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1 �Introduction
The genome editing field has changed rapidly since the development of the 
first site-directed nucleases (SDNs) and zinc finger nucleases (ZFNs) in 1996 
(Kim et al., 1996). Since this time, many tools have been developed that allow 
for the targeted change of genetic sequences, the most broadly used being 
CRISPR/Cas9 (Jinek et al., 2012). SDNs have allowed researchers to easily 
target sequences within the genome and introduce changes in a very specific 
manner across a broad range of organisms, including plants (Feng et al., 2013). 
The use of SDNs has led to a diverse array of new phenotypes in plants in the 
short time since their introduction.

The focus of early genome editing was mostly on gene knockouts, which 
are easily achieved by targeted nucleases. SDNs form double-strand breaks 
(DSBs) that are repaired by the host’s native repair machinery. This typically 
results in a return to the original genomic sequence, or an insertion or deletion 
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(indel) at the genomic break site – although other repairs such as in-frame 
substitutions are possible. The mechanism of DSB repair, reviewed in Schmidt 
et al. (2018), is not fully understood. Patterns can be observed, often thought 
to be a result of microhomology at each end of the cut site, which causes the 
final repair outcome to be nonrandom (van Overbeek et al., 2016). Researchers 
often rely on the repair pattern that is commonly associated with a given 
nuclease, that is, single-base insertions with Cas9 (Allen et al., 2019), to inform 
a target location that will result in their desired outcome. For knockouts, the 
target region is generally in the 5′ end of a gene with the hope that the repair 
results in a frameshift that produces a premature stop codon, and thus loss of 
the gene product. Computational tools have been developed to attempt to 
predict these editing outcomes, reviewed in Molla and Yang (2020); however, 
plants obtained after editing with SDNs will still contain an array of editing 
outcomes. 

While SDNs can be very precisely targeted to chosen genomic regions, 
making specific changes, such as polymorphism conversions, is difficult due 
to the still developing understanding of repair outcomes. Previously, such 
targeted conversions have been attempted using homology directed repair 
(HDR) strategies; however, the editing frequency with HDR has been extremely 
low and thus extremely resource intensive. The advent of base editors 
addressed the need for targeted conversion by combining a fully or partially 
deactivated nuclease with a deaminase domain. The deaminase domain 
causes deamination of bases exposed by the deactivated nuclease which 
are then converted to alternative bases by the cells’ native repair machinery. 
Base editors convert nucleotide bases within an editing window, defined by 
the structure of the complex at the target site, at a specific genomic location 
defined by the nuclease targeting component. Depending on the deaminase 
used, the most common conversions are cytosine to thymine (C>T) and adenine 
to guanine (A>G), with multiple conversions being possible within an editing 
window that varies with each deaminase and nuclease used. While base editors 
are relatively new in the field of plant genome editing, they represent a rapidly 
growing toolset for predictable genome editing outcomes. 

The RNA-guided CRISPR/Cas9 nuclease broadened the toolkit of targeted 
genome editing. The Cas9 protein contains two nuclease domains, the RuvC 
domain that cleaves the PAM-containing strand, and the HNH domain that 
cleaves the PAM-complement DNA. Either domain can be inactivated by a single 
amino acid mutation. Nuclease dead Cas9 (dCas9) contains a D10A mutation in 
the RuvC domain and a H840A mutation in the HNH domain retains sequence-
specific DNA-binding activity (Jinek et al., 2012). The first base editor, (BE), 
fused a cytidine deaminase domain to nuclease dead Cas9 to enable delivery 
of the cytidine deaminase to sequence-specific sites in the genome. The next 
design (BE2) included a uracil DNA glycosylase inhibitor (UGI) domain, and 
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dCas9 was replaced by Cas9 (D10A) nickase in BE3, to enhance the desired 
editing outcome. With these improvements, BE3 achieved an average of 37% 
editing efficiency across six loci in human cells. Further base editor architecture 
optimization resulted in BE4, which contained altered protein linkers and 
an additional UGI domain, and BE4-Gam, which additionally is fused to a 
bacteriophage MU protein, to improve editing efficiency and product purity 
(Komor et al., 2017). Following cytosine base editor (CBE) success, an adenosine 
base editor (ABE) was developed by replacing the cytidine deaminase with an 
engineered DNA adenine deaminase domain derived from multiple rounds of 
directed evolution and protein engineering (Gaudelli et al., 2017). Both CBE 
and ABE function with limited editing windows, and editing efficiency varies 
from locus to locus. In general, BE3 and ABE7.10 yield the highest editing 
efficiency, with an editing window from positions 4–8 and 4–7, respectively 
(counting the PAM as position 21–23). 

The mechanisms of the CBE and ABE are similar, with both editors 
producing a deamination event that is ultimately resolved into an alternate 
base. To use BE3 as an example (Fig. 1), once the editing complex is delivered 
to the Cas9 binding site, the cytidine deaminase converts any cytidine base 
in the editing window, on the PAM-containing strand to uracil, creating a U:G 
mismatch. Which cytidine bases are targeted is mostly determined by the 
amount of ssDNA exposed and accessible to the deaminase domain by the 
deactivated nuclease. This mismatch can be repaired back to C:G or converted 
to U:T. In the design of BE3, the UGI domain inhibits repair of U back to C, and 
the nick on the PAM-complement strand stimulates replacement of G with A, 
using the PAM-containing strand that now contains a U as the template, hence a 
C:G to T:A conversion (Komor et al., 2016). In the case of the ABE, any adenine 
base in the editing window is first converted to inosine which will be converted 
to G following repair (Gaudelli et al., 2017). 

2 �Progress in mammalian systems
Base editing was initially designed specifically with therapeutic intent. As such, 
significant effort has been applied to optimize base editors for this purpose – 
resulting in a plethora of design variety which can be informative to base editing 
in plants. Base editing application in the human genome toward therapeutic 
benefits requires high specificity of the editing tool to edit the intended C or 
A at high efficiency while avoiding changes in bystander targets or off-targets. 
Introduction of four point-mutations (N497A, R661A, Q695A and Q926A) to 
Cas9 was shown to improve Cas9 binding specificity by eliminating nonspecific 
interactions between Cas9 and the target stand (Kleinstiver et al., 2016). The 
same mutations are also demonstrated to improve base editor specificity, 
leading to development of high-fidelity base editor (HF-BE3) (Rees et al., 2017). 
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Cas9 variants that recognized different PAM sequences were also explored to 
expand target accessibility by base editors (Huang et al., 2019; Liu et al., 2019; 
Wang et al., 2019b; Zhang et al., 2017, 2020). In addition to the APOBEC1-based 
base editor, a variety of cytidine deaminases can be used to achieve flexible 
editing windows (Cheng et al., 2019). An engineered human APOBEC3A with 
higher sequence specificity is shown to effectively reduce bystander mutations 
when more than one C is present within the editing window (Gehrke et al., 
2018). Continuous directed evolution has been applied to both the APOBEC 
domain and the Cas9 domain to achieve higher expression and activity (Wang 
et al., 2018a), as well as to broadened PAM compatibility and increased DNA 
specificity (Hu et al., 2018; Thuronyi et al., 2019). Editing window and editing 
efficiency details of various base editor versions is out of scope of this chapter; 
therefore, we direct interested readers to other papers (Kleinstiver et al., 2019; 
Rees and Liu, 2018).

In addition to engineering protein components of base editors, delivery 
methods and protein recruitment strategies are also effective ways to 
improve editing activity and specificity. For example, delivery of the base 
editor and sgRNA as ribonucleoprotein (RNP) complexes reduced off-target 
activity compared to plasmid delivery, while maintaining the same on-target 
activity level (Rees et al., 2017). Additionally, free UGI co-transfection with 
BE3 increased the ratio of desired base conversions over undesired indels 
(Wang et al., 2017). Further, instead of a direct fusion between Cas9 and the 
deaminase, GCN4 peptides fused to nCas9 allow recruitment of multiple 
copies of scFv-fused APOBEC-UGI-GB1 to achieve a broadened editing 
window (Jiang et al., 2018). Similar multi-copy recruitment of deaminases can 
also be achieved using RNA aptamers such as MS2 stem loops (Hess et al., 
2016).

Base editing success in human cell laboratory lines, such as commonly 
used HEK293T cells, inspired application of these tools in other cell types and 
organisms. Nuclear localization signal and codon optimization (Koblan et al., 
2018), linker optimization (Tan et al., 2019) and protein engineering (Liang et al., 
2017) have proven to be effective ways of tuning editing efficiency and fidelity 
to the cell type of interest. The body of work in various human and animal cells 
provides useful guidance for adapting base editing tool to plant systems.

3 �Cytosine base editing in plants
Different versions of CBEs have been applied to, and optimized for, targeted 
base modifications in plants. Table 1 provides an editing efficiency overview 
of base editor variants applied in plant gene editing to date. In contrast to the 
focus on specificity in therapeutic applications, plant base editing work has to 
date focused on increasing CBE activity. 
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A major approach to increasing activity has been the substitution of 
deaminase variants, rAPOBEC1, hAPOBEC3A, PmCDA1 and hAID. The 
substitution of the rat ABOBEC1 subunit with human ABOBEC3A (A3A-PBE) 
(Zong et al., 2018), demonstrated in rice, wheat and potato, exemplifies 
successful CBE activity and editing window enhancement in plants. This 
optimized version comprises a codon-optimized N-terminal APOBEC3A 
fused to a SpCas9 D10A nickase and a C-terminal UGI flanked by two nuclear 
localization sequences (NLSs). Direct comparison of this optimized CBE to a 
plant-optimized BE3-version at multiple target sites in wheat, rice and potato 
showed a 11–13-fold higher C>T conversion efficiency. Moreover, the new A3A-
PBE (plant base editor) had an extended 17-nt editing window compared to 
the limited 7-nt editing range of BE3. Through A3A-PBE application at different 
target sites in rice, wheat and potato, edited plants could be regenerated with 
editing frequencies ranging from 6.5% to 82.9%. Only very low indel frequency 
could be detected in protoplast assays and regenerated rice and potato 
mutants, demonstrating high A3A-PBE specificity. Another beneficial A3A-
PBE feature is efficient C>T conversion independent of genomic context. In 
contrast to BE3, which showed no activity at three target sites in rice and wheat 
in a high CG context, editing efficiencies of up to 41.2% could be detected 
for A3A-PBE (Zong et al., 2018). Similarly, rAPOBEC1 substitution by PmCDA1 
revealed higher editing efficiency at three out of four target sites in rice 
protoplast assays (Tang et al., 2019). While C>T conversions were below 10% 
using rAPOBEC1-nCas9-UGI, the nCas9-PmCDA1-UGI variant showed 10–50% 
editing efficiencies. However, the authors emphasized that the rAPOBEC1 
sequence had not been codon optimized for this study; thus protein levels 
could contribute a substantial effect on editing efficacies (Tang et al., 2019). 
Similar results were obtained in transgenic rice calli with codon-optimized 
expression cassettes where rAPOBEC1 substitution by PmCDA1 led to 3–10-
fold higher activity at five out of seven target sites (Xu et al., 2019). 

To increase CBE efficiency on GC targets, a new variant was developed that 
carried a human AID triple mutant lacking a nuclear export signal (AID*∆) (Ren 
et al., 2018). The deaminase domain was codon optimized for application in rice 
and fused to a nCas9 with no UGI domain (rBE5). This CBE variant functioned 
well on GC, AC, TC and CC target sites in rice protoplasts. Moreover, the AID*∆-
based CBE was able to efficiently catalyze C>T conversions at a genomic locus 
in transgenic rice lines that had been inaccessible for rAPOBEC1-CBE. It is worth 
emphasizing that 71.9% of transgenic lines also carried indel mutations in the 
target region. Further enzyme modification via UGI domain fusion reduced the 
indel ratio; however, frequencies were still higher than with rAPOBEC1-CBE 
(Ren et al., 2018). 

Besides exchanging different CBE subunits, major improvements in C>T 
base conversion efficiencies were achieved by protein biosynthesis and nuclear 
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transport optimization, both of which had been identified as key base editing 
bottlenecks in human cells (Koblan et al., 2018). In rice, CBE efficiency could 
be increased through codon optimization, integration of bipartite nuclear 
localization signals and substitution of the deaminase domain by Anc689, 
an ancestor of rAPOBEC1 previously identified through ancestral sequence 
reconstruction using APOBEC homologs (Koblan et al., 2018; Wang et al., 
2019a).

The fidelity of rAPOBEC1 (BE3) and PmCDA1 (CDA) CBEs was further 
improved by increasing UGI concentration in planta (Qin et al., 2020a). A DNA 
sequence encoding three UGI-NLS copies each preceded by the self-cleaving 
peptide, 2A, was attached to the 3′ end of codon-optimized BE3 and CDA 
sequences (eBE3 and eCDA, respectively) leading to a polycistronic transcript 
and increased UGI amounts after translation. C>T conversion and indel 
formation was analyzed at five different target sites in transgenic rice plants. 
While editing efficiencies for both CBE variants did not differ significantly at 
most target sites (25–58.8%), indel frequency was drastically reduced from 
12.5% to 25.0% for BE3 to 0% for the optimized variant. In addition, unwanted 
base changes were considerably lower with the optimized enzyme design 
(0–3.5%, eBE3) than for conventional BE3 (2.5–14.7%). This result could be 
reproduced in rice plants transformed with eCDA (Qin et al., 2020b).

Interestingly, a study using PmCDA1 in rice and tomato in a configuration 
that did not contain a UGI domain observed not only C>T conversions but also 
C>G changes (Shimatani et al., 2017), suggesting that a larger array of changes 
may be possible with CBEs when the UGI domain is removed. Indeed, similar 
results have been observed in subsequent studies in which a larger diversity 
of outcomes are observed. For instance, a study in Arabidopsis observed C>T, 
C>G and C>A changes when a PmCDA1 editor was utilized without a UGI 
domain (Bastet et al., 2019). While this configuration results in a larger array of 
editing outcomes, undesired changes can be removed through subsequent 
segregation or backcrossing, thus providing further utility to CBEs beyond C>T 
changes. 

It is very challenging to define the best CBE design for every plant species. 
Due to the different experimental designs and analyses of each individual study, 
no direct conclusions can be drawn. However, researchers have identified 
some key factors that are generally important for successful application of 
CBEs in plants. As can be seen above, the choice of deaminase can have a 
dramatic effect on editing efficiency. While the A3A and PmCDA1 deaminases 
appear to be more efficient than the original rAPOBEC1, further studies directly 
comparing each design are required to determine the optimal deaminase 
in plants. One major advancement of CBE designs for plants includes the 
optimization of coding sequences to increase CBE concentrations in vivo 
(Koblan et al., 2018). Moreover, nuclear import can be enhanced by integration 
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of two bipartite NLSs (Wang et al., 2019a). Finally, co-localization of additional 
UGI domains can increase CBE fidelity (Qin et al., 2020b).

4 �Adenine base editing in plants
The recently developed adenine base editors have so far been applied in 
monocots (Hua et al., 2018, 2019, 2020b; Li et al., 2018; Wang et al., 2019a; 
Yan et al., 2018) as well as dicots (Kang et al., 2018). As with CBEs, various 
optimizations have been employed to achieve high gene expression and 
increase editing efficiencies in plants. Several ABE variants have been generated 
by fusion of evolved adenine deaminase heterodimer TadA-TadA*7.10 or TadA-
TadA*7.8 to a SpCas9 nickase or a dead SpCas9 (Yan et al., 2018). However, 
only TadA-TadA*7.10 fused to nSpCas9 catalyzed desired A>G conversions in 
rice calli. Through substitution of nSpCas9 by its ortholog from S. aureus a new 
ABE version was created that efficiently generated desired base edits in rice 
and showed a broader base editing window (Hua et al., 2018; Qin et al., 2019). 
Moreover, replacement of SpCas9 by VQR-SpCas9 or Cas9-NG variants allowed 
efficient editing and multiplexing at NGA PAMs, which were not accessible with 
SpCas9-ABE (Hua et al., 2019; Zeng et al., 2020). Other optimizations of ABEs 
in plants focused on N- and C-terminal fusions of the ABE7.10 heterodimer 
to nSpCas9 and the number and position of nuclear localization signals (Li 
et al., 2018). Remarkably, integration of three NLSs into ABE led to significantly 
increased editing efficiencies in rice protoplasts compared to ABEs with only 
one or two NLSs. However, ABE variants in which TadA-TadA*7.10 was fused to 
the C-terminus of nCas9 were ineffective (Li et al., 2018). Further optimization 
of ABEs for application in plants was achieved through substitution of the TadA-
TadA*7.10 heterodimer by the TadA*7.10 mutant, a strategy used for adenine 
base editing in bacteria (Gaudelli et al., 2017; Hua et al., 2020b). This simplified 
ABE version showed higher protein levels in rice calli and protoplasts, which 
was associated with an up to 1.9-fold increase of A>G edits at six out of seven 
target sites in two rice varieties (Hua et al., 2020b). Moreover, editing efficiencies 
of ABEs harboring different nCas9 variants (nSaCas9 and nSaKKHCas9) could 
be increased by adopting these enzymes to the simplified design (Hua et al., 
2020b). Two major advantages of ABEs over CBEs are very low indel frequency 
of about 0.1% and precise base exchange in plants, respectively (Hua et al., 
2018; Kang et al., 2018; Li et al., 2018). 

5 �Broadening protospacer adjacent motif (PAM) accessibility
One major limitation of targeted base modification with SpCas9-based tools 
is the prerequisite of an NGG PAM adjacent to the target site. To increase 
the number of accessible genomic sequences in plants, S. pyogenes Cas9 
can be substituted by different enzyme variants (Qin et al., 2019). Extensive 
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expansion of Cas9 PAM recognition has been achieved via rational design as 
well as directed evolution (Hu et al., 2018; Kleinstiver et al., 2015; Nishimasu 
et al., 2018). In addition to Cas9-based editors, Cas12a-based editors have 
been developed that recognize T-rich PAM sequences (Kleinstiver et al., 2016; 
Li et al., 2018; Sanson et al., 2019). While not all PAM variants of Cas9 and 
Cas12a have been adapted and optimized for base editing, the diversity of 
available Cas DNA-binding platforms indicates that a base editor should be 
able to access nearly any base in a genome (Fig. 2). 

Several Cas9 variants have been tested in plants and demonstrated to 
function in base editing configurations. For instance, VQR-SpCas9n using 
PmCDA1 as the cytosine deaminase broadened the accessibility of SpCas9 
CBEs to reach some NGA PAMs, most notably NGAG in rice (Wu et al., 2019). 
The same study also found that SpCas9n using PmCDA1 as the cytosine 
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Figure 2  Base accessibility to CRISPR/Cas base editors in corn and soy genomes. (a) 
Mean cytosines accessible by various CRISPR/Cas cytosine base editors in maize and 
soy genes. (b) Mean adenines accessible by various CRISPR/Cas adenine base editors in 
maize and soy genes. Base editing window positions are as follows: SpCas9 and variants, 
4 through 8; Cas12a and variants, 8 through 13; SaCas9, 2 through 12. The enAsCas12a-
tier1 PAMs are defined in Kleinstiver et al. (2019). Base editing windows assume the use 
of rAPOBEC1 and ABE7.10 as the cytosine deaminase and adenine deaminase domains, 
respectively.
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deaminase could effectively edit with an NAG PAM (Wu et al., 2019). Among the 
most promiscuous Cas9 variants is Cas9-NG, which recognizes noncanonical 
NG PAMs. In rice protoplasts, nCas9-NG-PmCDA-UGI showed high editing 
efficiency at most noncanonical PAMs, but low efficiency at NGG PAMs (Zhong 
et al., 2019). The strong deamination activity of PmCDA deaminase further 
complemented this broad PAM recognition with a wide editing window of 
14 nt. The nickase xCas9 variant reported to have a NG PAM recognition fused 
to rAPOBEC1 demonstrated high editing efficiency at NGG PAMs comparable 
to nCas9-CBE, while a fusion to PmCDA1 increased C>T changes at C2 and C4 
when compared in rice protoplasts (Zhong et al., 2019). However, other reports 
have shown xCas9 CBEs to be ineffective in rice (Zeng et al., 2020). In addition 
to Cas9-NG-CBE, an eCas9-NG variant CBE was developed to reduced off-
target effects (Zeng et al., 2020). Both Cas9-NG-CBE and eCas9-NG-CBE 
enabled C-to-T changes at noncanonical PAM sites and increased the editing 
window width relative to Cas9-CBE.

Cas9 from other species also provide DNA-binding scaffolds to build 
base editors such as nSaCas9 and nSaKKHCas9 that recognize NNNRRT PAMs 
(Kim et al., 2017; Komor et al., 2017). Fusions were made with these Cas9 
variants to rAPOBEC1 and either one or three copies of UGI. Three copies of 
UGI provided higher editing efficiency and increased the editing window at 
most target sites compared to the CBE with a single UGI moiety in rice (Qin 
et al., 2020b). However, replacing rAPOBEC1 with PmCDA1 in the nSaCas9 
and nSaKKH CBEs resulted in lower editing efficiencies on average (Qin et al., 
2020b). 

6 �Sequence diversification in crops
Crop improvements have long benefited from the introduction of genetic 
diversity and selective breeding. Chemical mutagens and radiation treatments 
have historically generated this diversity randomly in the genome. More 
targeted, semi-random indel diversity generation has been demonstrated in 
crops using CRISPR methods with dramatic phenotypic results from creating 
diversity in a known fruit size QTL and in promoters controlling inflorescence 
and plant architecture (Rodriguez-Leal et al., 2019). Similar spacer-dependent 
approaches in plant breeding with base editing would seem attractive. Base 
editing technologies also lend themselves to spacer-targeted sequence 
diversification within an editing window. Recently, simultaneous C and A base 
editing have been achieved in plants with effectors that incorporate both 
cytosine and adenine deamination activities in a single protein (Li et al., 2020). 
Pairing dual deaminases with NGG targeting Cas9 and with Cas9NG allowed 
access to 64% of all bases in a 1200-bp editing window and resulted in an 
overall 13% editing efficiency in rice. Moreover, C>G and C>A base changes 



Progress in precise and predictable genome editing﻿ 13

Published by Burleigh Dodds Science Publishing Limited, 2021.

were observed in addition to the expected C>T and A>G changes, generating 
additional sequence diversity (Li et al., 2020).

7 �Off-target base editing
Despite a frequent desire to increase diversity in plants, there has been 
increased interest in whether additional variation beyond the designed edit 
(off-target editing) has occurred. The primary focus has been on guide-RNA 
dependent effects which occur when a base editor binds to a DNA site with 
similar, but not identical, sequence to the target site. Several strategies have 
been developed to reduce guide RNA-dependent off-target editing with 
nucleases, which are also effective with base editors. These strategies include 
(1) careful spacer design and off-target analysis to limit similarity to repeat 
sequences, (2) utilizing CRISPR effectors with mutations that increase DNA 
specificity, (3) reducing duration of editing activity by delivering the editor as 
an RNP complex and (4) modifying the guide RNA (Kim et al., 2019; Rees et al., 
2017; Yeh et al., 2018). 

Findings to date demonstrate that the off-target variation induced by base 
editors is several orders of magnitude less than the variation found in standard 
breeding programs. Some alternative deaminase domains have been shown 
(Doman et al., 2020) to reduce off-target editing, as well as reduce bystander base 
editing because of a smaller base editing window, likely both caused by lower 
catalytic efficiency. To assess deaminase effects on guide RNA-independent off-
target effects, the Gao Lab (Jin et al., 2019) analyzed genome-wide indels and 
single-nucleotide variants (SNVs) induced by cytosine (rAPOBEC1 deaminase) 
and adenine (ABE 7.10) base editors in stably transformed rice. The finding was 
that the CBEs do increase C>T SNVs with an average <2-fold higher than the 
transformation control (means of ~500–630 SNVs vs. ~350 SNVs, respectively), 
but that no other genome wide variations increased with treatment by either 
editor class. However, even the highest detected whole genome C>T variation 
(~700 SNVs) is similar to previously observed somaclonal mutation frequency 
range (440–2600 mutations per plant in rice) (Li et al., 2016) and well below 
another similar study (~20 000) (Zhang et al., 2014). Thus, while increased 
background variation results from the presence of deaminase domains, it is less 
than variation typically introduced through the transformation process used 
to introduce editors to plants and vastly dwarfed by the millions of variants in 
breeding pools (Darracq et al., 2018; Li et al., 2014; Springer et al., 2009; Wang 
et al., 2018b; Zhao et al., 2018).

In their unaltered states, even when fused to a CRISPR effector, some 
deaminases can demonstrate affinity for RNA. The Joung Lab (Grünewald et al., 
2019) performed an extensive study in human cell lines showing that both BE3 
(rAPOBEC1) and ABEmax (TadA::TadA*) edit tens of thousands of individual 
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RNA base positions. We are not aware of any published studies in plants 
examining potential off-target editing of RNA by base editors. Nonetheless, 
as the same base editing machinery is used in plants as in human cell lines it 
is likely that the RNA-editing phenomenon is likely occurring in plants while 
CRISPR/Cas base editors are expressed. However, as the effect would be limited 
to short-lived RNA transcripts and the editing distributed amongst the whole 
transcriptome, there is little risk associated with this phenomenon in plants.

The ability to selectively breed many agricultural crops allows for base 
editor gene segregation after a heritable edit has been generated, which could 
additionally segregate away unintended off-target DNA edits and would stop 
the RNA editing process. For crops that are vegetatively propagated, transient 
delivery of the gene editing reagents or other alternatives to removal through 
breeding-cycle segregation will likely be preferred. Secondly, selecting 
for phenotypically normal plants, which is central to agricultural breeding 
programs, is expected to automatically select against any potential ill effects 
to plant health. Identifying and eliminating off-types has always been central 
to plant breeding programs, and regulatory agencies consider this a reliable 
process for ensuring food safety (Tieman et al., 2017).

8 �Current applications of base editors in crops
While conventional breeding relies on the random mutagenesis of the plant 
genome through application of mutagenic agents or radiation, SDNs and base 
editor development has, for the first time, facilitated breeders to precisely 
modify plant genomes. The added precision of base editors allows breeders 
to fine-tune the genome like-never-before. As a result, in the short time since 
their introduction, there are several examples of successful trait improvement 
through base editing.

Herbicide tolerance is a powerful trait for crop improvement. One 
challenge of generating transgene-free edited plants is the selection of edited 
plants from the pool of non-edited regenerants. Herbicide-resistant gene base 
editing enables regeneration of edited but transgene-free plants on herbicide 
selection medium while simultaneously introducing additional traits through 
multiplexing (Veillet et al., 2019b). In this regard, one prominent target is 
the acetolactate synthase gene (ALS), which encodes the first enzyme in the 
biosynthetic pathway of branch chained amino acids (McCourt and Duggleby, 
2006). Specific amino acid substitution can create resistance to sulfonylurea 
and imidazolinone herbicides and was introduced into crops including rice, 
wheat, tomato, potato and watermelon (Zhang et al., 2019). Competing with 
crops for essential resources in the field, weeds are a major risk in modern 
agriculture (Oerke and Dehne, 2004). In this regard, herbicide treatment 
has become an essential agricultural technique and herbicide resistance 
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introduction into crops is an important commercial agronomic trait that has 
been demonstrated recently in rice through base editing for directed evolution 
of ALS (Kuang et al., 2020). In addition, herbicide-resistant rice plants could 
be generated through amino acid substitution via adenine base editing in the 
acetyl-coenzyme A carboxylase gene, a key enzyme in fatty acid biosynthesis 
(Li et al., 2018). Another example is the introduction of virus resistance by 
base editor application which has recently been shown in A. thaliana (Bastet 
et al., 2019). An amino acid substitution (N176K; caused by a C>G conversion), 
naturally occurring in pea (Pisum sativum), was introduced into A. thaliana 
translation initiation factor 4E by creating SNPs in the respective elF4E1 gene 
using a CBE lacking a UGI domain. Transgene-free T4 plants homozygous for 
desired edits were no longer susceptible to clover yellow vein virus (CIYVV). At 
the same time modified plants did not show any pleiotropic effects – in contrast 
to elF4E1 knockout mutants. The introduction of naturally occurring amino 
acid variations via base editing of susceptibility factors like elF4E in relevant 
agricultural species offers great opportunities for crop improvement and 
control of economically devastating pests (Bastet et al., 2019). Manipulation 
and characterization of proteins involved in other traits, including quality, can 
be and have been performed (Veillet et al., 2019a).

Besides targeted amino acid residue modification of proteins, base 
editing tools can be deployed to modify mature mRNA architecture. In 
eukaryotes, precursor mRNA is processed to mature mRNA by spliceosomes 
that connect exons through removal of introns (Reddy et al., 2013). In plants, 
alternative splicing events occur in more than 60% of intron-containing genes 
and play an important role in increasing protein diversity (Reddy et al., 2013). 
Manipulation of mRNA splicing outcomes through introduction of SNPs via 
base editing enables functional investigation of specific protein variations 
while gene expression is still regulated by the endogenous promoter. Splicing 
site modification has been achieved in Arabidopsis and rice by application of 
cytosine and adenine base editors (Kang et al., 2018; Li et al., 2017; Xue et al., 
2018). In Arabidopsis, specific splicing outcomes were enhanced while others 
could be inhibited through mutation of splicing sites by CBEs (Kang et al., 
2018; Li et al., 2017; Xue et al., 2018). In this way, functions of HAB1 and RS31A 
protein variants contributing to ABA hypersensitive and genotoxic tolerant 
phenotypes, respectively, could be analyzed in planta (Kang et al., 2018; Li 
et al., 2017; Xue et al., 2018). 

9 �Conclusion
In a short period, base editors have been widely adopted as gene editing tools in 
plants. While early development of base editors occurred in non-plant systems, 
in planta editing has been shown to often be efficient (Table 1). Refinements 
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for plant systems, such as codon optimization and plant-specific subcellular 
targeting sequences, have increased efficiency. To date, both adenine and 
CBEs have been demonstrated in plants with efficiencies over 80% and 
continue to be optimized. High-efficiency editing has been demonstrated in 
both monocot and dicot species showing that base editing should be possible 
in any transformable plant system. As can be seen in Fig. 2, accessibility varies 
depending on a given species genetic context, so base editor utility in plants is 
further increased by combining deaminase domains with CRISPR/Cas variants 
recognizing diverse PAM profiles. 

A discussion on unintended, or off-target, editing often accompanies any 
conversation about genome editing; however, it is important to consider the 
use of editing tool in the context of its application. In plants, where increasing 
variation is central to the breeding process, background variation introduction 
is of little concern – especially in comparison to therapeutic uses in mammalian 
applications. Additionally, as base editors rely on the same RNA-guided 
machinery as traditional CRISPR/Cas nucleases, they maintain the same high-
DNA specificity as SDNs, and off-target modification should be similarly low. 
The deaminase domain addition, which is specific to base editors, does add 
additional complexity as these domains have been shown to increase variation 
in both DNA and RNA sequences after delivery (Jin et al., 2019). While this 
would be a major concern in therapeutic applications, the variation extent 
observed is in line with traditional plant breeding practices and any off-types 
would be removed by standard agricultural breeding programs. 

Recently, the development of prime editors (Anzalone et al., 2019) has 
shown promise as an additional tool that can result in predictable editing 
outcomes. While base editors are limited to changes of specific bases within a 
defined editing window, prime editors can replace entire portions of sequence 
in a base-independent manner, and with editing windows that are potentially 
dozens of bases long. While prime editors have the potential to be extremely 
powerful tools for gene editing, their efficiency in plants has thus far been 
low (Hua et al., 2020a; Lin et al., 2020). While some improvement in efficiency 
can be observed through the use of a surrogate selection system conferring 
herbicide resistance following a successful edit (Xu et al., 2020), it is clear that 
much more work needs to be done to increase the efficiency of this system to 
be widely applicable to plant applications. 

The application of base editors to plant-specific applications has, to date, 
been limited. However, many aspects of the tools give base editors a great 
potential in plant gene editing. First, unlike traditional SDNs where the editing 
result is often a frame shift, base editors make nucleotide changes while 
maintaining the native reading frame. The result is a tool that is much better 
suited to sequence diversification for amino acid alterations. Additionally, 
the change that occurs as a base editing result is predictable, meaning that 
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precisely targeted alterations can be recovered. By combining adenine and 
CBEs together, sequence diversification can be attempted – in a targeted and 
predictable manner. Looking forward, base editing has the potential to be a 
powerful tool in the plant breeding toolbox. 

10 �Where to look for further information
For an introduction to genome editing in plants Wada et  al. (2020) give a 
comprehensive overview of the current state of the field. Rees and Liu (2018) 
provide a comprehensive review of base editing technology and is an excellent 
starting resource on this specific topic. The papers listed in Table 1 are the best 
starting points for base editing papers on a specific plant species.

Conferences on genome editing or DNA repair are often the best sources 
to find the latest developments in the field, some recurring meetings of note:

•• International Conference on Base Editing (Deaminet).
•• CRISPR and Plant Genome Editing Conference.
•• Plant Genomics and Gene Editing Congress.
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