Advances in monitoring of native and invasive insect pests of crops

Edited by Dr Michelle Fountain, NIAB-EMR, UK
Dr Tom Pope, Harper Adams University, UK
Contents

Series list x
Introduction xx

Part 1 Detection

1 Advances in techniques for trapping crop insect pests 3
 Archie K. Murchie, Agri-Food & Biosciences Institute, UK
 1 Introduction 3
 2 Basic trapping elements 4
 3 Making the trap attractive 5
 4 Common trap types for collecting pest insects 8
 5 Automated traps 25
 6 Conclusion 29
 7 Future trends in research 30
 8 Where to look for further information 32
 9 Acknowledgements 33
 10 References 33

2 Advances and challenges in monitoring insect pests of major field crops in the United States 47
 Erin W. Hodgson and Ashley N. Dean, Iowa State University, USA; Anders Huseth, North Carolina State University, USA; and William D. Hutchison, University of Minnesota, USA
 1 Introduction 47
 2 Primary crops in the United States 48
 3 Corn (Zea mays L.) 49
 4 Soybean (Glycine max [L.] Merr) 61
 5 Cotton (Gossypium spp. L.) 69
 6 Conclusion and future trends 74
 7 Where to look for further information 75
 8 References 76

© Burleigh Dodds Science Publishing Limited, 2023. All rights reserved.
Contents

3 Quantifying captures from insect pest trap networks 91
Nicholas C. Manoukis, USDA-ARS, USA

1 Introduction 91
2 TrapGrid and other models to analyze trap networks 94
3 Applications 100
4 Practicum 106
5 Conclusion 111
6 Where to look for further information 112
7 Acknowledgements 112
8 References 112

4 Developments in crop insect pest detection techniques 117
Richard W. Mankin, USDA-ARS, USA

1 Introduction 117
2 Camera systems for pest detection at micro-scale ranges 123
3 Drone/camera systems for pest detection at meso-scale detection ranges 124
4 Landsat systems for detection of pests at macro-scale detection ranges 125
5 Sound- and vibration-sensors for pest detection 125
6 Case studies: augmenting traditional pest detection and biological control with nano-scale- and micro-scale-sensor technologies 128
7 Conclusion 130
8 Future trends in research 131
9 Where to look for further information 133
10 References 133

5 Monitoring airborne movement of crop insect pests and beneficials 147
V. Alistair Drake, University of Canberra and University of New South Wales, Australia

1 Introduction 147
2 Trapping 150
3 Visual observation 154
4 Radar 155
5 Optoelectronics 162
6 Radiotelemetry and harmonic radar 167
7 Case study: moths over a cotton crop 170
8 Conclusion 174
9 Where to look for further information 177
10 Appendix: safety and regulatory issues 178
11 Acknowledgements 178
12 References 179

© Burleigh Dodds Science Publishing Limited, 2023. All rights reserved.
Part 2 Identification, modelling and risk assessment

6 Advances in image-based identification and analysis of crop insect pests
Daniel Guyer, Michigan State University, USA; and Charles Whitfield, NIAB, UK

1 Introduction 197
2 Challenges and solutions in automated image-based insect identification 199
3 Understanding machine vision image-based insect identification 202
4 Automated and semi-automated image-based insect identification technologies 205
5 Commercially available systems 206
6 Conclusion 211
7 References 212

7 Advances in insect pest monitoring using pest population growth and geospatial data for pest risk assessment
Michael J. Brewer, Texas A&M AgriLife Research, USA; Isaac L. Esquivel, North Florida Research and Education Center, University of Florida, USA; and John W. Gordy, Syngenta Crop Protection, USA

1 Introduction 215
2 Pest monitoring basics and economic threshold adjustments 217
3 Geospatial data for pest risk assessment 223
4 Conclusion and future trends in research 235
5 Where to look for further information 237
6 Acknowledgements 238
7 References 238

8 Advances in pest risk assessment techniques focusing on invertebrate pests of European outdoor crops
Mark W. Ramsden, Samuel Telling, Daniel J. Leybourne, Natasha Alonso and Sacha White, RSK ADAS Ltd, UK; and Nikos Georgantzis, Burgundy School of Business, France

1 Introduction 243
2 Assessing the likelihood of pest infestations 245
3 Assessing the hazard of pest infestations 250
4 Reducing risk 252
5 Risk versus the perception of risk 253
6 Summary steps to pest risk assessment 254
7 Worked example: risk assessment of barley yellow dwarf virus in winter wheat 255
Part 3 Invasive species

9 Assessing the potential economic impact of invasive plant pests 267
Monique Mourits and Alfons Oude Lansink, Wageningen University, The Netherlands

1 Introduction 267
2 Methods to assess the potential economic impact of invasive plant pests 268
3 Selection of appropriate level of complexity 275
4 Economic analyses to support pest risk management 279
5 Case studies: pine wood nematode (B. xylophilus) and X. fastidiosa 280
6 Conclusion and future trends 288
7 Where to look for further information 289
8 References 290

10 Developing effective phytosanitary measures to prevent the introduction of invasive insect pests 293
Alan MacLeod and Dominic Eyre, DEFRA, UK

1 Introduction 293
2 International agreements and trade intervention 294
3 What are phytosanitary measures? 297
4 Phytosanitary measures within the framework of pest risk analysis 298
5 Examples of phytosanitary measures 299
6 Case study: strengthening phytosanitary measures against Bemisia tabaci and Liriomyza huidobrensis in the UK 307
7 Case study: EU measures against Anoplophora chinensis 309
8 Combining measures: the systems approach 311
9 Challenges 313
10 Conclusion 316
11 Where to look for further information 317
12 References 318

11 Mitigating invasive insect species: eradication, long-term management, and the importance of sampling and monitoring 325
Amy Morey, University of Minnesota, USA; and Robert Venette, USDA Forest Service, USA

1 Introduction 325
2 Overview of invasive species management 328
3 Eradication of invasive insects 330
4 Long-term management of invasive insects 340
5 Conclusion 346
6 Future trends 347
7 Acknowledgements 348
8 Where to look for further information 348
9 References 350

Index 365
Introduction

Insect pests remain a major threat to crop production primarily because of their ability to inflict severe damage on crop yields, as well as their role as key vectors of disease. Early identification of pests is critical to the success of integrated pest management (IPM) programmes and essential for the development of phytosanitary/quarantine regimes to prevent the introduction of invasive insect pests to new environments.

This volume reviews the wealth of research on techniques to monitor and thus prevent threats from both native and invasive insect pests. The book is split into three parts: Part 1 chapters draw attention to detection methods for crop insect pests, focusing specifically on techniques to trap and monitor them as well as developments in sampling and survey design, detection techniques and ways to monitor airborne movement of crop insect pests. Chapters in Part 2 focus on identification, modelling and risk assessment, highlighting advances in image-based identification and analysis, population growth models and pest risk assessment techniques. Part 3 chapters review invasive species and how their potential economic impact can be assessed, including the development of effective phytosanitary measures to prevent invasive insect pests and successful IPM programmes to control or eradicate them.

Part 1 Detection

The first chapter of the book draws attention to advances in techniques for trapping crop insect pests. Chapter 1 begins by describing the basic components of an insect trap. It then moves on to discuss methods to make traps more attractive for an insect, emphasising the use of methods such as visual and olfactory cues. The chapter also highlights common trap types for catching insect pests, focusing specifically on water traps, sticky traps, suction traps, interception traps and funnel and cone traps. Case studies of their usage and an evaluation of their merits and limitations are also included. Automated traps for insect pests are also reviewed, such as time-sorting traps, automated counting and identification and automated visual identification.

The next chapter reviews current insect pest monitoring systems for native and invasive pest species of corn, soybean, and cotton in the U.S. Chapter 2 presents case studies of European corn borer, corn earworm, western bean cutworm and western (Diabrotica virgifera LeConte) corn rootworm as pests of corn; soybean aphid, stink bugs, and Japanese beetle as pests of soybean; and tobacco thrips, plant bugs and bollworm as pests of cotton. It discusses how new technology has driven recent improvements in monitoring of these pests.
from the lab, field and areawide levels. It also discusses recent trends and tools for insect resistance management.

The subject of Chapter 3 is interpreting data from insect pest trap networks. The chapter begins by highlighting models to analyse trap networks, focusing primarily on the development of the TrapGrid network. TrapGrid can be used to quantify the probability of capturing insects instantaneously or over time using a function that relates distance from a given trap to probability of capture and two models of insect dispersal. Brief descriptions of other modeling approaches to these questions, some of which have seen application outside of research, are discussed followed by ideas for the application of TrapGrid, including a way to determine trap attraction (the parameter λ in the model) and how to compare alternative trap layouts on a landscape scale. A working example is also provided, comparing two alternative trap layouts in a 1 km2 area via quantification of capture probability instantaneously and over 30 days.

Chapter 4 focuses on developments in crop insect pest detection techniques. The chapter first discusses the use of camera systems for pest detection at micro-scale ranges, then moves on to review how drone/camera systems can be used at meso-scale detection ranges. This is followed by an overview of the use of Landsat systems for pest detection and macro-scale detection ranges. A section on sound- and vibration-sensors is also included. The chapter provides a case study focused on augmenting traditional pest detection and biological control with nanoscale- and micro-scale sensor technologies, before concluding with an overview of future goals and developments for insect pest detection technologies in crops.

The final chapter of Part 1 explores monitoring airborne movement of crop insect pests and beneficials. Chapter 5 highlights the importance of trapping methods when it comes to monitoring specimens. This is then followed by a review of the visual observation of insects and a discussion of various forms of radar that can be used, such as scanning entomological radars, vertical-looking and weather surveillance radars. A section on optoelectronics is also provided, focusing specifically on short-range and long-range monitoring as well as imagers and the strengths, limitations and prospects of these devices. The chapter also provides a review of radiotelemetry and harmonic radar as well as a case study on moths over a cotton crop.

Part 2 Identification, modelling and risk assessment

Part 2 opens with a chapter that reviews progress in developing automated image-based systems for identifying crop insect pests. Chapter 6 identifies the challenges in distinguishing insect pests in field conditions and ways they can be addressed. The chapter outlines key steps in image-based identification (image capture, processing, segmentation, feature extraction and classification)
and the growing use of artificial intelligence to increase accuracy and reliability. It also provides examples of commercially-available systems and considers future developments. The chapter is aimed at practitioners and scientists new to the topic and as a useful reference on the pros and cons of different monitoring strategies for those already in the field.

Chapter 7 looks at advances in insect pest monitoring using pest population growth and geospatial data for pest risk management. The chapter reviews approaches and provides case studies of current advances that are in development or have been applied in operational IPM systems. It first analyses incorporating knowledge of expected pest population growth to adjust economic thresholds for use in applying remedial IPM tactics to individual fields. The chapter then turns to principles and advancements in using spatial data, including spatially-referenced pest, crop and remote sensing data. Spatial data linked to insect pest monitoring may improve strategic use of remedial IPM tactics at the field level and use of preventive IPM tactics at larger scales.

The subject of Chapter 8 is advances in pest risk assessment techniques focusing on invertebrate pests of European outdoor crops. The chapter breaks down the processes and tools available to undertake a pest risk assessment, first focusing on the ways to assess the likelihood and hazard of pest infestations. It then highlights the potential influence of the perception of risk on decision making and how risk can be reduced. The chapter also provides a worked example for a priority pest in wheat.

Part 3 Invasive species

Chapter 9 addresses the potential economic impact of invasive plant pests. The chapter evaluates techniques such as partial budgeting, partial equilibrium models, input-output models and computable general equilibrium models in terms of their economic concepts, scope and required data and skill. This is then followed by a general reflection on the question of how to choose the most appropriate technique whilst considering the trade-off between completeness in economic scope and required resources. The chapter concludes with two case studies to illustrate the potential of the methods that are most often applied.

The subject of Chapter 10 is developing effective phytosanitary measures to prevent the introduction of invasive insect pests. The chapter provides a definition of phytosanitary measures, why they are needed, how standards for phytosanitary measures developed through international cooperation and how they relate to international agreements. This chapter then explains how policy decision making and the management of invasive insect pests using phytosanitary measures is supported by the structured framework of pest risk analysis which follows international standards. Outlines of some of the more
commonly used phytosanitary measures used to manage pest risk are provided. Case studies are used to illustrate the impact of phytosanitary measures. The chapter closes by identifying some of the key challenges the industry faces to inhibit the introduction and spread of invasive insect pests with the aim of stimulating future research.

The final chapter of the book is focused on mitigating invasive insect species, focusing specifically on eradication, long-term management and also highlights the importance of sampling and monitoring. Chapter 11 introduces major concepts associated with the management of invasive insects. It then focuses more deeply on eradication and long-term management, especially IPM, describing common factors associated with successful programmes and potential challenges of each strategy. Brief case studies are provided to illustrate applications of eradication and IPM to various invasive insects in different regions. Lastly, the chapter summarises recent research and technology that have progressed effective management of invasive insects and highlight areas where further research is needed.
Chapter 1

Advances in techniques for trapping crop insect pests

Archie K. Murchie, Agri-Food & Biosciences Institute, UK

1 Introduction

Monitoring of insect pests is an essential component of integrated pest management. To determine whether pest densities justify an intervention, such as an insecticide application or other control measures, their numbers need to be assessed and compared to economic thresholds (Pedigo and Buntin, 1994; Ramsden et al., 2017; Stern, 1973). Such assessments can be done by physical sampling of the crop and visual inspection or passively using traps. The method used will depend on the biology of the pest species, the ease of assessment, the availability of labour and the relationship between the stage monitored and the damage done. For example, traps may monitor the adults, whilst the damaging stage is the larva. The closer the temporal and spatial association between the monitored stage and the damaging stage, the more accurate the assessment but the less advanced the warning provided.

For traps, cost and ease of use are important practical elements for in-crop sampling. For all trapping systems, the processing times and costs are major considerations. Some flight interception traps such as Malaise traps catch a
wide variety of flying insects, with several thousand specimens collected over a trapping period (Skvarla et al., 2021). For biodiversity assessment, non-selective traps like this are ideal; however, for monitoring crop pests, selective traps are usually required that produce as targeted a sample as possible with little bycatch. This makes for speedy and accurate processing, as well as minimising impacts on non-target species. In-crop trapping systems therefore aim to be attractive to the target pest species but not to other insects within the crop. The exceptions to this may be where two species interact, such as, two pest species [e.g. cabbage seed weevil, *Ceutorhynchus obstrictus* (Marsham), and brassica pod midge, *Dasineura brassicae* (Winnertz)] (Smart et al., 1992), or where there is an opportunity to monitor a pest and its natural enemy at the same time (Murchie et al., 1997).

The first challenge in successful pest monitoring is to produce a cheap, selective trap that is highly attractive to the pest species. The second challenge is that the trap must be effective enough to provide an accurate population assessment. The third challenge is to reduce the trap sample processing time. Correspondingly, there is increasing interest in automatic methods of sorting and identification of trap catches. The fourth challenge is to reduce the environmental impact of trapping. Indiscriminate traps such as sticky traps are notorious for their large bycatch, even including small birds, bats and lizards, whilst water traps catch beneficial insects such as bees, hoverflies, lacewings and parasitoids. There is also the difficulty of disposal. Sticky traps are awkward to handle and invariably made of plastic, which once contaminated by the sticky glue cannot be easily recycled (Solorzano et al., 2015). The handling and disposal of any chemical preservative involved also needs to be considered.

2 Basic trapping elements

There are four basic components to an insect trap. The first is a method to make the trap attractive to the pest. This is commonly achieved using an attractive colour, light (for nocturnal insects) or more selectively volatile chemicals, in particular pheromone lures. Combinations of colour and chemical attractants are common, and trap design can use both visual and olfactory cues to enhance collection (Blight and Smart, 1999). An exception to this requirement would be where the trap is intended to sample specifically background insect populations, for example with suction traps, pitfall traps or clear flight interception traps. The second component is a mechanism to retain the catch. Insects may be retained on sticky glue, water with a dash of detergent to break the surface tension, or caught into a preservative such as alcohol. Some traps may be run for the purposes of live capture, particularly for biodiversity assessment (e.g. moth trapping) or to collect specimens for further work. In such cases, the design of the trap will allow entry but minimise the likelihood...
of exit. Often traps will be left for several days or longer before being emptied, so some method of preserving the catch must be used, if identification of specimens is required. Common preservatives are alcohol, if evaporation can be minimised, and ethylene or propylene glycol (anti-freeze), where the trap is more open to the elements. Alternatively, some traps operate dry and use insecticides to rapidly kill the catch. Lastly, the trap must be mounted in such a way as to maximise catch. Often for flying crop pests, this is at the crop canopy height and unobscured by plant foliage, which changes as the crop grows; therefore, height mounts for the trap are adjustable.

3 Making the trap attractive
3.1 Visual cues – colour and light

Colour is the simplest method of increasing trap attractiveness. Insects have diverse and highly developed colour vision, with some species having up to six different spectral receptors and a visual range of <300 nm [ultraviolet (UV)] to >700 nm (Briscoe and Chittka, 2001; Fennell et al., 2019). Specific wavelengths are attractive to certain insect species. Yellow in particular has been used for attracting phytophagous insects and has been recommended for monitoring glasshouse pests since the 1920s (Lloyd, 1922). This may be because the peak colour reflectance of plants is in the yellow band at 500–580 nm (Prokopy and Owens, 1983), due to brightness/intensity effects (Döring and Chittka, 2007) or attraction of phytophagous insects to stressed/diseased plants (Hodge et al., 2011). However, other colours have also proven attractive depending on the specific pest. For example, Kirk (1984) demonstrated that within the thrips species caught in coloured pan traps in an English sports-field, there were strong species-specific colour preferences for yellow, white, or blue, but there were also some grass-feeding thrips that were caught equally in all colours. The author suggested that yellow was in general the most attractive for non-grass foliage feeders, dark colours (black or red) for biting flies and wood borers, and white or blue for predators and parasites not associated with foliage. Responses to colour are therefore specific to the ecology of the pest species and can be subtle. For example, the contrast between the trap colour and background can affect the response of insects to traps, as can the sex and physiological state of the insect (Blackshaw, 1983; Koštál and Finch, 1996; Murchie et al., 2018). Due to the sensitivity of insects to colour, when conducting choice experiments to aid in designing traps, spectral reflectance measurements in visible and UV using spectrophotometers are preferable to human-vision assessment of colour hues.

Light trapping is used extensively for monitoring flying nocturnal insects. Many species have strong attractions towards artificial light sources particularly
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Declaration</td>
<td>299</td>
</tr>
<tr>
<td>Aerial plankton</td>
<td>16</td>
</tr>
<tr>
<td>Al. see Artificial Intelligence (AI)</td>
<td>-</td>
</tr>
<tr>
<td>algorithms</td>
<td>-</td>
</tr>
<tr>
<td>Airborne movement monitoring</td>
<td>-</td>
</tr>
<tr>
<td>moths over cotton crop</td>
<td>170-174</td>
</tr>
<tr>
<td>optoelectronics</td>
<td>162</td>
</tr>
<tr>
<td>imagers</td>
<td>165-166</td>
</tr>
<tr>
<td>long-range monitoring</td>
<td>163-165</td>
</tr>
<tr>
<td>short-range monitoring</td>
<td>163</td>
</tr>
<tr>
<td>strengths limitations and prospects</td>
<td>166-167</td>
</tr>
<tr>
<td>overview</td>
<td>147-150</td>
</tr>
<tr>
<td>radar</td>
<td>155-156</td>
</tr>
<tr>
<td>scanning entomological radars</td>
<td>156-158</td>
</tr>
<tr>
<td>strengths, limitations, and prospects</td>
<td>160-161</td>
</tr>
<tr>
<td>vertical-looking radars</td>
<td>158-159</td>
</tr>
<tr>
<td>weather surveillance radars</td>
<td>159-160</td>
</tr>
<tr>
<td>radiotelemetry and harmonic radar</td>
<td>167-170</td>
</tr>
<tr>
<td>trapping</td>
<td>150-154</td>
</tr>
<tr>
<td>visual observation</td>
<td>154-155</td>
</tr>
<tr>
<td>Anoplophora glabripennis</td>
<td>306, 348</td>
</tr>
<tr>
<td>APLC. see Australian Plague Locust</td>
<td>-</td>
</tr>
<tr>
<td>Commission</td>
<td>-</td>
</tr>
<tr>
<td>ArcMap</td>
<td>228</td>
</tr>
<tr>
<td>Artificial Intelligence (AI) algorithms</td>
<td>251</td>
</tr>
<tr>
<td>Artificial lighting</td>
<td>202</td>
</tr>
<tr>
<td>Astronomical telescopes</td>
<td>163</td>
</tr>
<tr>
<td>Australian Plague Locust Commission</td>
<td>-</td>
</tr>
<tr>
<td>(APLC)</td>
<td>159</td>
</tr>
<tr>
<td>Baited traps</td>
<td>247</td>
</tr>
<tr>
<td>Bird cherry-oat aphid</td>
<td>255</td>
</tr>
<tr>
<td>Blacklight traps</td>
<td>50, 51</td>
</tr>
<tr>
<td>Black pyramid trap</td>
<td>64, 65</td>
</tr>
<tr>
<td>BMSB. see Brown marmorated stink bug</td>
<td>-</td>
</tr>
<tr>
<td>(BMSB)</td>
<td>-</td>
</tr>
<tr>
<td>Boll weevil trap capture</td>
<td>234</td>
</tr>
<tr>
<td>Broad-spectrum insecticides</td>
<td>330</td>
</tr>
<tr>
<td>Brown marmorated stink bug (BMSB)</td>
<td>64</td>
</tr>
<tr>
<td>Bucket trap</td>
<td>21</td>
</tr>
<tr>
<td>Cactoblastis cactorum</td>
<td>337-338</td>
</tr>
<tr>
<td>Canadian Food Inspection Agency</td>
<td>339</td>
</tr>
<tr>
<td>CBC. see Conservation Biological Control</td>
<td>-</td>
</tr>
<tr>
<td>(CBC)</td>
<td>-</td>
</tr>
<tr>
<td>CBD. see Convention on Biological Diversity (CBD)</td>
<td>296</td>
</tr>
<tr>
<td>CEW. see Corn earworm (CEW)</td>
<td>-</td>
</tr>
<tr>
<td>Chortoicetes terminifera</td>
<td>159</td>
</tr>
<tr>
<td>Clean trap catches</td>
<td>30</td>
</tr>
<tr>
<td>Climate change</td>
<td>316</td>
</tr>
<tr>
<td>Combining radar observations</td>
<td>176</td>
</tr>
<tr>
<td>Conservation Biological Control (CBC)</td>
<td>252, 258</td>
</tr>
<tr>
<td>Convention on Biological Diversity (CBD)</td>
<td>296</td>
</tr>
<tr>
<td>Corn earworm (CEW)</td>
<td>53-56, 72-74</td>
</tr>
<tr>
<td>Corn rootworm (CRW)</td>
<td>57-61</td>
</tr>
<tr>
<td>Cost-benefit analysis</td>
<td>280</td>
</tr>
<tr>
<td>Cotton agroecosystems</td>
<td>225</td>
</tr>
<tr>
<td>Cotton fleahopper</td>
<td>233</td>
</tr>
<tr>
<td>Crop insect pest detection techniques</td>
<td>-</td>
</tr>
<tr>
<td>camera systems, at micro-scale ranges</td>
<td>123-124</td>
</tr>
<tr>
<td>drone/camera systems, at mesoscale detection ranges</td>
<td>124-125</td>
</tr>
<tr>
<td>future trends</td>
<td>131</td>
</tr>
<tr>
<td>Landsat systems, at macro-scale ranges</td>
<td>125</td>
</tr>
<tr>
<td>locations by region</td>
<td>132</td>
</tr>
<tr>
<td>nano-scale-and microscale-sensor systems</td>
<td>-</td>
</tr>
<tr>
<td>technologies, biological control</td>
<td>-</td>
</tr>
<tr>
<td>with</td>
<td>128-130</td>
</tr>
<tr>
<td>overview</td>
<td>117-123</td>
</tr>
<tr>
<td>sound-and vibration-sensors</td>
<td>125-128</td>
</tr>
<tr>
<td>CRW, Corn rootworm (CRW)</td>
<td>-</td>
</tr>
<tr>
<td>Dasineura brassicae</td>
<td>19-20</td>
</tr>
<tr>
<td>Decision support systems (DSSs)</td>
<td>16, 31, 244, 248, 249, 254, 256</td>
</tr>
<tr>
<td>Density-based economic thresholds</td>
<td>222</td>
</tr>
<tr>
<td>Diabolocatantops axillaris</td>
<td>161</td>
</tr>
<tr>
<td>Diamond-back moth monitoring network</td>
<td>249</td>
</tr>
<tr>
<td>Diaphorini citri</td>
<td>128, 129</td>
</tr>
<tr>
<td>Direction-finders</td>
<td>169</td>
</tr>
</tbody>
</table>

© Burleigh Dodds Science Publishing Limited, 2023. All rights reserved.
Direct visual assessment 26
Direct visual counts 218
Drosophila suzukii 199
DSSs. see Decision support systems (DSSs)

EAGs. see Electroantennograms (EAGs)
Early detection and rapid response (EDRR) 329, 330
ECB. see European corn borer (ECB)
ECB sex pheromone 51
Economic injury level (EIL) 52, 220, 341
Economic threshold (ET) 52, 341
Economic threshold concept 215, 216, 219, 220
EDRR. see Early detection and rapid response (EDRR)
Effective attraction radius 99
Effective phytosanitary measures, prevent invasive insect pests
 case study
 against *Anoplophora chinensis*, EU 309–311
 against *Bemisia tabaci* and *Liriomyza huidobrensis*, UK 307–309
challenges 313–316
within framework of pest risk analysis 298–299
international agreements and trade intervention 294–297
overview 293–294
pest-free area 303–304
pest-free countries 299–303
pest-free place of production 304
pest-free production site 304
phytosanitary treatments 304–306
systems approach 311–313, 316
Effective sampling area (ESA) 99
EIL. see Economic injury level (EIL)
E-isomer 50
Electroantennograms (EAGs) 118
Electroretinograms (ERGs) 120
Entomological radar 155
Eradication programme 306
ERGs. see Electroretinograms (ERGs)
ESA. see Effective sampling area (ESA)
ET. see Economic threshold (ET)
European corn borer (ECB) 49–53
EUROPHYT database 310
E-Z hybrid 50
FarmSense device 126
Flight boundary layer (FBL) 149, 153
Forecast systems 248
Gas chromatography 7
General surveillance 303
Geographic information systems (GIS) 223, 224, 227, 229
GERDA. see Global Eradication and Response Database (GERDA)
GIS. see Geographic information systems (GIS)
Global arthropod eradication programs 333, 334
Global Eradication and Response Database (GERDA) 333, 335

HAD. see Host-associated differentiation (HAD)
Halyomorpha halys 344–346
Harmonic insect detectors 169
Harmonic radar 169
Helicoverpa spp., 171
Host-associated differentiation (HAD) 130
Host plant resistance 220
Host plant tolerance 220
Image analysis algorithms 27
Image-based identification and analysis automated and semi-automated
 image-based insect identification 205–206
automated image-based insect identification 199–202
commercially available systems 206–211
machine vision image-based insect identification 202
classification 204
feature extraction 203–204
image capture 202
image processing 203
segmentation 203
overview 197–198
Insect pests monitoring, United States corn (*Zea mays* L.)
 corn earworm (CEW) 53–56
corn rootworm (CRW) 57–61
European corn borer (ECB) 49–53
western bean cutworm (WBC) 56–57
cotton (*Gossypium* spp. L.) 47
 bollworm (corn earworm) 72–75
 plant bugs 71–72
 tobacco thrips 69–71
future trends 74–75
overview 47–48
primary crops 48–49
soybean (*Glycine max* [L.] Merr) 47

© Burleigh Dodds Science Publishing Limited, 2023. All rights reserved.
Night-vision goggles 155
Non-conspicuous delta trap 13
Normalized vegetation index (NDVI) 227
Northern Irish trap 16
NPPOs. see National Plant Protection Organizations (NPPOs)
Nylon-mesh traps 54, 55
Orange wheat blossom midge (OWBM) 250
PAM. see Portable passive acoustic monitoring (PAM)
Partial equilibrium 277–279
PCNs. see Potato cyst nematodes (PCNs)
PCs. see Phytosanitary certificates (PCs)
Pectinophora gossypiella 335–336
Pest-free area (PFA) 303–304
Pest-free place of production (PFPP) 304
Pest-free production site (PFPS) 304
Pest population growth and geospatial data basics and economic threshold adjustments, pest monitoring 217–219
crops exhibiting plant resistance 220–221
pest population growth into economic thresholds 219–220
sugarcane aphid as pest of sorghum 221–223
case studies cotton pests spatial variability, pest monitoring and management 231–234
GIS to create pest risk maps, in-field use 227–231
pest information networks, regional pest risk assessment 234–235
spatial pest risk assessment, cotton production region 234
future trends 235–237
geospatial data, pest risk assessment 223–224
spatial variation within and between fields 224–227
overview 215–217
Pest risk analysis (PRA) 297–299
Pest risk assessment techniques, invertebrate pests, European outdoor crops barley yellow dwarf virus (BYDV), winter wheat assessing abundance 256
barley yellow dwarf virus load 256–257
hazard an infestation represents to crop performance 256
likelihood of infestation 256
pest priority 255
preventing/mitigating for future trends 257
future trends 258
hazard of pest infestations 250–251
remote sensing and image-recognition technology 251–252
likelihood of pest infestations 245–246
on field monitoring 246–247
on forecast models 248–249
on observation networks 249–250
overview 243–245
risk reduction managing infestations 252–253
preventing infestations 252
risk vs. perception of risk 253–254
steps 254–255
PFA. see Pest-free area (PFA)
PFPP. see Pest-free place of production (PFPP)
PFPS. see Pest-free production site (PFPS)
Pherobase 7
Pheromone-baited delta traps 12
Pheromone baited traps 335
Pheromones 118
Pheromone traps 7, 51, 52, 54
Phytophagous insects 9
Phytosanitary certificates (PCs) 299
Pine wood nematode (PWN) 281–283
Pitfall traps 8
Plan position indicator (PPI) 157
Platygaster subuliformis 20
Portable passive acoustic monitoring (PAM) 125
Potato cyst nematodes (PCNs) 246, 247
PPI. see Plan position indicator (PPI)
PRA. see Pest risk analysis (PRA)
Probability density function 98
Push-pull strategies 129
Quantifying capture probability 91
Radio-frequency identification (RFID) 169
Random point sampling 231
Regional pest risk assessment 216
Reliable forecast systems 249
Remote sensing 149
Remote-sensing observations 175

© Burleigh Dodds Science Publishing Limited, 2023. All rights reserved.
Index

RFID. see Radio-frequency identification (RFID)
RIS. see Rothamsted Insect Survey (RIS)
Risk-averse approach 257
Rothamsted Insect Survey (RIS) 15, 16

SADIE. see Spatial Analyses by Distance IndicEs (SADIE)
SASA. see Science and Advice for Scottish Agriculture (SASA)
Scale dimension 276
Science and Advice for Scottish Agriculture (SASA) 15, 16
Scope dimension 275
Scouting 197
Semiochemical-baited traps 247
Semiochemical lures 10
SIT. see Sterile insect technique (SIT)
Slugs 248
Smart Palm system 128
Sodium benzoate 9
Soil sampling 218, 247
South Texas cotton system 231
Spatial Analyses by Distance IndicEs (SADIE) 72, 225, 226
Speed scouting 61, 63, 75
Spodoptera frugiperda 128, 326
SPS Agreement 295
Sterile insect technique (SIT) 331, 335, 337
Sticky traps 201
Sugar-and protein-based baits 339
Synthetic pesticides 244
Teia anartoides 336–337
Telemetry 201
Tephritid fruit flies 93
TFI. see Treatment Frequency Index (TFI)
Thrips Infestation Predictor 70
Time dimension 276
Transmitter tags 168
Trap networks 92
Trapping crop insect pests, techniques attractive trap
colour and light, visual cues 5–6
semiochemicals, olfactory cues 6–8
automated traps
automated counting and identification 25–26
automated identification via wingbeat harmonics 27–29
automated visual identification 26–27
time-sorting traps 25

elements 4–5
funnel and cone traps 21–23
boll weevil monitoring 23–24
key challenges, pest monitoring 24
future trends 30–32
interception traps 17–19
cross-vane trap, Dasineura brassicae sampling 18, 19–20
key challenges, pest monitoring 20–21
overview 3–4
sticky traps 11–12
key challenges, pest monitoring 13
pea moth 12–13
suction traps 14–15
key challenges, pest monitoring 16–17
Rothamsted trap network 15–16, 29
water traps 8–9
aphids on potatoes 9–10
key challenges, pest monitoring 10–11
Treatment Frequency Index (TFI) 245
Trissolcus japonicus 346
Unmanned aerial systems (UAS) 227
Unmanned aerial vehicle (UAV) 152
Vertical-entomological radars 120
Vespa mandarinia 338–340
Volatile organic chemicals (VOCs) 118, 122, 129
Western bean cutworm (WBC) 56–57
Window traps 17
Wind-tunnel tests 149
Wingbeat frequency 27, 29
Wing-style trap 56, 57
Wire-mesh Hartstack trap 54
Wood packaging materials (WPM) 305
World Trade Organization (WTO) 294, 295
WPM. see Wood packaging materials (WPM)
WTO. see World Trade Organization (WTO)
X-band 156
Yellow sticky trap 59
Yellow water traps 9
Yield Enhancement Network 245
Z-isomer 50
ZLC configuration 158, 161