Promoting pollination and pollinators in farming

Edited by Emeritus Professor Peter Kevan and Dr D. Susan Willis Chan, University of Guelph, Canada
Contents

Series list x
Introduction xix
Acknowledgement xxiii

Part 1 Understanding pollinators and pollination
1 What is pollination and what are pollinators in agriculture? 3
Seanne Clemente and Lynn Adler, University of Massachusetts, USA

1 Introduction 3
2 The basics of pollination 4
3 Pollinators and their diversity 8
4 The ecology and evolution of floral traits 10
5 Domestication and its impact on plant-pollinator relationships 16
6 How do pollinators impact agriculture? 19
7 Modern agriculture and pollinators 21
8 Conclusion 24
9 Where to look for further information 25
10 References 25

2 The role and application of olfaction in crop plant-pollinator interactions 47
Sarah E. J. Arnold, Natural Resources Institute, University of Greenwich, UK and Nelson Mandela African Institution of Science and Technology, Tanzania; Alison S. Scott-Brown, University of Cambridge and Royal Botanic Gardens, Kew, UK; and Philip C. Stevenson, Royal Botanic Gardens, Kew and Natural Resources Institute, University of Greenwich, UK

1 Introduction 47
2 Key challenges 54
3 Case studies 57
4 Summary 63
5 Future trends 63
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>73</td>
</tr>
<tr>
<td>2 Fundamental mechanisms of wind pollination</td>
<td>73</td>
</tr>
<tr>
<td>3 Wind pollination and transgenic risks in grass crop species</td>
<td>74</td>
</tr>
<tr>
<td>4 Promoting wind pollination in open-pollinated crop species</td>
<td>78</td>
</tr>
<tr>
<td>5 Conclusion and future trends</td>
<td>79</td>
</tr>
<tr>
<td>6 References</td>
<td>80</td>
</tr>
</tbody>
</table>

Part 2 Threats to pollinators

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Assessing climate change impacts on pollinators</td>
<td>85</td>
</tr>
<tr>
<td>Kit Prendergast, Curtin University, Australia</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>85</td>
</tr>
<tr>
<td>2 Challenges anthropogenic climate change poses to pollinators</td>
<td>86</td>
</tr>
<tr>
<td>3 Advancing our understanding of climate change impacts on pollinators</td>
<td>98</td>
</tr>
<tr>
<td>4 Conserving pollinators under climate change</td>
<td>101</td>
</tr>
<tr>
<td>5 Conclusion</td>
<td>103</td>
</tr>
<tr>
<td>6 Where to look for further information</td>
<td>104</td>
</tr>
<tr>
<td>7 References</td>
<td>104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Assessing the impact of disease on pollinators</td>
<td>113</td>
</tr>
<tr>
<td>Patrycja Pluta and Robert J. Paxton, Martin Luther University</td>
<td></td>
</tr>
<tr>
<td>Halle-Wittenberg, Germany</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>113</td>
</tr>
<tr>
<td>2 A bestiary of honey bee diseases</td>
<td>114</td>
</tr>
<tr>
<td>3 The poorly known wild bee diseases</td>
<td>127</td>
</tr>
<tr>
<td>4 Disease transmission, spillover and spillback</td>
<td>135</td>
</tr>
<tr>
<td>5 Defence mechanisms of bees</td>
<td>138</td>
</tr>
<tr>
<td>6 Synergies with other risk factors</td>
<td>140</td>
</tr>
<tr>
<td>7 Prevention of diseases</td>
<td>141</td>
</tr>
<tr>
<td>8 Future trends</td>
<td>146</td>
</tr>
<tr>
<td>9 Where to look for further information</td>
<td>147</td>
</tr>
<tr>
<td>10 References</td>
<td>147</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 How neonicotinoid insecticides affect bees and other pollinators</td>
<td>165</td>
</tr>
<tr>
<td>D. Susan Willis Chan, University of Guelph, Canada</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>165</td>
</tr>
<tr>
<td>2 What are neonicotinoids?</td>
<td>166</td>
</tr>
<tr>
<td>3 Why are neonicotinoids such a concern for pollinators?</td>
<td>167</td>
</tr>
</tbody>
</table>
Contents

4 Environmental contamination and pollinator exposure 168
5 Toxicity and effects across pollinator taxa and contexts 170
6 Sublethal effects on bees and interactions among multiple stressors 171
7 Case studies illustrating consequences for pollinator populations and pollination 173
8 Conclusion 175
9 Where to look for further information 175
10 Acknowledgements 176
11 References 176

7 Assessing the impact of pesticides on pollinators 183
Christian Maus, Bayer AG, Germany; Anne Alix, Corteva Agriscience, UK; and Daniel R. Schmehl, Bayer CropScience LP, USA

1 Introduction 183
2 History of bee testing and risk assessment 185
3 Testing pesticide effects to pollinators 186
4 Ecotoxicological risk assessment for pollinators 196
5 Indirect and sublethal effects 206
6 Risk mitigation 207
7 Pesticide incident monitoring 209
8 Conclusion 210
9 Where to look for further information 211
10 Acknowledgements 212
11 References 212

8 Assessing the impact of alien bees on native ones 225
M. Zakardjian, H. Jourdan, V. Le Féon and B. Geslin, Aix-Marseille University, Avignon University, CNRS, IRD, IMBE, Marseille, France

1 Introduction 225
2 Assessment of key issues related to the introduction of alien bees 228
3 Case study: *Megachile sculpturalis* 234
4 Conclusion 240
5 Future trends in research 242
6 How to improve biosecurity 243
7 Where to look for further information 245
8 References 247

Part 3 Promoting pollinators and pollination

9 The role of habitat conservation and restoration in protecting pollinators in agricultural landscapes 259
Stephen Buchmann, University of Arizona, USA

1 Introduction 259
2 Bees as pollinators 260

© Burleigh Dodds Science Publishing Limited, 2023. All rights reserved.
Contents

3 Challenges in habitat restoration 262
4 Assessing the effectiveness of habitat restoration 265
5 Case studies 268
6 Conclusion 271
7 Where to look for further information 272
8 References 272

10 Altering crop management practices to promote pollinators 283
Jose G. Franco, USDA ARS, USA; and Rachel E. Mallinger, University of Florida, USA
1 Introduction 283
2 Approaches to managing production space for pollinators 284
3 Case studies 290
4 Assessing efficacy of alternative agronomic practices 294
5 Conclusion 295
6 Future trends in research 296
7 Where to look for further information 297
8 References 298

11 Ecological network approaches for promoting pollinators in agriculture 305
Darren M. Evans and Fredric M. Windsor, Newcastle University, UK
1 Introduction 305
2 Plant–pollinator networks 306
3 Networks across scales 317
4 Increasing the completeness of pollination networks 324
5 Embedding pollination within wider agro-ecosystem networks 325
6 Next steps for pollination networks 328
7 Conclusion 331
8 Where to look for further information 332
9 Acknowledgements 332
10 References 332

12 Best management practices for pollinator protection in US apple production 341
Julianna K. Wilson, Michigan State University, USA; David Biddinger, Penn State University, USA; David Epstein, Northwest Horticultural Council, USA; Anne Nielsen, Rutgers University, USA; Ngoc Phan, University of Arkansas, USA; Jim Walgenbach, North Carolina State University, USA; and Neelendra K. Joshi, University of Arkansas, USA
1 Introduction 341
2 Apple orchard pollinators 343
3 Pests, diseases and their management in apple production 344
Contents

4 Potential hazards to pollinators from apple pest management practices 346
5 Best management practices to promote pollinators 347
6 Best management practices: integrated pest and pollinator management 349
7 Best management practices for pesticide application 350
8 Acknowledgements 354
9 References 354

13 Entomovectoring: using pollinators to spread biocontrol agents 359
 Jari Temmermans, Ghent University and Antwerp University, Belgium; Marie Legein and Sarah Leeber, Antwerp University, Belgium; and Guy Smagghe, Ghent University, Belgium

1 Introduction 361
2 Factors important for successful entomovectoring 362
3 Examples of bumblebees as vectors for entomovectoring: successes and failures 369
4 Case study: entomovectoring of bacteria by *Bombus terrestris* against *Botrytis cinerea* in strawberry 372
5 Conclusion and future trends 379
6 Where to look for further information 381
7 References 381

Index 385
Introduction

It has been reported that up to 95% of all flowering plants require the services of other organisms to move pollen from male to female flower parts during the pollination process. These organisms, including bees, are collectively known as pollinators. However, in light of the growing evidence of global declines in pollinator species, the management, ecology and conservation of wild and managed pollinators is a subject of growing importance and research activity.

This volume reviews the wealth of research on our current understanding of existing pollination processes and their importance to our global ecosystems. The book considers how pollinators interact with plants, as well as the major threats to pollinator species, including climate change, diseases and pesticide exposure. The book is split into three parts: Part 1 chapters focus on understanding pollinators and pollination, focusing specifically on their role in agriculture, the role and application of olfaction and the use of wind pollination in crop plants. Chapters in Part 2 examine the various threats to pollinators, such as the impact of climate change, disease, the use of neonicotinoid insecticides and pesticides as well as the impact of alien bees on native ones. Part 3 chapters review promoting pollinators and pollination, focusing specifically on the role of habitat conservation and restoration, the alteration of crop management practices and the use of ecological network approaches. Chapters also highlight best management practices for pollinator protection, focusing specifically on US apple production and the use of entomovectoring technology.

Part 1 Understanding pollinators and pollination

The first chapter of this volume provides an overview of what pollination is and the role of pollinators in agriculture. Chapter 1 begins by discussing the basics of pollination and goes on to discuss pollinators and their diversity. The chapter moves on to review the ecology and evolution of floral traits, focusing specifically on the origins of flowering plants and their relationship with pollinators, floral traits and the ecology of pollination as well as the co-evolution of plants and pollinators. A section on domestication and its impact on plant-pollinator relationships is also provided, which is then followed by an analysis of how pollinators impact agriculture and how pollinators are present in modern agriculture practices.

The next chapter examines the role and application of olfaction in crop plant-pollinator interactions. Chapter 2 introduces the background and theory underpinning the use of odours by insects in pollinators. It discusses
how flowers produce odours and highlights issues specific to crops such as selective breeding. It then explores current technologies and case studies in which natural or synthetic odours on or near the crop, and the interaction with insects, influences visitation, pollination success and yield.

Chapter 3 reviews the role of wind pollination in crop plants. This chapter reflects on the early transition from wind-pollinated species (especially Poaceae) into crop species and the current state of wind-pollination in agricultural pollination networks. It then provides a short review of the evolution and biomechanics of wind pollination to establish why humans moved away from open pollination. A more deep exploration of the relative importance (or lack thereof) in crops such Zea, Triticum, Oryza, and Secale follows, as does a focus on the extant risk of heterospecific pollen transfer to wind-pollinated weeds. The chapter also discusses the role of anthropogenic climate change on wind-pollinated crops and the future and relative importance of wind-pollination in widespread and niche crops. The chapter ends with a case study of how one might create a ‘win-win’ in terms of conservation and restoration of natural habitats to promote wind-pollination in farming.

Part 2 Threats to pollinators

Part 2 opens with a chapter that focuses on assessing the impacts of climate change on pollinators. Chapter 4 first presents an overview of observed and predicted impacts of climate change on pollinators, focusing on elements such as rising temperatures, loss of habitat, temporal and spatial mismatches between plants and pollinators and extreme events. The chapter also highlights the effect climate change has on pollinator cues, factors that may mediate species’ responses, including synergisms with other threatening processes. A section emphasising the importance of understanding climate change impacts on pollinators is also provided, which is then followed by a section presenting a number of ways in which we can help pollinators face the challenge of climate change.

Chapter 5 looks at the impact of diseases on pollinators. The chapter first provides an analysis of various honey bee diseases, focusing specifically on ectoparasitic mites, viruses, fungi, bacteria, trypanosomes and common pests such as the small hive beetle and wax moths. It also discusses how disease impact on honey bee colonies and pollination can be measured. A section on the poorly known wild bee diseases is also provided, discussing the major known pests and pathogens of both bumble bees and other solitary bee species. The chapter reviews disease transmission, spillover and spillback in all three pollinator taxa as well as some of the current methods and approaches for controlling pests and pathogens.
The next chapter focuses on how neonicotinoid insecticides affect bees and other pollinators. Chapter 6 discusses the wide range of research on how neonicotinoids affect both managed and wild bee populations in particular. It reviews levels of environmental contamination and how this affects topical and oral exposure routes. The chapter also addresses sublethal effects and briefly discusses the interaction of different stressors. It includes a number of case studies showing the negative effects of neonicotinoids on a range of bee species.

Moving on from Chapter 6, Chapter 7 examines the impact of pesticides on pollinators. The chapter begins by providing an overview of the origins of bee testing and risk assessment, then moves on to discuss the testing of pesticide effects in pollinators, drawing attention to species testing, testing methodologies and designs and guidelines and risk assessment guidance documents. The chapter also examines test method development and validation and highlights the principles of Good Laboratory Practice. A section on the ecotoxicological risk assessment for pollinators is included, which is then followed by an analysis of both the indirect and sublethal effects of pesticides. Risk mitigation and pesticide incident monitoring are also discussed.

The final chapter of Part 2 reviews the impact of alien bees on native ones. Chapter 8 explores the main impacts of alien bees on native bees through competition for food or nesting resources, interference, pathogen spillover and genetic contamination. Implications for native bee conservation are also discussed. In addition, in this chapter, a particular focus on the first alien bee that colonised Europe, *Megachile sculpturalis* is also emphasised. The chapter also highlights the main knowledge gaps and important trends for future research. Finally, avenues for managing alien bee species and preventing their introduction are provided.

Part 3 Promoting pollinators and pollination

Chapter 9 focuses on challenges and options in habitat restoration for solitary bees which account for 90% of bee species. As well as being important parts of local ecosystems, these species are pollinators of a wide range of crops such as alfalfa, tomato, eggplant and blueberries, cucurbit crops (such as pumpkin, squash and watermelon) as well as orchard crops such as almonds and cherries. The chapter looks at challenges facing habitat restoration and research on the effectiveness of existing restoration projects. The chapter also includes case studies on commercial management of Alkali bees, promoting stem or cavity-nesting bees and providing underground nesting boxes for bumblebees.

The next chapter of Part 2 draws attention to the alteration of crop management practices to promote pollinators. Chapter 10 begins by introducing the current approaches that are currently used when it comes
to managing production space for pollinators within the context of various cropping systems, such as row crops, specialty crops, perennial orchards and perennial forage and pasture systems. The chapter then goes on to provide several case studies demonstrating these approaches, drawing specific attention to annual row and specialty crop systems as well as perennial orchard and forage systems. Assessing the efficacy of alternative agronomic practices is also discussed.

The subject of Chapter 11 is the use of ecological network approaches for promoting pollinators in agriculture. The chapter begins by describing the important and agriculturally relevant characteristics and structures in plant-pollinator networks. It then moves on to examine the use of ecological networks at the field, farm, landscape and national scale. The chapter also highlights the importance of filling in major gaps in pollinator networks. A section on embedding pollination within wider agroecosystem networks is also provided, which is followed by an analysis of the potential next steps for pollination network research.

Chapter 12 describes a set of pollinator best management practices (BMPs) for US apple production. It first provides an overview of apple orchard pollinators, drawing specific attention to ground nesting bees, mason bees, small carpenter bees and wild bumble bee queens. The chapter moves on to provide an overview of the various pests and diseases that can affect apple production. This is then followed by a section that highlights the potential hazards to pollinators from apple pest management practices. The chapter also examines best management practices to promote pollinators as well as the use of integrated pest and pollinator management and pesticide application to manage apple pests and diseases.

The final chapter of the book focuses on using pollinators to spread biocontrol agents via the use of entomovectoring technology. Chapter 13 first highlights the factors that are important for successful entomovectoring, such as the type of vector, the dispenser, the biocontrol agent product and biosafety. The chapter moves on to provide successful and failed attempts at using bumble bees as vectors for entomovectoring. This section is then followed by a case study that focuses on entomovectoring (also known as apivectoring) of microbial biological control agents by Bombus spp., especially B. terrestris, against grey mould Botrytis cinerea and other pests in strawberry production, drawing specific attention to the importance of tackling and controlling Botrytis cinerea infection in strawberries.
Acknowledgement

Cover image copyright

Chapter 1

What is pollination and what are pollinators in agriculture?

Seanne Clemente and Lynn Adler, University of Massachusetts, USA

1 Introduction

The Altamira cave system in northern Spain is renowned for the contemporary depictions of Paleolithic life that adorn its walls in vivid blacks, reds, and ochres. But tucked away from the main chamber’s iconic herds of bison is an inconspicuous painting in an unassuming side chamber. It depicts a gangly human figure climbing a winding structure - most likely, a ladder. At the upper end of the ladder are four thick, overlapping arches nested within each other, surrounded by thin winged figures - the nest of a wild honey bee colony, and the bees themselves. This painting at Altamira, dated 13,500 years old, is a prehistoric account of beekeeping - the oldest one known to this day (Crane, 1999). Similar paintings depicting ladders, bees’ nests, and bees are found in prehistoric art across the world: primarily in South Africa, but also in Australia, India, France, and Spain (Crane, 1986). They are a testament that even in the earliest chapters of human history, humankind has relied on the activities of pollinators.

Honey bees, their flower-visiting habits, and their industrious honey-making skills have undoubtedly been appreciated by the humans of the ancient world, appearing in Aristotle’s History of Animals, Virgil’s Georgics,
and the Old Testament. The Romans and Greeks were well aware of the importance of pollination in the production of date palms (*Ficus carica*); the polymath Theophrastus (c 371–287 BC) described the plant’s ‘male and female’ flowers and the necessity of a ‘union’ between two flower types for the trees to bear fruit. But it was only much later, in the late seventeenth century, that Rudolf Jakob Camerarius (1665-1721) observed that male anthers and female stigmas were prerequisites to plant reproduction. His work was built upon by the investigations of several botanists, including Bradley (1731), Miller (1724), and Vaillant (1718); by the early eighteenth century, it was widely accepted that pollen, known as the *Farina Fecundens*, was the mode of sexual transmission of plants.

The work of Kölreuter (1733–1806) was fundamental in establishing the importance of insect vectors in the transport of pollen, the structure and mechanism of pollen, and the role of nectar in attracting pollinators. Sprengel (1750-1816) further examined the structure and function of flower parts, describing in detail a diversity of floral adaptations involved in attracting pollinators. Darwin’s (1809-1882) publication of *The Origin of Species* and his studies on pollination mechanisms (notably his work with orchids) were followed by a surge of interest in pollination; this included Hermann Müller’s (1829-1883) and Federico Delpino’s (1868-1875) investigations into a myriad of plant-pollinator systems and Knuth’s seminal Handbook of Flower Pollination series (Knuth 1906-1909). With the twentieth century came the advent of genetics, the discovery of DNA, and an explosion of interest in plant ecology. Such discoveries shifted the study of pollination toward understanding the molecular mechanisms, evolutionary history, and interspecies relationships that govern pollination. There are countless contributors to this recent era of pollination studies, in addition to others that were crucial in the discovery of pollination and its basic mechanisms. Their work is beyond the scope of this brief introduction; for further reading, Proctor (1996a) provides a comprehensive summary.

2 The basics of pollination

Pollination is a key first step in plant reproduction. But to understand pollination, one must first be familiar with how pollen is produced. Pertinent floral structures are shown in Fig. 1. The *corolla*, which is the shape and structure formed by a flower’s petals, serves chiefly to attract pollinators. The *calyx* (or *sepals*) protects the flower in the bud and serves as a structural support for the corolla. The *androecium* (or *stamens*) are the male reproductive structures of flowers consisting of *anthers* that each rest atop a structural *filament*. The *gynoecium* is the collective female reproductive structure comprised of individual *stigmas* resting upon a *style* that connects to the *ovary*, where the flower’s *ovules* reside.
What is pollination and what are pollinators in agriculture?

The anthers are the site of pollen production. At maturity, the inner cells of the anther undergo meiosis to produce individual pollen grains. The outer layers of the anthers then split open, or dehisce, to release pollen. Appearing as a powdery, fine substance to the naked eye, pollen is made up of microscopic grains, each surrounded by an outer wall, or exine, that gives the grains their distinct shape and rigidity. The aid of a microscope will reveal that the pollen exines are covered in pores. An inner wall of cellulose and pectin, known as an intine, further protects the interior of the grain, which contains the gametes in the form of a generative nucleus and a supplemental vegetative nucleus.

Pollination is simply the transfer of pollen from the anthers of the androecium to the stigmas of the gynoecium. Following pollination is fertilization, which begins as the pollen grain attaches to the stigma, imbibes water, and germinates to form a pollen tube that penetrates the stigma’s tissue and carves a path through the style to ovules in the ovary. The grain’s vegetative nucleus moves through the newly formed tube, mediating the movement of the generative nucleus (Zhou and Meier, 2014), which has now divided into two separate male gametes. Upon arrival at the ovule, the vegetative nucleus dissolves, and one of the male gametes fuses with the egg to form a diploid embryo. The second male gamete fuses with a diploid fusion nucleus in the ovary, forming the endosperm that provides nutrients for the newly formed seed.

In angiosperms (flowering plants), most species bear hermaphrodite perfect flowers, containing both pollen-producing and ovule-bearing structures. An obvious consequence of this hermaphroditism is autogamy, the self-fertilization of a flower by its own pollen. Plants may also self-fertilize through
geitonogamy, the fertilization of a flower by the pollen of another flower on the same plant. About 20% of angiosperms reproduce predominantly by self-fertilization (Barrett, 2003), and many plants reproduce through self-fertilization to some degree (Barrett, 2003; Goodwillie et al., 2005; Charlesworth, 2006; but see Lande and Schemske, 1985; Igić and Kohn, 2006). Self-fertilization grants the advantage of guaranteed reproduction, especially in environments where mates or pollinators are scarce (Kalisz et al., 2004; Aizen and Harder, 2007; reviewed in Busch and Delph, 2012).

The alternative reproductive strategy is outcrossing, fertilization with non-self-pollen. Darwin (1877) wrote that ‘[Nature] abhors perpetual self-fertilization’. Although inbreeding depression - the reduced survival and fertility of inbred offspring - is surprisingly uncommon in predominantly selfing plants (Husband and Schemske, 1996), self-fertilization is disadvantageous to outcrossing when considering gene flow, genetic variability, and diversification of plant lineages (Goldberg et al., 2010). Outcrossing plants employ mechanisms to minimize self-fertilization (Barrett, 2003). A common anti-selfing mechanism in plants is the spatial (herkogamy) and temporal (dichogamy) separation of pollen and stigma. In herkogamy, the anthers and stigma are physically separate, such that pollen cannot be passively transferred to the stigma. In dichogamy, the anthers mature asynchronously with the receptive period of the stigmas. Rather than relying on spatio-temporal separation, some plants separate anthers and stigmas into unisexual imperfect flowers, which can be a more effective mechanism to avoid self-fertilization. Monoecious plants bear both male and female imperfect flowers on the same plant (Fig. 2b); the plants are still hermaphroditic and may self-fertilize. Monoecious crops include corn, oil palms, and members of the Cucurbitaceae family (e.g. melons, pumpkins, cucumbers, and zucchini). Dioecious plants only bear flowers of one sex and must rely on a plant with opposite-sexed flowers to reproduce (Fig. 2c) - in this way, dioecy is the only mechanism that fully prevents self-fertilization. Dioecious crops are uncommon; some examples are asparagus, kiwi fruit, and hops. Finally, plants may prevent self-fertilization through self-incompatibility, a variety of biochemical barriers to the fertilization process. The mechanisms governing self-incompatibility vary widely across taxa; Glover (2014) provides a review. One mechanism of self-incompatibility is evident to many humans across the globe: the allergic response to pollen, commonly known as hay fever, is caused by self-incompatibility proteins that coat the pollen grain surfaces of some plant species (Proctor, 1996b).

Pollination vectors transport pollen from anthers to stigmas. Pollen transfer can be achieved abiotically, through wind (anemophily) or water (hydrophily). The vast majority of abiotically pollinated plants are anemophilous (Ackerman, 2000), with nearly all gymnosperms (Faegri and van der Pijl, 1979) and 10% of all flowering plants transporting their pollen through the wind (Friedman
What is pollination and what are pollinators in agriculture?

Figure 2 Floral traits and reproductive systems vary widely across plant taxa, including crop plants. (A) *Brassica napus*. The oilseed rape has bright, four-petalled flowers with four prominent anthers and two shorter anthers. Most other *Brassica* crops (e.g. kale, turnips, and bok choy) display similar four-petalled, yellow flowers. (B) *Cucurbita pepo*. Cucurbit crops, such as squash, pumpkin, melons, and cucumber, are monoecious. Individual plants produce both pollen-producing male flowers and stigma-bearing female flowers. On female flowers, the stigma and style connect to the developing fruit at the flower’s base. (C) *Actinidia deliciosa*. Kiwifruit vines are dioecious, with male and female flowers occurring on separate plants. The male flowers bear numerous showy anthers. Prominently displayed in the centers of female flowers are fertile stigmas surrounded by a crown of sterile ‘false anthers’. (D) The floral head, or capitulum, of a sunflower, *Helianthus annus*, is made up of many small ray florets (rf), with yellow petals surrounding a head of disk florets (df). Composite flower heads are characteristic in Asteraceae plants. (E) *Medicago sativa*. The complex flowers of alfalfa are wholly reliant on pollinators. The flowers’ stigmas and anthers are sprung up inside two ‘keel petals.’ When a bee lands on the keel petal, it ‘trips’ the flower and the reproductive structures are explosively unfurled, releasing pollen. In the untripped flower (un), the intact keel petals enclose the reproductive structures. The exposed stigma and a remaining keel petal are visible on the tripped flower (tr). (F) *Oryza sativa*. Most major cereal crops, like rice shown here, are either self- or wind-pollinated. Characteristic of Poaceae plants: the inflorescence of rice bears dull, inconspicuous florets with many anthers.
Acarapis woodi 118-119
Acute bee paralysis virus (ABPV) 120-121
Adaptive network models 329
Agricultural settings 114
Alfalfa leaf-cutter bee 268
Alien species 225-227
Alkali bee 261, 268, 269
Almond orchards 292
Alpine-montane ecosystem 231
Altamira cave system 3
American Foulbrood (AFB) 123-124
Andrena scotica 134-135
Androecium 4-5
Anemophilous flowers 8
Angiosperms 5-6, 10-11
Anthidium manicatum 228-229
Anthropogenic climate change impacts 86
 advance understanding of 98-101
 altering pollinator cues
 not attractive 95-96
 not rewarding 96
 conserving pollinators 101-103
 extreme events 93-94
 flames 94-95
 information 104
 loss of ground and moving around 90
 synergisms 96
 climate change and land-use
 change 97
 drought and competition 97
 pathogens and parasites 98
 pesticides 97-98
 warming, CO₂ enrichment and
 nitrogen deposition 96-97
 synopsis 103-104
 temperatures
 behavioural adaptations 88
 experiments 88-89
 global warming 89
 greenhouse effect 86
Meliponini species 86, 88
 microclimates 86
 rainfall patterns 89
 result of 87
 temporal and spatial mismatches
 distribution 92-93
 phenology 90-92
Anthropogenic volatile pollutants (AVPs) 55
Antimicrobial peptides (AMPs) 139
Anti-selfing mechanism 6
Apicystis bombi 23, 130, 233
Apis mellifera 20, 60, 114-117, 186,
 229-230, 315
Apivectoring xxii
Apple scab 345
Araceae 51
Arthropod pest management 344
Artificial light at night (ALAN) 325, 330
Assessing impact of alien bees
 bee species 226
 biodiversity 225
 biological invasions 225
 biosecurity improvement 243-245
 direct and indirect 228
 directly/indirectly native
 ecosystems 226-227
 future trends 242
 honey bee and bumblebee, sharing floral
 resource 23
 information 245
 issues, introduction of alien bees
 apparent competition 233-234
 direct interactions, interference
 competition 228-229
 exploitative competition 229-233
Megachile sculpturalis 234-240
 positive and negative interactions 227
 social and domesticated species 226
 synopsis 240-241
Assessing impact of disease
defence mechanisms of bees 138–140
disease transmission, spillover and spillback 135–138
future trends 146–147
honey bee diseases 114–116
bacteria 123–124
common pests 125
Ectoparasitic mites 116–119
fungi 123
measuring impact, colonies 125–126
trypansomes 124–125
viruses 119–122
information 147
overview 113–114
pathogen transmission 136
prevention 141–146
schematic landscape, pathogen spillover and spillback 137
synergies, risk factors 140–141
widespread parasites and pests, wild bees 129
wild bee diseases 127–128
bumble bees 128–132
impacts of disease 132–134
solitary bees 132–134
world stock of honey bee colonies 115

Autogamy 5

Bat pollinators 10
Bioassay system 367
Biocontrol agents (BCAs) 360, 363
Biodiversity and ecosystem functioning (BEF) 329
Biotic pollination 306
Bird pollinators 10
Black queen cell virus (BQCV) 122, 130
Blueberry bee (Habropoda laboriosa) 290
Bombus spp. 100–101
B. impatiens 364, 365
B. terrestris 24, 187, 229-231, 233, 364, 365, 368, 372–377
Botrytis cinerea 365, 368, 370-372
Breeding 50-51, 56-57, 145
Brood-site pollination 12
eukaryote pests and parasites 130–131
major parasites and pests 128
microsporidia 129
social parasites 131–132
viruses 130
widespread protozoa 130

Buzz pollination 270, 363
California hedgerows 266
Calvin cycle 49
Calyx 4
Centrality 314, 317
Chalkbrood 133
Chronic bee paralysis virus (CBPV) 121
Climate change 79-80, 85, 97, 141
Clonostachys rosea 370
Conopidae 131
Corolla 4
Corydalis ambiguа 100
Crithidia spp.
C. bombi 130, 133
C. mellificae 124-125, 133
Crop fitness 18
Crop management practices case studies
alternative agronomic practices, assessing efficacy of 294-295
annual row crop systems 290-291
annual specialty crop systems 291-292
perennial forage systems 293-294
perennial orchard systems 292-293
future trends 296-297
managing production space, pollinators
cover crops 284-285
crop rotations 287-289
flowering crops 287
flowering weeds 285-287
providing protected nesting areas 289-291
overview 283-284, 296-297
Cuckoo bumble bees 130-131

Defence mechanisms of bees 138–140
Deformed wing virus (DWV) 119-120, 130
Dehiscence 5
Dichogamy 6
Diploid fusion nucleus 5
Dipterans 9
DNA metabarcoding 309
Domestication 16, 19

Ecological network approaches
embedding pollination, agro-ecosystem networks 325-327
increasing pollination networks 324-325
networks across scales
farm 319-321
Index

field 318–319
landscape 321–323
national-scale monitoring 323
next steps, pollination networks 328–331
overview 305–306
plant–pollinator networks
basics 306–310
direct and indirect interactions 314–316
networks to address agricultural challenges 316–317
structure matters 310–314
Ectoparasitic mites 116–119
Electro-antennography (EAG) 53
Entomovectoring
bumblebees as vectors 367–370
case study
BCA transport, strawberry plants 374–375
BCA transport, vectors 375–377
Botrytis cinerea, control of 371–372
strawberry production, Botrytis cinerea importance 370–371
viability measurement, bacterial BCAs of Bombus terrestris 372–374
factors 360–361
biocontrol agent product 366
biosafety 366–367
dispenser 363–366
vector 361–363
future trends 377–379
overview 359–360
Entry Level Stewardship (ELS) scheme 319, 320
Eukaryote pests 130
European Academies Science Advisory Council (EASAC) 175
European and Mediterranean Plant Protection Organization (EPPO) 185, 190
European Food Safety Authority (EFSA) 197, 206
European Foulbrood (EFB) 123–124
Eusocial bees 260
Exine 5
Exploitative competition 229
floral resources 229–232
nesting sites 233
Farina Fecundens 3
Feeding behaviour 117
Feral honey bees 343
Fertilization 5–6
Floral rewards 12–16
Floral traits 10–16
Floral volatiles 49, 51–52, 55–56
Flower-visitor network 308, 317, 325
Flower visitors 9, 308, 310, 320
Flying Doctors hive 365, 376
Foliary spray applications 346
Geitonogamy 6
Generative nucleus 5
Giant resin bee 263
Gliocladium catenulatum 365
Global climate change 90
Global colony dynamics 115
Global distribution, honey bees 137
Global warming 86, 89
Good Laboratory Practice (GLP) 195
Green revolution 22
Ground nesting bees 344
Gynoecium 4
Habitat conservation and restoration
bees as pollinators 260–261
case studies
managing alkali bees 268–269
promoting cavity-nesting bees 269–270
providing underground-nesting boxes, bumblebees 270–271
challenges 262–265
overview 259–260
Hand-pollinated crops 21
Hay fever 6
Hedgerows 266; see also Californian hedgerows, UK hedgerows
Helianthus annus 15
Herkogamy 6
Hillesden experiment 319
Hive inspection 126
Honeybees 3, 139, 147, 346, 349, 352, 359, 361–363
Hydrophilous plants 8
Hydrophily 8
Hylaeus alcyoneus 230
Individual immunity 139–140
Insect decline 113
Integrated pest and pollinator management (IPPM) 349–350
Integrated pest management (IPM) 296, 349

© Burleigh Dodds Science Publishing Limited, 2023. All rights reserved.
Intercropping 348
Intergovernmental Panel on Climate Change (IPCC) 104
International Commission on Plant-Pollinator Relationship (ICPPR) 209
International Society of Chemical Ecology (ISCE) 65
Intine 5
Invasive grasses 262, 263
Israeli acute paralysis virus (IAPV) 120–121
Kashmir bee virus (KBV) 120–121
Land cover 97
Landscape simplification 22
Land sharing 283
Lasiglossum mahense 315
Leaf-cutter bee 261
Liebefeld method 125–126
Light microscopy 309
Lotmaria passim 124–125
Mason bees 344
Mass-flowering 348
Megachile spp. 88, 229
M. rotunda 20
M. sculpturalis
 history of introduction and spread 234–237
 impacts 239–240
 morphology and ecology 237–238
 native bees impacts 238–239
Microsporidia 123, 132–133
Mimulus spp.
 M. cardinalis 12
 M. lewisi 12
Monocultures 22, 290, 323
Monoecious plants 6
Motif approach 315
Myclobutanil 346

Nectar 12
Nectar-feeding Lepidopterans 9
Neonicotinoids 166
 case studies
 bumble bees, solitary Osmia sp. and honey bees in field conditions 173
 bumble bees on apple pollination 175
 oral exposure effect to thiamethoxam, bumble bee nests 174
 soil-applied imidacloprid on above-ground cavity-nesting solitary bee 174
 soil-applied imidacloprid on solitary ground-nesting squash bees 173–174
 environmental contamination 168–170
 overview 165
 pollinator exposure 168–170
 pollinators 167–168
 sublethal effects on bees 171, 172
 interactions among multiple stressors 171
 toxicity 170
 oral exposure 170–171
 topical exposure 170
Nestedness value 314
Network ecology 310
Network robustness 312, 313
Nocturnal pollinators 324, 325
Nomia melanderi 20
Non-Observable Effect Concentration (NOEC) 189
Norwood Farm Network 320, 321, 326
Nosema spp. 123
 N. bombi 129
 N. ceranae 129
Novel methods, diagnosis and treatment 145–146
Novel viruses 122
Nutrition represents 141

Olfaction in crop plant-pollinator interactions
 anthropogenic disturbance of pollination 54–55
 air 55
 climate and extreme weather events 56
 soil 55–56
 competition 56
 dioecious flower volatiles 51
 floral odour production 48–51
 floral volatiles, intraspecific variation
 dioecious flower volatiles 51
 spatio-temporal variability 51–52
 insect's learning, floral odours 53–54
 caffeine, commercial pollinators 58–60
 context-specific use, odour information 54
 odour lures creation 60–62
optimal timing for pollination in tree crop 57-58

overview 47

pollinator detection, floral odours 52-53

insect’s ability, detecting crop floral odours 53

Oligolectic bees 14

Open-pollinated crop species 78-79

Organisation for Economic Co-operation and Development (OECD) 190

Osmia spp. 91-92, 232

O. bicornis 132-133, 238

O. lignaria 174

Outcrossing 6, 20

Paenibacillus larvae 124

Parasites 130

Pathogen spillover 23

Pesticide regulatory system 165

Pesticides impact on pollinators

bee testing and risk assessment 185-186

case study 202-204

ecotoxicological risk assessment 196

assessment factors and risk quotients 199-200

effects and exposure 198-199

hazard vs. risk 198

protection goals 196-198

risk assessment schemes and guidance documents 204-206

tiered risk assessment systems 200-202

indirect and sublethal effects 206-207

overview 183-184

pesticide incident monitoring 209-210

risk mitigation 207-209

testing pesticide effects

good laboratory practice compliance, quality standards for regulatory studies 195-196

testing guidelines and risk assessment guidance documents 190-192

testing methodologies and designs 188-190

test method development and validation 192-195

test species 186-188

Pesticides impair 141

Phenological mismatch 90-92

Pollen transfer 6

Pollination syndromes 15

Pollination vectors 6

Pollinators xix; see also individual entries

Pollinators in agriculture

agriculture impact 19-21

and diversity 8-10

domestication and its impact 16-17

plant-animal interactions 18-19

plant traits 17-18

floral traits

coevolution of plants and pollinators 15-16

and ecology of pollination 11-15

flowering plants origin and relationship 10-11

modern agriculture and pollinators 21-22

land use and management 22-23

non-native bee species 24

pathogens and pesticides 23-24

overview 3-4

pollination 4-8

Powdery mildew 345, 346

Prevention of diseases 141-146

Regrettable substitutions 167

Ring testing 195

Sacbrood virus (SBV) 121-122

Sambucus nigra 58

Selective breeding 50

Serapia orchids 50

Slow bee paralysis virus (SBPV) 121

Small carpenter bees 344

Small hive beetle 125

Social-ecological networks (SENs) 327

Social immunity 140

Social insects 54

Solitary bees 132, 261

fungi 132-133

macroparasites 133-134

microparasites 133

Specific Protection Goals 197, 198

Spillover 137

Squash bees 288, 289

Syntretus sp. 131

Thiacloprid 166

Toxicity-Exposure Ratio (TER) 200

Transgenic risks, grass crop species 74-78

Trichoderma harzianum 368

Tropilaelaps spp. 117-118

© Burleigh Dodds Science Publishing Limited, 2023. All rights reserved.
UK hedgerows 266
UK Pollinator Monitoring Scheme 328
US apple production, management practices for pollinator protection
apple diseases 345–346
apple orchard pollinators 343–344
apple pests 344–345
overview 341–343
pest management practices
integrated pest and pollinator management 349–350
for pesticide application 350–353
potential hazards to pollinators 346–347
to promote pollinators 347–349
US Bureau of Land Management (BLM) 268

Varroa control 142–143
Varroa destructor 116–117
Vegetative nucleus 5
Viruses 119–122, 144–145
Volatile organic compounds (VOCs) 49, 53
Warm-adapted 94
Wax moths 125
Weed management 352–353
Wild bees 147
Wild bumble bee 344
Wildflower meadows 348
Wind pollination 8
assessing overall transgenic risk 77
agricultural weed species 77–78
fruits and nuts 76–77
future trends 79–80
hay/forage crops 76
maize/corn 74–75
mechanisms of 73–74
overview 73
promotion 78–79
rice 75
wheat and self-pollinated grass crops 75
Woodlands 347

Xylocopa (Lestis) aerata 95

© Burleigh Dodds Science Publishing Limited, 2023. All rights reserved.