, followed by _Salmonella_ Javiana, Enteritidis, Typhimurium and Saintpaul (CDC, 2022). _Salmonella_ Newport accounted for 33% of seeded vegetable outbreaks, 25% of underground-grown vegetable outbreaks, 18% of herb and 16% of fruit-associated outbreaks. _Salmonella_ Javiana is responsible for several outbreaks linked to vegetables grown underground and _Salmonella_ Enteritidis caused 26% of row crop, 21% of sprout, 18% of herb and 14% of seed/nut outbreaks (CDC, 2022). These serovars may be considered generalists as they also cause several meat, poultry, dairy or egg-related outbreaks. However, some serovars may recur with the same commodity, such that serovar-commodity pairs may not only be a factor of the geographical prevalence of a particular serovar but also a consequence of serovar and commodity characteristics that make the
interaction particularly favourable. Examples of these recurring associations include *Salmonella* Poona on cantaloupe melons and more recently cucumber (Laughlin et al., 2019; Walsh et al., 2014), and *Salmonella* Newport on tomato and more recently cucumber and onion (Angelo et al., 2015; Bennett et al., 2015; Greene et al., 2008; McCormic et al., 2022). Other serovars less specifically associated with one commodity but frequently involved in fresh produce contamination issues include *Salmonella* serovars Saintpaul, Braenderup, Enteritidis and Javiana (Barton Behravesh et al., 2011; Bennett et al., 2015; CDC, 2020; Isaacs et al., 2005). Sprouts are one exception to this idea of specific pathogen-commodity pairs, as the multitude of sprout outbreaks that have been reported in the last decades have involved an astounding range of *Salmonella* serovars (Miyahira and Antunes, 2021), placing sprouts in a food safety category of their own.

3 *Salmonella* contamination of fruit and vegetables

Since *Salmonella* is prevalent in the environment, multiple routes of transmission of *Salmonella* to fresh produce crops have been identified. Water is of particular concern as it can act as a reservoir and a vehicle for the dissemination of *Salmonella* to crops. Moreover, water is used in multiple processes in both the pre- and post-harvest settings, providing many opportunities for *Salmonella* to come in contact with fresh produce during production, harvest and post-harvest handling of fruit, vegetables and nuts. During production, water is used primarily for irrigation. However, many other practices make use of copious amounts of water that come directly in contact with the crop, such as pesticide mixing and application, frost protection and evapotranspiration for cooling harvests. Experimental evidence linking agricultural practices to *Salmonella* dissemination to crops points to irrigation and rain splash as factors that increase pathogen transmission risk in the field (Cevallos-Cevallos et al., 2012; Gu et al., 2018). Other identified risk factors have implicated soil amendment use, mulching and wildlife (Cevallos-Cevallos et al., 2012; Jay-Russell, 2013; Strawn et al., 2013).

Despite the potential widespread prevalence of *Salmonella* in the environment, tracing back an outbreak to an environmental source has proven to be challenging. A few salmonellosis outbreaks implicating crops have tentatively source-tracked contamination back to irrigation water (Barton Behravesh et al., 2011; Greene et al., 2008; Voelker, 2021), and *Salmonella* isolates recovered from surface water have been reported to match illness outbreak strains in some cases (Li et al., 2014). However, most outbreak investigations fail to establish an environmental source for the contamination, even when the production area or facility is identified. This could be due to the sporadic and ephemeral nature of *Salmonella* presence in the agro-environment. Its detection could be restricted
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active MAP (aMAP)</td>
<td>288, 290</td>
</tr>
<tr>
<td>Advanced oxidation process (AOP)</td>
<td>252</td>
</tr>
<tr>
<td>AFBF. see American Farm Bureau Federation (AFBF)</td>
<td>151</td>
</tr>
<tr>
<td>Agent-based modelling</td>
<td>155</td>
</tr>
<tr>
<td>Agent-based simulation</td>
<td>151</td>
</tr>
<tr>
<td>American Farm Bureau Federation (AFBF)</td>
<td>236</td>
</tr>
<tr>
<td>Antibiotic-resistant bacteria (ARB)</td>
<td>196–197</td>
</tr>
<tr>
<td>Antibiotic-resistant genes (ARGs)</td>
<td>196</td>
</tr>
<tr>
<td>Antimicrobial agents</td>
<td>49</td>
</tr>
<tr>
<td>AOP. see Advanced oxidation process (AOP)</td>
<td></td>
</tr>
<tr>
<td>ARB. see Antibiotic-resistant bacteria (ARB)</td>
<td></td>
</tr>
<tr>
<td>ARGs. see Antibiotic-resistant genes (ARGs)</td>
<td></td>
</tr>
<tr>
<td>Bacterial Rapid Detection Using Optical Scattering Technology (BARDOT)</td>
<td>115</td>
</tr>
<tr>
<td>Bacteriocins</td>
<td>55</td>
</tr>
<tr>
<td>BARDOT. see Bacterial Rapid Detection Using Optical Scattering Technology (BARDOT)</td>
<td></td>
</tr>
<tr>
<td>Biochar</td>
<td>205, 206</td>
</tr>
<tr>
<td>Biological soil amendments of animal origin (BSAAO)</td>
<td>187, 188, 193, 194, 205</td>
</tr>
<tr>
<td>Bioremediation</td>
<td>206</td>
</tr>
<tr>
<td>Bogotá River</td>
<td>173</td>
</tr>
<tr>
<td>BSAAO. see Biological soil amendments of animal origin (BSAAO)</td>
<td></td>
</tr>
<tr>
<td>CAFO. see Concentrated animal feeding operation (CAFO)</td>
<td></td>
</tr>
<tr>
<td>Canadian Food Inspection Agency (CFIA)</td>
<td>201</td>
</tr>
<tr>
<td>CAP. see Controlled atmosphere packaging (CAP)</td>
<td></td>
</tr>
<tr>
<td>Carboxymethyl cellulose (CMC)</td>
<td>294</td>
</tr>
<tr>
<td>Carrots</td>
<td>10, 11</td>
</tr>
<tr>
<td>Carvacrol</td>
<td>303</td>
</tr>
<tr>
<td>Casein</td>
<td>296</td>
</tr>
<tr>
<td>Cavitation</td>
<td>56</td>
</tr>
<tr>
<td>CDC. see Centers for Disease Control and Prevention (CDC)</td>
<td></td>
</tr>
<tr>
<td>CDPHE. see Colorado Department of Public Health and Environment (CDPHE)</td>
<td></td>
</tr>
<tr>
<td>CEA. see Controlled environment agriculture (CEA)</td>
<td>47</td>
</tr>
<tr>
<td>Celery</td>
<td>11, 86</td>
</tr>
<tr>
<td>Centers for Disease Control and Prevention (CDC)</td>
<td>38, 47, 202, 203</td>
</tr>
<tr>
<td>CFIA. see Canadian Food Inspection Agency (CFIA)</td>
<td>295</td>
</tr>
<tr>
<td>Chemical Oxygen Demand (COD)</td>
<td>251</td>
</tr>
<tr>
<td>Chitosan</td>
<td>294</td>
</tr>
<tr>
<td>Chlorine</td>
<td>49</td>
</tr>
<tr>
<td>Chlorine dioxide (ClO₂)</td>
<td>302</td>
</tr>
<tr>
<td>COD. see Chemical Oxygen Demand (COD)</td>
<td></td>
</tr>
<tr>
<td>Codex HACCP principles</td>
<td>339</td>
</tr>
<tr>
<td>Colorado Department of Public Health and Environment (CDPHE)</td>
<td>47</td>
</tr>
<tr>
<td>Concentrated animal feeding operation</td>
<td></td>
</tr>
<tr>
<td>(CAFO)</td>
<td>198, 200, 202</td>
</tr>
<tr>
<td>Controlled atmosphere packaging (CAP)</td>
<td>288</td>
</tr>
<tr>
<td>Controlled environment agriculture</td>
<td></td>
</tr>
<tr>
<td>(CEA)</td>
<td>87, 88</td>
</tr>
<tr>
<td>COVID-19 pandemic</td>
<td>221, 370</td>
</tr>
<tr>
<td>Crop irrigation water</td>
<td>43</td>
</tr>
<tr>
<td>Diarrheagenic E. coli (DEC)</td>
<td>78</td>
</tr>
<tr>
<td>Differentially expressed (DE) genes</td>
<td>54</td>
</tr>
<tr>
<td>Discrete-event modeling</td>
<td>169</td>
</tr>
<tr>
<td>Disinfection efficacy</td>
<td>150</td>
</tr>
<tr>
<td>E. coli O104: H4</td>
<td>82, 84</td>
</tr>
<tr>
<td>E. coli O157: H7</td>
<td>82–86, 195, 198–200</td>
</tr>
<tr>
<td>E-commerce</td>
<td>307</td>
</tr>
<tr>
<td>EC Regulation 178/2002</td>
<td>139</td>
</tr>
<tr>
<td>Edible coatings (ECs)</td>
<td>292–298, 308</td>
</tr>
<tr>
<td>Edible films (EFs)</td>
<td>292–298, 308</td>
</tr>
<tr>
<td>EFSA. see European Food Safety Authority (EFSA)</td>
<td></td>
</tr>
<tr>
<td>Electrospraying</td>
<td>254</td>
</tr>
<tr>
<td>ELISA. see Enzyme-linked immunosorbent assays (ELISA)</td>
<td></td>
</tr>
<tr>
<td>Elution</td>
<td>120, 121</td>
</tr>
<tr>
<td>EMAP. see Equilibrium modified atmosphere packaging (EMAP)</td>
<td></td>
</tr>
<tr>
<td>Empirical models</td>
<td>154</td>
</tr>
<tr>
<td>Endocarp</td>
<td>14</td>
</tr>
</tbody>
</table>
Enteroaggregative *E. coli* (EAEC) 79
Enterohemorrhagic *E. coli* (EHEC) 79
Enteroinvasive *E. coli* (EIEC) 79
Enteropathogenic *E. coli* (EPEC) 79
Enterotoxigenic *E. coli* (ETEC) 79
Enzyme-linked immunosorbent assays (ELISA) 100
Epiphytic bacteria 330
EPS. see Extracellular polymeric substance (EPS)
Equilibrium modified atmosphere packaging (EMAP) 140
Escherichia coli, fresh produce contamination
food safety regulations and future actions 87–88
overview 77–79
pathogenic *Escherichia coli* interaction 83–85
produce contamination with 81–83
produce outbreaks linked to 85–87
pathogenicity and virulence 79–81
Ethanol 304
Ethoxyquin 284
Ethylene 299
Ethylene scavengers 300–301
EU. see European Union (EU)
European Food Safety Authority (EFSA) 298, 348
European Union (EU) 35
Evacuation stage 290
Exocarp 14
Extracellular polymeric substance (EPS) 16

FAO. see Food and Agriculture Organization (FAO)
Fatty acids 296
FCM. see Flow cytometry (FCM)
FDA. see US Food and Drug Administration (FDA)
FDA Food Safety and Nutrition survey 361
Filamentous fungus 207
Florence fennel 11
Flow cytometry (FCM) 115–116
Fluorescent intensity 111
Food and Agriculture Organization (FAO) 165, 187
Foodborne viral infections 103
Food Safety Modernization Act of 2011 (FSMA) 34, 88, 199, 219
Forced air–ozone reactor 261

Fourier-transform infrared (FT-IR) spectroscopy 112–113
FSMA. see Food Safety Modernization Act of 2011 (FSMA)
FT-IR. see Fourier-transform infrared (FT-IR) spectroscopy
Fumigation methods 258
GAPs. see Good Agricultural Practices (GAPs)
Gas flushing 290
Gas flushing stage 290
Gas-phase treatments 256
Genomic microarray analysis 54
GHPs. see Good hygienic practices (GHPs)
GMPs. see Good manufacturing practices (GMPs)
Good agricultural practices (GAPs), preventing pathogenic microbial contamination
adopter good agricultural practices 219–220
commitment and training 220–222
evolution from voluntary to regulation 217–219
implementation 224–225
overview 215–216
produce safety adds to farming stress 236–237
relevance for future 238–239
risk assessment 225–226
harvest and postharvest water 230
preharvest water 228–230
sanitation 233–235
soil amendments 230–232
storage and transportation 235–236
wildlife and domesticated animals 232–233
worker training 226–228
scalability of 222–224
Good hygienic practices (GHPs) 339
Good manufacturing practices (GMPs) 327, 328, 338
Ground water source 229

Hazard 225
Hazard analysis and critical control point (HACCP) systems, minimally processed foods
contamination sources 330–331
foodborne disease outbreaks fruits 332–333
leafy greens 331–332
sprouted seeds, onions and tomatoes 332
future trends 349–350
good manufacturing practices development personnel 334–335
premises 335–336
procedures 337–338
products and process control 336–337
hazard analysis and critical control point system 339–343
corrective actions, deviation from critical limit at CCP 347
critical control points determination 345
establish documentation concerning 348–349
establish validated critical limits 345–346
identify control measures 343–345
monitor control of CCPs 346
verification to confirm that HACCP system is working 347–348
key hazards in minimally processed foods 329–330
overview 327–329
Health Canada 372
Hepatitis A virus 176
Herbaceous vegetables 12
High-pressure processing (HPP) 54, 58
Hyperspectral imaging (HSI) 113–114
Hypochlorous acid (HOCl) 49, 50
IFA. see Immunofluorescence assay (IFA)
IFPA. see International Fresh Produce Association (IFPA)
IFSAC. see Interagency Food Safety Analytics Collaboration (IFSAC)
Immune-based methods 100
Immunofluorescence assay (IFA) 121
Intelligent packaging/labels 306
Interagency Food Safety Analytics Collaboration (IFSAC) 38
International Fresh Produce Association (IFPA) 34
International Standards Organization (ISO) 99
Invasive listeriosis 36
ISO. see International Standards Organization (ISO)
Jar test 251
Lactic acid bacteria (LAB) 55
LAMP. see Loop-mediated isothermal amplification/detection (LAMP)
Lauroyl-l-arginine (LEA) 253
Leaf microbiota 149
Leafy Greens Marketing Agreement (LGMA) 217, 219
LED. see Light-emitting diodes (LED)
LEE. see Locus of enterocyte effacement (LEE)
LGMA. see Leafy Greens Marketing Agreement (LGMA)
Light-emitting diodes (LED) 257, 258
Ligninolytic activity 206
Lipid-based coatings 296–297
Listeria cellulose binding protein (Lcp) 52
Listeria ivanovii 34, 35
Listeria monocytogenes 34–37, 169
Listeria monocytogenes fresh produce contamination adaptation to stress chlorine 53
cold shock 52–53
high-pressure processing 54
lactic acid 54
peracetic acid 53
biocontrol 54–55
in cantaloupes 47–48
contamination sources harvest 43–44
post-harvest 44–46
pre-harvest 41–43
control strategies 48–50
gene regulation and survival mechanisms 50–52
novel processing technologies chlorine dioxide gas 57
disinfecting agents 57–58
power ultrasound 56–57
outbreaks linked to fresh produce 38–41
overview 33–35
pathogenicity and virulence 35–37
Listex P100 55
ListShield 55
Lm0753 51
Locus of enterocyte effacement (LEE) 80
Long-term survival (LTS) phase 83
Loop-mediated isothermal amplification/detection (LAMP) 109
LTS. see Long-term survival (LTS) phase
MALDI-TOF MS. see Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS)

MAMPs. see Microbe-associated molecular patterns (MAMPs)

MAP. see Modified atmosphere packaging (MAP)

Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) 114

Maximum population density (MPD) 143

MDEL. see Microwave-assisted photolytic disinfection (MDEL)

Mesocarp 14

Metal-organic frameworks (MOFs) 301

1-Methylcyclopropene (1-MCP) 299–300

MHP. see Modified humidity packaging (MHP)

Microbe-associated molecular patterns (MAMPs) 13, 16

Microgreens 10, 87

Microwave-assisted photolytic disinfection (MDEL) 257

Modelling pathogen behaviour in fresh produce 142–143

growth modelling 143–148

modelling pathogen inactivation 148–151

fresh produce spoilage 139–142

future trends 155–156

overview 137–139

transfer of pathogens during fresh produce processing 151–153

microbial transfer between processing equipment and foods 153–155

Modified atmosphere packaging (MAP) 284–292, 308

Modified humidity packaging (MHP) 291–292, 308

MOFs. see Metal-organic frameworks (MOFs)

Monte Carlo risk modeling 168

mPCR. see Multiplex PCR (mPCR)

MPD. see Maximum population density (MPD)

Multiplex PCR (mPCR) 102

NASBA. see Nucleic acid sequence-based amplification (NASBA)

The National Farmers Market Managers Survey 366

National GAPs Program 217

Near-field communication (NFC) technology 306

Near-infrared (NIR) spectroscopy 113

New Era of Smarter Food Safety 88

NFC. see Near-field communication technology

NIR. see Near-infrared (NIR) spectroscopy

Nitric oxide (NO) 302

Non-invasive listeriosis 36

Norovirus (NoV) 97, 103, 176, 177, 362, 368

Nucleic acid sequence-based amplification (NASBA) 110

Onions 12

Organic acids 253

ORP. see Oxidation reduction potential (ORP)

Oxidants 301–302

Oxidation reduction potential (ORP) 249, 250

Packaging techniques and assessment active packaging 298–299

controlled release antimicrobials 301–304

ethylene scavenger and control 299–301

convenient and personalized packaging 307

edible coatings and films additives 297–298

coating requisites and desirable properties 292–293

future perspectives and regulatory aspects 298

structural matrix materials 293–297

modified atmosphere packaging 284–285

history and scope 285–288

methods, gases selection and measurements 290–291

modified humidity packaging 291–292

packaging materials, criteria and requisites 289

types 288–289

overview 281

packaging for physical protection 282–284

packaging materials 305–306

smart packaging 306–307

Passive MAP (pMAP) 288
Pathogenic contamination, soil and soil amendments
antibiotic resistance genes in manure-amended soils 196–198
E. coli, survival in manure dust 195–196
future trends
fungal biocontrol 206–207
soil amendment remediation 205–206
overview 187–188
pathogen survival in soils 188–195
Salmonella, survival in manure dust 195–196
2018 Romaine lettuce outbreak epidemiological summary 198–199
FDA environmental assessment investigation 199–200
2020 peaches epidemiological summary 202–203
FDA environmental assessment investigation 203
2020 red onions outbreak epidemiological summary 200–201
FDA environmental assessment investigation 201–202
PAW. see Plasma-activated water (PAW)
PCR. see Polymerase chain reaction (PCR)
Peanuts 15
Pectin 295
Penicillium expansum 282
Peracetic acid (PAA) 50, 53
PFGE. see Pulsed-field gel electrophoresis (PFGE)
Photo-Fenton AOP process 252
Plant primary metabolites 7
Plasma-activated water (PAW) 254, 255
Polymerase chain reaction (PCR) 101–109, 121
Polysaccharide-based coatings 294–295
Positive regulatory factor A (PrfA) 51, 54
Potentially toxic elements (PTEs) 205
Poultry manure dust 196
PrfA. see Positive regulatory factor A (PrfA)
Produce Safety Rule (PSR) 219
Protein-based coatings 295–296
PSR. see Produce Safety Rule (PSR)
PTEs. see Potentially toxic elements (PTEs)
Pulsed-field gel electrophoresis (PFGE) 38, 47
QMRA. see Quantitative microbial risk assessment (QMRA)
qPCR. see Quantitative PCR (qPCR)
QR codes 306
Quantitative microbial risk assessment (QMRA) 168, 169, 171, 172, 177, 178
Quantitative microbiological risk assessment of *E. coli* fresh produce 174–176
future trends 178
of *Listeria* multi-food risk ranking 166–167
vegetables and leafy greens 167–170
overview 165–166
of *Salmonella* fresh produce 172–174
nuts and seeds 170–172
of viruses 176–177
irrigation water 176–177
viruses in foods 177–178
Quantitative PCR (qPCR) 102, 103
Radio-frequency identification tags 306
Radishes 10
Raman effect 112
Rapid detection/ high throughput screening techniques advantages and limitation, microbial detection method 121–124
biosensor methods 116–120
conventional methods culture-based assay 98–99
immunoassays 100–101
mass spectrometry methods 114
molecular methods DNA microarray 110–111
loop-mediated isothermal detection 109
nucleic acid sequence-based amplification 110
polymerase chain reaction (PCR) 101–109
recombinase polymerase amplification 110
whole-genome sequencing 111–112
optical phenotyping methods flow cytometry (FCM) 115–116
forward light scattering 115
overview 97–98
parasites detection 120–121
spectroscopic methods Fourier-transform infrared spectroscopy 112–113
hyperspectral imaging (HSI) 113–114

© Burleigh Dodds Science Publishing Limited, 2023. All rights reserved.
near-infrared (NIR) spectroscopy 113
Raman spectroscopy 112
Ready-to-eat (RTE) salads 137, 138
Recombinase polymerase amplification (RPA) 110
Reverse transcription LAMP (RT-LAMP) 109
Rotavirus 176
RPA. see Recombinase polymerase amplification (RPA)
RT-LAMP. see Reverse transcription LAMP (RT-LAMP)
Running water sources 228
Safe consumer handling
consumer knowledge and behaviours produce handling behaviours 369-370
safe produce handling knowledge 368-369
consumer produce consumption 360-362
consumer’s handling of fresh produce 374
farmers markets 366
foodborne illnesses 367
microbial quality of produce items offered vs. 366-367
perceptions vs. observations, food safety 367-368
food safety handling recommendations and resources 371-373
new and targeted education materials around produce safety 373-374
organic produce foodborne outbreaks associated with organic foods 365-366
microbial quality of conventionally grown vs. 364-365
outbreaks and illnesses caused by produce 363-364
overview 359-360
pathogens isolated from produce samples 362-363
vulnerables and immunocompromised consumers 370-371
Salmonella 366
Salmonella, fresh produce contamination by fruit and vegetables contamination 6-7
metabolite landscape in plant niche 7-9
overview 3-4
plant association diversity 4-6
on produce on fruit 14-15
in leafy vegetables and fresh herbs 12-14
in root, bulbous and stalk vegetables 10-12
in sprouts and microgreens 9-10
in tree nuts and seeds 15-16
strategies in the plant niche 16-17
Salmonella enterica 3
Salmonella Enteritidis 5
Salmonella Javiana 5
Salmonella Montevideo 203
Salmonella Newport 5, 6, 15, 195
Salmonella serovars 6, 194
Salmonella Typhimurium 10-11
Sanitary design 234, 235
Sanitization Standard Operating Procedures (SSOPs) 337
Sanitising techniques, safety of fresh produce 245-246
future trends 269
non-aqueous decontamination methods 255-256
electron beams 256
gas-phase decontamination methods 258-262
UV light 257-258
post-harvest decontamination 246-247
post-harvest washing limitation 247-248
post-harvest washing processes alternative sanitisers 253-255
chlorine demand of wash waters 250-252
chlorine monitoring 248-250
pre-oxidation of wash water 252-253
standard validation method, fresh produce decontamination methods pathogen resistance and tolerance 267-268
standard method development 265-267
Screen-printed electrodes (SPEs) 120
SERS. see Surface-enhanced Raman spectroscopy (SERS)
Shiga toxin-producing Escherichia coli (STEC) 78-82, 84
Sigma factor B (SigB) 51, 54
Sodium hypochlorite 53
Sodium nitroprusside (SNP) 302
SOP. see Standard Operating Procedures (SOP)

© Burleigh Dodds Science Publishing Limited, 2023. All rights reserved.
SPEs. see Screen-printed electrodes (SPEs)
SSOPs. see Sanitation Standard Operating Procedures (SSOPs)
Standard Operating Procedures (SOP) 337
STEC. see Shiga toxin-producing Escherichia coli (STEC)
STEC 026 82
Sulfur dioxide (SO₂) 303
Surface-enhanced Raman spectroscopy (SERS) 112
Surface water sources 228
T3SS. see Type III secretion system (T3SS) genes
TaqMan probes 102
Time-temperature indicators 306
Trans-2-hexenal 304
Transducer-based detection 116
2020 Leafy Greens STEC Action Plan 88
Type III secretion system (T3SS) genes 17
United States Interagency Food Safety Analytics Collaboration (IFSAC) 5
US FDA Food Safety Modernization Act 172
US Food and Drug Administration (FDA) 34, 41, 47, 87, 88, 171, 172, 174, 202, 203, 298
UV-LEDs 258
Vacuum infiltration 267
Vacuum packaging 307
Viable but non-culturable (VBNC) 53, 268
Viral foodborne pathogens 103
Volatile compounds 303-304
Waxes 297
WGS. see Whole-genome sequencing (WGS)
Whey protein isolate (WPI) 295
White-rot fungi (WRF) 206
WHO. see World Health Organization (WHO)
Whole-genome sequencing (WGS) 41, 111-112, 199
World Health Organization (WHO) 33, 97, 142, 165, 371
WPI. see Whey protein isolate (WPI)
WRF. see White-rot fungi (WRF)
Zein 296