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1  Summary
The growing knowledge in genetics, epigenomics, epitranscriptomics and 
the 3D – or even 4D – genome structure provides an increasing number of 
detection targets that can be used to identify species or genetic lines, whether 
modified or not. Biotic and abiotic stresses also induce numerous unintentional 
genetic, epigenetic and epitranscriptomic modifications. Those changes are 
transmissible and can be ordered in regions and classified. The detection target 
is characterised by the mutagenesis technique used. For instance, the detection 
of transgenic GMO or SDN3 modification of new breeding techniques (NBTs) 
will target the junctions of fragment insertions into the genome. Each insertion 
induces epigenetic, and probably epitranscriptomic, changes which can also 
be targeted. In addition, one group of markers is linked to the trait(s) introduced 
or modified by the breeder, whose sequence could be used in quantification 
and ‘screening’. The other target will be a subset of the elements of a matrix 
approach (as described elsewhere in this book). General selection markers, 
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such as those used for plant breeding, together with mutagenesis technique-
specific markers, could differentiate genetically modified organisms (GMOs) of 
any origin. They can be used to quantify and certify, through a global approach 
to the organism, that the trait modification is artefactual and not ‘natural’. The 
growing mastery of single-cell sequencing techniques should soon make 
it possible to differentiate the modifications, for example, due to each step 
of a CRISPR-Cas transformation of cells in culture. This chapter will focus 
mainly on detection targets based on nucleic acids, DNA and RNA, modified 
or unmodified, for their routine use in private and enforcement detection 
laboratories to comply with food labelling and European traceability rules. 
The chapter uses the wording ‘hidden’ GMOs and ‘new’ GMOs as defined by 
the French non-governmental organisations (NGOs) and farmers’ union at the 
origin of the 2018 European Court of Justice ruling.

1.1  Introduction

Traditional breeding resulted from 10 000 years in the domestication syndrome, 
which is a genetic erosion over time causing a drastic reduction in the variability 
available for breeding in recent decades (Ahmar et al., 2020; Meyer et al., 2012). 
Genetic diversity is nevertheless necessary for the creation of new varieties 
adapted to the changing needs of agricultural production: adaptation to the 
pedoclimatic conditions of new production regions, resistance to constantly 
evolving parasites and pathogens, increase in yields, or finally, the production 
or the suppression of the production of molecules sought after or avoided by 
consumers or industry, all despite a reduced resilience of crops (Ceccarelli and 
Grando, 2020; Gepts, 2006; Louwaars, 2018; Zampieri et al., 2020a,b).

The use of simple and generally single adapted traits is carried out by 
(i) time-consuming crossings between more or less divergent populations of 
the domestic species, (ii) the introgression of traits from more or less related 
wild species, (iii) the in vivo, and then in vitro random generation of mutations 
and epimutations and finally (iv) the introduction of sequences from other 
species by transgenesis to various techniques for modifying genomes and 
epigenomes (Glenn et al., 2017; Li et al., 2016; Miki and McHugh, 2004; Olsen 
and Wendel, 2013a; Van Tassel et al., 2020; Xue et al., 2019; Witcombe et al., 
2013). Transgenesis techniques were well-received in the ’90s because they 
offered strong patent protection for the transgenic lines created, together 
with a rather relatively rapid return on investment for the simple introgressed 
traits. Transgenesis appeared to be an excellent economical alternative where 
companies could commercialise new features, while the unpredictability and 
the lack of means for selecting complex features showed the bottlenecks of 
costly screenings of populations obtained from of in vitro random mutagenesis 
(Birch, 1997). Those issues of random mutagenesis were only solved with the 
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development after 2000 of the TILLING method (Targeting Induced Local 
Lesions in Genomes), the implementations of massive screening platforms and 
the support of marker-assisted selection methods (McCallum et al., 2000a,b).

After a few failures, such as a market withdrawal of delayed-ripening tomato 
and frost-resistant strawberries, the first soybean crops from transgenesis 
arrived in European ports in 1996. GMOs intended for food and feed uses 
have met a very mixed reception in countries, particularly European ones, 
with a strong culinary tradition and productions under official quality signs 
(Frewer et al., 2013). As a result, their marketing in Europe is subject to prior 
authorisation, with a traceability requirement to ensure that consumers can 
exercise their freedom of choice, and to separate food from drug or industrial 
GMOs, and, finally post-marketing environmental monitoring for those 
authorised for cultivation (dissemination). Genetically modified plants are 
generally considered a sandbox of technologies that mobilise huge economic 
means and interests before applications to animals. They are characterised by 
a constant battle between retailers and seed companies to determine who 
effectively controls the food-processing supply chains, and require a labelling 
and traceability system, as it is the standard for food in the EU (Bertheau, 2013a, 
Bonfini et al., 2001; Corrado, 2016; Dwinger et al., 2007; Davison and Bertheau, 
2008). Additionnaly, several stakeholders also question the definition of GMOs 
in front of new techniques for modifying genomes and epigenomes. In the 
meantime, citizens/consumers make a clear distinction through personal risk/
benefit analyses between GMOs intended for food and those intended for 
therapeutic applications.

GMOs are relative newcomers to food supply chains and are generally 
indistinguishable from homologs familiar to consumers. Thus, as previously seen, 
the various supply chains have developed reliable tools to identify their presence 
(industrial GMOs) and their (relative) absence in conventional products.

The controversy about transgenic GMOs has continued with the arrival 
of ‘new techniques’ of genome and epigenome modifications, the NBTs, that 
could lead to new products whose status would, this time, differ entirely from 
one world region to another. The controversy has also resurfaced with the recent 
rulings of the European Court of Justice (ECJ) and the French Conseil d’État 
(FCE), which recalled that, under the terms of Directive 2001/18, all products 
derived from in vitro techniques that had not been proven safe by a long history 
of use in 2001 were non-exempted GMOs. Besides the GMOs exempted from 
the application of the 2001/18 directive, we thus now have to distinguish the 
transgenic GMO, the ‘hidden’ GMOs (due to in vitro random mutagenesis) and 
the ‘new’ GMOs developed with NBT techniques.

The basic idea of transgenic, ‘hidden’ and ‘new’ GMOs is that life is a kind of 
large Meccano with interchangeable parts, a view reinforced by the large and 
rough syntenies observed between species. In this overall reductionist vision, 
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the transfer of genetic or epigenetic information should be easy because of 
a simple correlation between genotype and phenotype. A trait would thus 
be easily transposable and reusable. Such a trait expressed in one gene pool 
would therefore be transferable, without difficulty, to another gene pool.

Indeed, the controversy reflects a Meccano understanding of the genome 
based on the molecular biology of the ’70s and a risk-taking position, depending 
on whether or not unintentional modifications are taken into account as having 
impacts in unknown environmental circumstances (Deng et al, 2008; Ladics et al., 
2015; Odorico et al., 2018; Weckwerth et al., 2004 ). For instance, this issue of 
considering or ignoring unintended changes raises the question of whether we 
should be concerned that a simple point mutation, a Single-Nucleotide Variant 
(SNV), can influence gene expression by distally altering regions’ proximity of 
different chromosomes in our current understanding of genome structure and 
regulation based on Topologically Associated Domain (TAD) (Finn and Misteli, 
2019). Similarly are silent mutations changing the proteins’ 3D structure and 
enzymatic activities relevant to risk assessment (Anonymous, 2006; Chamary 
and Hurst, 2009; Kimchi-Sarfaty et al., 2007).

In this simplified view of genomes and epigenomes, the genomic data 
should have allowed the transfer of genes from one organism to another, hoping 
that the syntenies observed between species would allow easy transpositions 
of the corresponding sequences’ behaviour. However, a substantial complexity 
had to be faced: the definition of genes is continuously evolving, and greater 
understanding has shown that genomes have a three-dimensional regulatory 
organisation with unexpected overlapping genes (Cattoni et al., 2017; 2015). 
Therefore, understanding the genotype–phenotype relationship currently 
remains a distant holy grail (Bennetzen et al., 2004; Gerstein et al., 2007; 
Jakobson et al., 2019; Portin and Wilkins, 2017; Scherrer and Jost, 2007; Yaish, 
2017; Zhao et al., 2019). Regulation systems are far more complex than was 
expected in the 1970s (Gerstein et al., 2007, 2012; Hinman and Cary, 2017). An 
‘encoding’ sequence can give rise to several different proteins by, for example, 
alternative splicing into cellular networks, by exon skipping or shuffling, intron 
retention, etc. that vary according to the cellular environment (Baralle and 
Giudice, 2017; Chaudhary et al., 2019; Clark et al., 2019; Dvinge, 2018; Park 
et al., 2018). Moonlighting proteins are proteins whose functions may differ 
according to the phase of the cell cycle (Chen et al., 2018; Jeffery, 2015; Singh 
and Bhalla, 2020). Finally, biotic environmental factors, such as the microbiota, 
for instance, are known to interfere differentially with the plant genotype, 
some being pathogens in vitro but not in vivo (Li et al., 2018; Quambusch and 
Winkelmann, 2018; Quiroga et al., 2017). All these factors are currently not 
considered in risk assessments and will not be for the new GMOs.

These numerous technical and biological bottlenecks affect the ability to 
rapidly and accurately transfer genes, traits and regulations from one species to 
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another or even among cultivars of the same species. Despite this reality, a strong 
economy of promises has been developed around the NBT-derived products 
due to the enormous economic impact for seed companies, marketing patented 
seeds each year in a race towards some technical innovation (Zhang et al., 2016). 
This chapter will examine whether the current frame of GMO detection, presented 
in the previous chapter, fits the purpose of routine detection, identification and 
quantification of ‘hidden’ and ‘new’ (NBT derived) GMOs by (i) identifying the 
sources and targets of detection, (ii) proposing a routine detection scheme and 
(iii) let suspect the technique at the origin of the GMO.

2  Background to ‘hidden’ and ‘new’ GMOs
Transgenic, ‘hidden’ and ‘new’ GMOs, which are derived from NBT techniques 
and more particularly gene editing, have in common several in vitro steps 
whose importance in the GMO status has been recently reminded by the ECJ 
and FCE. We will mainly focus on nuclear changes, while numerous unintended 
modifications are also occurring in organelles.

2.1  New breeding techniques

NBTs do not have a formal definition, as it has varied since its first release. 
This term appeared in 2007 following questioning of the Commission by the 
Dutch COGEM1 as to the GMO status or not of products issued from various 
new techniques or from old ones renamed. In its first version, it included: the 
grafting of a non-GM scion on a GM grafting base, floral dip and agroinfiltration, 
and various techniques of modification of genomes and epigenomes by OdM2, 
RNAi3, alteration by nucleases (meganucleases, ZFN, TALEN, then CRISPR-
Cas), null segregant, and finally synthetic biology with its multiple definitions 
(Regalado, 2015b; Schaart and Visser, 2009). They thus covered genetic, 
epigenetic and epitranscriptomic modifications, while only the genetic ones 
are assessed in the GMO notifiers’ dossiers. At least some of them have recently 
been renamed ‘New/Novel Genomic Techniques’ by the European Commission. 
Without a long and proven safety record prior to 2001, most of them have been 
recognised to be GMOs since the 2018 ruling by the ECJ.

2.2  Related techniques common to all the GMOs

‘Related techniques’ involve all the in vitro techniques used for genetic and 
epigenetic modifications. These related techniques include (i) protoplastisation 

1  GMO Risk Assessment Agency
2  Oligonucleotide directed Mutagenesis
3  Interfering RNA
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to obtain isolated cells,(ii) in vitro culture, (iii) delivery of reagents (DNA, RNA, or 
RNA-associated or non-RNA-associated proteins), (iv) the selection procedure 
of modifying cells, (v) the elimination of these same selection markers for 
example by the Cre-Lox recombinase system, (vi) the callus differentiation, 
and (vii) the regeneration of seedlings before (viii) the habituation to culture 
conditions. All these mutations and epimutations follow a dynamic that has not 
been studied in detail until now (Bertheau, 2019; Filipecki and Malepszy, 2006; 
Lee and Seo, 2018; Mendizabal et al., 2014). However, these old-chapped 
related techniques still constitute a bottleneck in large-scale technique 
applications that have not been mastered, as recently noted (Ledford, 2016). 
They are the source of the ‘somaclonal variation’, a sum of genetic, epigenetic 
and epitranscriptomic unmastered changes.

Protoplastisation, obtained by the pectocellulosic wall degradation under 
controlled osmotic conditions, is the first stressing step toward isolated cell 
cultures and plant regeneration after genome and epigenome’ modifications 
(Leva et al., 2012; Leva and Rinaldi, 2012). This protoplastisation and the sub-
sequent culture stages induce a series of stresses, leading to somatic cell pluri-
potency by as yet unknown mechanisms (Bidabadi and Jain, 2020; Caboche 
2010, Fehér, 2015). These culture stages induce point mutations and indels 
together with more extensive changes such as chromosomal rearrangements, 
aneuploidy, transposable elements mobilisation, endoreplication, chromoth-
ripsis, etc., which also cause sensu lato epimutations (Bednarek and Orłowska, 
2020; Filipecki and Malepszy, 2006; Fossi et al., 2019; Henry et al., 2018; Lang 
and Schnittger, 2020).

All in vitro cultures of isolated cells, whether or not conducted for plant 
regeneration, induce somaclonal variation (random variations of genomes and 
epigenomes) usable in plant breeding (Bado et al., 2017; Bairu et al., 2011; 
Bidabadi and Jain, 2020; Filipecki and Malepszy, 2006; Karp, 1995; Krishna 
et al., 2016; Li, X.-Q. 2017; Miguel and Marum, 2011; Smulders and de Klerk, 
2011; Stebbins, 1950). This variation corresponds to the cellular response to 
exposure to different environmental stresses, with the ‘environment’ starting 
at the cellular cytoplasmic limit (Kucab et al., 2019; Perrone and Martinelli, 
2020). It can be detected even after several generations at the genetic and 
transcriptomic levels and maybe later at the epitranscriptomic level (Bairu et al., 
2011; Batista et al., 2017; Bregitzer et al., 1998; Flint-Garcia, 2013; Han et al., 
2018; Henikoff and Greally, 2016; Li, 2016; Martínez, 2018; Miyao et al., 2012; 
Perrone and Martinelli, 2020). The transmitted stress memory can even lead 
cells and their descendants to ‘choose’ between proliferation and quiescence 
(Filipecki and Malepszy, 2006; Kedziora and Purvis, 2017; Nathans et al., 2021; 
Yang et al., 2017). Finally, transgenerational epigenetics plays a much more 
critical role in evolution than initially expected (Quadrana and Colot, 2016; 
Weigel and Colot, 2012; Yaish, 2017).
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Each isolated cell can lead to a homogeneous or chimeric regenerated plant, 
whatever the modification system used – RNA, DNA or RiboNucleoProtein (RNP) 
(Liu, H. J. et al., 2020; Meins Jr, 1983) – as it is also observed for animals (Hennig 
et al., 2020). An intercellular polymorphism develops because of the instability 
of genomes during cell multiplication phases towards plant regeneration, an 
observation similar to the chimaerism observed for monozygotic human twins 
(Jonsson et al., 2021). This chimaerism, induced before plant regeneration, 
remains unstudied for in vitro cultivated plants’ characterisation and unnotified 
in petitioners’ dossiers for risk assessment. The induced callus necessary for 
regeneration is more susceptible to mutations than a growing plant (Altpeter 
et al., 2016; Bidabadi and Jain, 2020; Wang et al., 2019). Extreme effects are 
also observable in the progeny, such as the chromothripsis observed for 
potatoes regenerated from protoplasts (Fossi et al., 2019; Henry et al., 2018; 
Koltsova et al., 2019). Indeed, chromothripsis micronuclei can be detectably 
transmitted to the progeny and induced by Cas9 SDN4 (Cullot et al., 2019; Fossi 
et al., 2019; Leibowitz et al., 2015, 2021).

Conversely, the culture conditions used for the micro-propagation of 
certain plant species aim to reduce to a minimum this somaclonal variation and 
the induced chimaerism, which can however still be identified (Aravanopoulos, 
2003; Martínez, 2018; Ruffoni and Savona, 2013; Teixeira da Silva et al., 2007; 
Thorpe, 2013).

The delivery of reagents, whether DNA, RNA (messenger or not) or proteins 
(such as RNA-associated nucleases for CRISPR-Cas RNPs5 contaminated by 
foreign DNA of the multiplication organism DNA despite purification steps), is 
a highly empirical technical phase that induces genomic and epigenomic scars 
(Bertheau, 2019; Khalil, 2020; Ledford, 2016).

Transgenesis and genome and epigenome editing methods share these 
related techniques and their unintended effects. The scars left after the excision 
of selection markers from modified cells is only one example (Ates et al., 2020; 
Bertheau, 2019; Jansing et al., 2019; Manimaran et al., 2011; Marx, 2015; 
Miguel and Marum, 2011; Ruffoni and Savona, 2013; Scahill et al., 2008; Volkova 
et al., 2020; Yau and Stewart, 2013). Therefore, most of the authors consider it 
necessary for the NBT to avoid all these in vitro culture phases, but the suggested 
options have not proven themselves (Hamada et al., 2017; Maher et al., 2020).

Random changes in somaclonal variation have been known for a long time. 
Still, little use was made of them after a fad phase, because of the difficulties in 
screening for mutations, their unpredictability and trouble managing them due 
to their instability (Evans, 1989). These variations became ‘easily’ usable after 
2000, with molecular markers using the TILLING technique on high-throughput 

4  Sequence Directed Nuclease
5  RiboNucleoProtein



 Identifying GM plants: detection of ‘hidden’ and ‘new’ GMOs8

Published by Burleigh Dodds Science Publishing Limited, 2022.

and costly screening platforms, as previously seen. These identification tools 
are adaptable for characterizing a cultivar and thus a GMO or a class of GMOs 
(Bhargava and Sharma, 2013; Korir et al., 2013; Kwon et al., 2005; Matsaunyane 
and Dubery, 2018; Singh et al., 2019; Smith and Smith, 1992).

As long as one wants to take the trouble to identify the different resultant 
scars, there is no technical barrier to assemble mutations and epimutations in 
databases to differentiate organisms’ spontaneous mutations, which are mostly 
neutral, or are induced in vivo or in vitro (Orr et al., 2020; Shahryary et al., 2020).

2.3  Genome stability and stresses

An organism is generally characterised by the transmission of an integrative 
genome acquired through a series of trial-and-error adaptations to an 
environment (Balestrazzi et al., 2020; Nisa et al., 2019). The majority of stress-
induced mutations and epimutations are eliminated in different ways if the 
modifications are not neutral or are unsuitable for the environment, leading 
to the unviability of the organism (Daneva et al., 2016; Morrow, 1975). This 
stability of genomes and epigenomes is one of the bases of the evolution 
and differentiation of species. Thus, only a meagre number of mutations can 
accumulate, as observed for the Napoléon oak, which is not an isolated case 
when considering multi-millennia trees and natural clones (Kuhlemeier, 2017; 
Ledford, 2017; Orr et al., 2020; Schmid-Siegert et al., 2017). The biotic and 
abiotic stress-induced mutations and epimutations are transmissible and 
distinguishable from the spontaneous ones (Ashapkin et al., 2016; Bednarek 
and Orłowska, 2020; Hahn and Nekrasov, 2019; He and Li, 2018; Kellenberger 
et al., 2018; Perrone and Martinelli, 2020; Quadrana and Colot, 2016; Rath, 2018; 
Shahryary et al., 2020). The rates of mutations, conversions, recombinations, 
indels and heritable epimutations can vary by several orders of magnitude due 
to environmental stresses. These reactions to stresses can lead to hypermutation 
situations (Dulieu, 2005; Filipecki and Malepszy, 2006; Perrone and Martinelli, 
2020; Rath, 2018; Reddy et al., 2020; Roberts and Gordenin, 2014). Mutations 
and induced hypermutations can thus persist as signatures of past events. 
Indeed, among the hitherto unexploited factors of variability generated by 
mutagenesis, we can cite (i) the differences in genomes’ localisation, (ii) their 
predictability, (iii) the densities in the form of hotspots, (iv) their proximities, 
(v) their locations in regions frequently transcribed or not, non-coding and 
(vi) participating or not in structural rearrangements, according to (vii) plant 
lifetimes (Kumar et al., 2014; Renny-Byfield et al., 2017; Rodgers-Melnick et al., 
2015, 2016; Schmid-Siegert et al., 2017).

All heterologous intra- or extracellular DNA induces ‘immune’ (and 
inflammatory) responses in plant and animal cells. Cells can differentiate the 
extracellular DNA, particularly self/non-self, through its methylation profiles, and 
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be remarkably inhibited by the DNA of phylogenetically close plants (Monticolo 
et al., 2020). Intrusive and extracellular heterologous DNA and RNA significantly 
impact, in a dose-dependent way, the cellular reactions and genome and 
epigenome organisation (Bhat and Ryu, 2016; Monticolo et al., 2020). These 
reactions would be especially true when a foreign vector is used after it has gone 
through in vitro phases that modified its self/non-self-identification pattern. With 
the biological mechanisms of resilience to stress, such as DNA damage repair, 
being constitutive, it is evident that some genomic and epigenomic scars will be 
shared or even appear as methods’ signatures. The boundary between the two 
unintentional modifications will sometimes be arbitrary. 

Nevertheless, the management of these data at the organism level will 
always distinguish the ‘natural’ from the ‘artefacts’, affecting the genomes 
integrity (Bertheau, 2019; Biswas et al., 2020).

3  Sources of detection targets
Mutations and epimutations are sometimes detectable by phenotyping, but 
most often by ultra-deep sequencing and coverage and recently by Southern 
hybridisation (Holst-Jensen et al., 2016; Kishikawa et al., 2019; Mardis, 2013; 
Salk et al., 2018; Sims et al., 2014; Takabatake et al., 2020a). Reliable detection 
needs to use the nearest genomes and epigenomes as comparators, 
thus sequencing at some cost the original unmodified variety instead of 
comparing to a consensus genome in databases (Germini et al., 2018). The 
ability to detect those unintended changes also relies on representative and 
dependable genomes and epigenomes, distinguishing the ‘core genome’ 
and pangenomes (Hurgobin and Edwards, 2017). Even these reference 
genomes remain difficult to constitute due to the numerous defects of 
sequencing techniques such as the preparation of sequencing libraries, the 
somatic mutations, and chromosomal rearrangements, not to mention the PCR 
amplification errors and significant imperfections of software in assembling 
and comparing sequences (Bertheau, 2019; Bolukbasi et al., 2016; Ekblom 
and Wolf, 2014; Newman et al., 2020; Ravindran, 2018; Robin et al., 2016; 
Wienert et al., 2019). Building up genomes of quality is rare, even for human 
ones (Ballouz et al., 2019; Bertheau, 2019; Hart et al., 2014; Michael and 
VanBuren, 2020; Tello-Ruiz et al., 2021). Accordingly, claims about the absence 
of unintended changes in genomes and epigenomes have to be examined 
with a very critical mind.

More generally speaking, most of these NBT, such as grafts between GMO 
and non-GM scions, have been very quickly recognised as generating GMOs 
by exchanging nucleic acids, organelles and epigenetic modifications (Hertle 
et al., 2021; Stegemann and Bock, 2009; Tsaballa et al., 2021; Warschefsky 
et al., 2016). Some transient expression techniques have also been shown 
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to induce unintended insertional modifications depending on the target 
(protoplast, callus, tissues or the whole plant) (Canto, 2016; Tyurin et al., 
2020). They are also considered GMOs by their requirement of GM expression 
vectors providing signatures of the method (Tyurin et al., 2020). Agroinfiltration 
and floral dip, initially included in NBTs for transient expressions or tissue 
transformations without cell cultures, mostly lead to chimaeras, despite various 
improvements, and form parts of a ‘new’ GMO signature (Maher et al., 2020; 
Matsuo et al., 2016; Zhang et al., 2020). In some cases, the need to use several 
techniques simultaneously generates superimposed scars and signatures, 
including plastids, while the extracted compounds are contaminated by toxic 
compounds and DNAs (Boettcher and McManus, 2015; Komarova et al., 2010; 
Mao et al., 2018; Schillberg and Finnern, 2021; Tusé et al., 2020; Tyurin et al., 
2020). RNAi may result from the GMO producing, for instance, dsRNA instead 
of toxic protein or sprays, targeting several non-target organisms (NTO) 
(Ivashuta et al., 2015; Khajuria et al., 2018). Due to numerous false positives, 
the accurate detection of those GM products may be difficult despite their 
numerous off-targets and other unintended modifications (Potrykus, 1991; 
Marine et al., 2012).

Negative segregants are GMOs because they are derived from GMOs. 
Therefore, they carry the original GMO scars and signatures due to cell culture 
and related techniques (Bregitzer et al., 1998; Wada et al., 2020). Finally, 
cisgenesis and intragenesis also lead to GMOs because they involve the in vitro 
manipulation of DNA and cell cultures that did not have a long record of safety 
before 2001 while containing the usual scars and signatures. Moreover, the in 
vitro manipulation of DNA erases the self–non-self patterns that induce immune 
responses of plant cells. The origin of the introduced sequence(s) thus does not 
change the unintended effects and legal nature.

We will now focus on still disputed GMOs such as ‘hidden’ and ‘new’ 
GMOs. From a holistic point of view, of all kinds of GMO detection, four sources 
of detection are discernible, that is, (i) the selection signatures of cultivars and 
germplasms, (ii) the internal signatures of sequences used by laboratories for 
transforming plant cells, (iii) the scars due to the related in vitro techniques and 
finally, (iv) signatures resulting from the intended and unintended changes due 
to NBT techniques.

3.1  Domestication syndrome and selection

The repeated traditional selection over 10 000 years has left selection signatures 
of human pressures in the peasants’ landraces and the companies’ cultivars 
(McLean-Rodríguez et al., 2021).

Indeed, the variability between Elite inbreds and correlated germplasms 
can reach tens of millions of detectable SNPs to be managed for identification 
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and genomic selection (Flint-Garcia, 2013; Hake and Ross-Ibarra, 2015; Wilkesa 
et al., 2016). The selection signatures of both Elite and commercial varieties, 
which differ, organised with the in vitro numerous scars and signatures, will 
constitute the first data usable in identifying the natural or artefactual status 
of modifications (Flint-Garcia, 2013; Grainger et al., 2018; Hill et al., 2021; 
Olsen and Wendel, 2013a,b; Slotte, 2014; Xie et al., 2015). Due to the complex 
breeding schemes, whose results are more or less well predicted by modeling, 
germplasm uses are generally well correlated with seed companies’ habits, 
available material, and know-how (Beckett et al., 2017; Cobb, 2019; Glenn 
et al., 2017; van Heerwaarden et al., 2012a,b). This ascending traceability is 
complementary to species typology accessible to the various techniques, 
which could be part of a screening stage after the integration into, e.g., decision 
support systems (Jansing et al., 2019).

Integrating a new trait resulting from the genetic or epigenetic modification 
of a more or less-related species into a commercial line requires introducing 
it beforehand into one or more of these Elite varieties. Nevertheless, the 
behaviour of this new trait in an Elite variety is difficult to predict (Crossa 
et al., 2017; Evangelou et al., 2019), because the genetic distance between the 
Elite types may be, as for corn, comparable to the one between humans and 
chimpanzees and because prediction tools are still not accurate. Possessing a 
detailed knowledge of the behaviour of Elite varieties, for which only recently a 
few reference genomes have been available, is therefore an absolute necessity 
in plant breeding (Flint-Garcia, 2013). This gene pool remains the most 
influential factor in the expression of introgressed traits, whatever the reign of 
the living world considered (Evangelou et al., 2019; Flint-Garcia, 2013; Fu et al., 
2021; Mumm, 2013).

These selection signatures are a primary element of suspicion of a mutated 
origin of diversity, available even for unknown GMOs.

3.2  NBT and transgenesis reagents delivery and expression tools

The efficient delivery and expression of transgenic and NBT products is still 
a challenge for ‘laboratory’ cultivars and experienced explants. Therefore, 
laboratories are using the same, somewhat mastered methods of delivery, 
gene expression, and transformed cell selection, together with the previously 
experimentally tested culture conditions and regeneration media. Altogether, 
the sequences of the delivery and expression cassette constitute a signature 
of the biotech laboratories, and even of the people that have transformed the 
isolated cell plants (Alley et al., 2020; Nielsen and Voigt, 2018).

Agrobacterium is the most efficient delivery system with a low number of 
inserted copies and better stability of the insertions, but with residual evident 
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scars (Bertheau, 2019; Matsaunyane and Dubery, 2018). The DSB6, induced by 
the insertion of Agrobacterium sequences or biolistics, generates other kinds 
of identifiable genomic and epigenomic scars, as performed by foreign inva-
sive DNA and gene-editing techniques. Therefore, bacterial plasmids and chro-
mosomal insertions, and further rearrangements or epigenetic modifications 
are usual in the modified plant pangenomes (Ahmad et al., 2020; Anderson 
et al., 2016; Bortesi and Fischer, 2015; Dalla Costa et al., 2020; Filipecki and 
Malepszy, 2006; Fossi et al., 2019; Gelvin, 2008; Grabowska and Filipecki, 
2004; Gorbunova and Levy, 1999; Hahn and Nekrasov, 2019; Hilscher et al., 
2017; Ito and Machida, 2015; Perrone and Martinelli, 2020; Reddy et al., 2020; 
Serrano-Benítez et al., 2020; Ulker et al., 2008; Vítor et al., 2020). Additionally, 
the delivering Agrobacterium strains used all belong to biovar 1, for which 
a signature PCR detection test is available (Gelvin, 2003; Keane et al., 1970; 
Spiridonova et al., 2009). Many of the transformation strains contaminating the 
modified genomes share the same genetic background and delivering plas-
mids. Such specificity can differentiate these reagents’ vectors from the scars of 
aborted infections by natural strains (De Saeger et al., 2020; Tyurin et al., 2020).

Biolistics, the other most-used delivery system for genetic and epigenetic 
modification reagents, has been used for many commercially available 
transgenic maize varieties. The small fragmented inserts allow easy suspicion 
of the delivery system (Harkess, 2019; Latham et al., 2006; Takabatake 
et al., 2020a,b; Yadava et al., 2016). The use of microinjections, electroporation, 
viral vectors, polyethylene glycol nano vehicles, needles and other exotic 
reagents as delivery methods also provides signatures, such as chromosomal 
rearrangements, in nuclei and organelles for several generations, for example, 
as episomes (Bertheau, 2019; Burgio and Teboul, 2020; Dalakouras et al., 2020; 
Filipecki and Malepszy, 2006; Jansing et al., 2019; Lacroix and Citovsky, 2020; 
Liu et al., 2019; Lv et al., 2020).

Indeed, the delivery system of DNA, RNA (interfering, messenger, etc.) or 
RNP is contaminated by foreign DNA because of its preparation in other living 
organisms. Therefore, this DNA can be found in the ‘edited’ genome of modified 
protoplasts, as it has also been observed in animal cell cultures (Bertheau, 
2019; Norris et al., 2020; Ono et al., 2019). In general, authors using ‘DNA-free’ 
reagents do not apply the minimum purification criteria such as those for ‘Minimal 
Information for Protein Functionality Evaluation’ (MIPFE) proteins (Raynal et al., 
2014; Tan and Yiap, 2009; Zhang and Heyer, 2011). Since even the most purified 
commercial enzymes are DNA-contaminated, it is disgraceful to assert that RNP 
deliveries are DNA-free and that no foreign sequences have been inserted in the 
plants’ genome and more generally speaking that NBT techniques do not leave 
contaminating DNA in the genomes of edited plants (Bertheau, 2019).

6  Double Strand Break
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The foreseen success did not follow the initial claims about the interest 
of OdM, genome editing by meganucleases, floral dip and agroinfiltration. 
They became relatively anecdotal with the arrival of faster, more effective and 
‘cheaper’ techniques. The lack of reproducibility or versatility, low conversion 
frequency and DNA integration is also challenging (Anderson et al., 2008; 
Birch, 1997; Buehler et al., 2012; Germini et al., 2018; Housden and Perrimon, 
2016; Potrykus, 1991; Raitskin et al., 2019; Riba et al., 2017; Sheel and Xue, 
2016; Smits et al., 2019; Svoboda, 2020; Wang and Yang, 2019). As exemplified 
by the Cibus herbicide tolerant canola case, OdM-induced modification, a 
30-year-old technique, has clearly not been meeting, up to now, the hopes 
initially placed on its use for plants.

The current literature hardly retains any NBTs on plants, other than the 
improperly named genome editing techniques, using nucleases such as ZFN, 
TALEN and the numerous orthologs and variants of the Cas9 nucleases (dCas9, 
hCas9, HypaCas9, etc.) fused or not with other enzymes’ sequences (Yee, 
2016). However, there are technical difficulties in applying these techniques, 
which require numerous and complex optimisations of the types of reagents 
and delivery methods, taking into account the targeted species and tissues, 
the use of optimimized codons and the choice of promoters and inhibitors, for 
example, for Cas9 and gRNA expressions (Moon et al., 2019). These differences 
in optimisations and activity controls contribute to the diversification of scars 
and signatures of the techniques used and of the laboratories that perform 
them (Alley et al., 2020; Nielsen and Voigt, 2018).

More generally, any sequence insertion (endogenous or heterologous, 
and therefore trans-, cis- or intragenesis) in the genome is accompanied by 
genetic and epigenetic unintentional modifications, sometimes distal, which are 
identifiable patterns even for unknown GMOs (Ashapkin et al., 2016; Filipecki and 
Malepszy, 2006; Kosicki et al., 2018; Ledford, 2020; Sullivan et al., 2015). This is 
in line with the self/non-self DNA and RNA recognitions (Monticolo et al., 2020).

In conclusion, all artefactual processes and tools, such as delivery systems, 
delivered sequences, culture media, and NBT by themselves are leaving 
numerous indices of all that has happened during cell cultures, transformation, 
selection and plant regeneration. This information can be scrutinised and 
managed by tools such as artificial intelligence.

3.3  Technical scars of mutageneses

Scars are the set of genetic, epigenetic (DNA methylation and the ‘histone code’) 
and epitranscriptomic (RNA changes) modifications associated with the in vitro 
techniques on isolated cells. Certain scars may constitute specific signatures 
of the mutagenic agents or processes used (Destefanis et al., 2021; Filipecki 
and Malepszy, 2006). For instance, the Single Methylation Polymorphism 
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(SMP), an underused polymorphism, includes a set of markers transmissible in 
plants, as impressive as Single Nucleotide Polymorphism (SNP) or MNV7, with 
different patterns related to the genetic characteristics (Ashapkin et al., 2016; 
Becker et al., 2011; Cattoni et al., 2017; Degalez et al., 2021; Schmitz et al., 
2013; Wilkesa et al., 2016). Transgenesis and genome and epigenome editing 
methods share these related techniques and their unintended effects. As seen 
above, the delivery systems and delivered sequences leave numerous specific 
genetic and epigenetic scars.

As already mentioned, the selection of transformed cells remains topical 
due to the low transformation and regeneration efficiencies. Moreover, 
due to consumers’ fears and the Agencies’ recommendations, most of the 
authors attempt now to remove some of them by, for example, the Cre-Lox 
recombination, thus leaving new specific scars (Ates et al., 2020; Bertheau, 
2019; Germini et al., 2018; Jansing et al., 2019; Miguel and Marum, 2011; 
Ruffoni and Savona, 2013; Volkova et al., 2020; Yau and Stewart, 2013). While 
antibiotic resistance and herbicide tolerances are less used due to the challenge 
of meeting the risky demands by the Agencies and consumers, other non-
sensitive selection genes, such as phospho-mannose isomerase, are likely to be 
found in Elite and commercial varieties (Que et al., 2014; Yadava et al., 2016; Yau 
and Stewart, 2013). Therefore, most authors consider it necessary to drastically 
increase plant transformation efficiency or avoid all these in vitro culture phases, 
but the suggested options have not proven themselves to avoid or discard these 
transformed cells’ selection signatures (Hamada et al., 2017; Maher et al., 2020).

In several instances, similar to the specific cultivars used for many purposes, 
several protocols and expression cassettes have become almost the standard 
for plant transformation and regeneration (Que et al., 2014; Yadava et al., 2016), 
which induce similar scars manageable by, for example, artificial intelligence or 
other tools used in plant breeding (Alley et al., 2020; Kim et al., 2020; Nielsen 
and Voigt, 2018; Tong and Nikoloski, 2021).

As chromosomal rearrangements and chromothripsis have been 
observed due to related techniques or the action of CRISPR-Cas nucleases and 
somaclonal variation (Comai and Tan, 2019; Fossi et al., 2019; Leibowitz et al., 
2015, 2021), the borderline between scars and signatures may therefore be 
tenuous in some cases, even if the qualification does not matter, for identifying 
genetic and epigenetic artefactual modifications.

3.4  Mutageneses’ signatures

By signature, we mean either an unambiguous signature such as the border 
fragment of a random insertion in transgenesis, or a convergent set of data 

7  Multi-Nucleotide Variants
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leading to a specific identification. It is likely, bearing in mind that there are 
differences between animals and plants, that many of the known results in 
animals are valid for plants. This section will examine the signatures left by the 
several mutagenesis techniques applied to isolated cells – the in vivo random 
mutagenesis providing exempted GMOs.

Organelles, such as chloroplasts, genomes and epigenomes, participate 
in stress tolerance, such as heat, but are rarely studied (Ahmad et al., 2017; 
Liberatore et al., 2016; Wallace, 2016; Wu et al., 2020). The organelles’ scars and 
signatures can be used in GMO identification as memories of past phenomena, 
especially since tiling microarrays allow exploring their genomes (Hu et al., 
2020; Żmieńko et al., 2011). They are already involved in cultivar identification. 
However, we will focus below only on nucleus signatures.

3.4.1  Somaclonal variation and transgenesis

The frequencies of mutations and epimutations due to somaclonal variation are 
still relatively low. According to the IAEA, it is usual to increase them up to one 
million8 times by adding chemical or physical mutagens (Brash, 2015; Dulieu, 
2005; Kovalchuk et al., 2000). The development of the in vitro techniques 
has allowed such a switch from the previous in vivo techniques (Maluszynski 
et al., 1995, 2000). However, as already mentioned earlier for the somaclonal 
variation, the in vitro resulting mutants were effectively used in plant breeding 
schemes only after the TILLING method’s publication (McCallum et al., 2000a; 
Tadele et al., 2009; Kurowska et al., 2011). These mutagenesis techniques are 
already covered in a previous chapter of this book.

3.4.2  In vitro-induced random mutageneses

The signatures of various events suffered by in vitro and in vivo animal and plant 
cells can be differentiated, for example, by exposure to UVA and B, infrared, 
free radicals, etc. (Doitsidou et al., 2016; Flibotte et al., 2010; Lehrbach et al., 
2017; Li et al., 2015; Roberts and Gordenin, 2014; Smith and Yun, 2017; Vítor 
et al., 2020; Volkova et al., 2020; Xu et al., 2016). The changes induced by 
genotoxic agents, such as benzo(a)pyrene, hydrogen peroxide, aflatoxins, ethyl 
methanesulphonate (EMS),9 UV or N-ethyl-N-nitrosourea (ENU), can also be 
mapped (Brash, 2015; Burns et al., 1986; Doitsidou et al., 2016; Fitzgerald et al., 
2017; Flibotte et al., 2010; Kim et al., 2006; Kucab et al., 2019; Lehrbach et al., 
2017; McCarthy et al., 2020; Saini et al., 2020; Segovia et al., 2015; Sikora et al., 
2011; Simon et al., 2015; Volkova et al., 2020; Wei et al., 2021).

8  http: / /www  -nawe  b .iae  a .org  /nafa  /pbg/  mutat  ion -i  nd uct  ion .h  tml 
9  Transition GC-to-AT

http://www-naweb.iaea.org/nafa/pbg/mutation-induction.html


 Identifying GM plants: detection of ‘hidden’ and ‘new’ GMOs16

Published by Burleigh Dodds Science Publishing Limited, 2022.

Although unstable because they are in high demand, some molecules, 
such as rDNA, could protect against mutations due to EMS and UV (Dvořáčková 
et al., 2015). Large deletions can be induced at the same locations (fragile 
chromosomal sites/recombination hotspots) by various mutagenesis agents 
such as EMS, fast neutrons, T-DNA, and X-rays, which could result from an 
ancestral recombination event (dela Paz et al., 2012; Filipecki and Malepszy, 
2006; Rodgers-Melnick et al., 2015). Induced random mutations can lead to 
hypermutations, with some mutated sites appearing particularly unstable in cell 
cultures (Durkin and Glover, 2007). Identifying these sites, particularly in active 
gene areas, can constitute the signatures of events in the affected cells.

Several other biotic and abiotic mutagenic stresses such as drought and 
heating induce dramatic changes that are transmitted (Fleta-Soriano and 
Munné-Bosch, 2016; Jaligot and Rival, 2016; Probst and Mittelsten Scheid, 2015; 
Wibowo et al., 2016). Chemical, biological and physical mutagens add a new 
layer of mutations and epimutations whose types, locations and frequencies 
may be differentiated from the somaclonal variation-induced changes.

3.4.3  NBT signatures

As Stella and Montoya (2016) remind us, it is technically difficult and costly 
to attempt detection by sequencing low- and medium-frequency off-targets. 
Moreover, off-target detection capabilities vary significantly for the same sgRNA, 
gene-editing technique and the use of biased or ‘unbiased’ detection methods 
(Martin et al., 2016; Newman et al., 2020). Unintended modifications also vary 
between clonal cells, while unintended changes are searched only in the cell 
populations, thus diluting the low-frequency unintended changes (Kimberland 
et al., 2018; Sentmanat et al., 2018). Therefore, it is illusory to assert, as it is 
often done by several authors and stakeholders, that there would be no off-
targets in a modified cell and that they will not be found in the progeny (Kang 
et al., 2020; Stella and Montoya, 2016). RNAi and ncRNA also induce many 
unintended effects, which can be used to identify processes (Ramesh, 2013; 
Ramon et al., 2014; Svoboda, 2020).

The size of the recognised/targeted sequences (on- and off-targets) 
differs between nuclease-based NBTs. Systematic on- and off-targets in the 
vicinity of, for example, a PAM sequence or of ZFN and TALEN-binding sites 
would constitute such a pattern signature. Additionally, targeted sequence 
sizes differentiate ZFN, TALEN and CRISPR-Cas techniques (see Fig. 1 for more 
details; Janik et al., 2020), as also shown for example, for the length of the 
artificial TALEN10 cleaving site (half-site 14–20 nt – FokI site 14–24 nt – half-site 

10  https :/ /ww  w .med  ecine  scien  ces .o  rg /en  /arti  cles/  medsc  i /ful  l _htm  l /201  4 /02/  medsc  i2014  3002p  186 /m   edsci  20143  
002p1  86 .ht  ml 

https://www.medecinesciences.org/en/articles/medsci/full_html/2014/02/medsci20143002p186/medsci20143002p186.html
https://www.medecinesciences.org/en/articles/medsci/full_html/2014/02/medsci20143002p186/medsci20143002p186.html
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14–20 nt) (Ahmad et al., 2020; Khalil, 2020). Moreover, specific sequences can 
be found near and at the enzyme cleavage and homologous sequence sites 
(e.g. different Protospacer Adjacent Motif (PAMs) for different GC contents in 
genomes, zinc finger sequences for ZFNs, etc.). More detailed studies should 
make it possible to define unambiguous signatures of nucleases such as 
those identified for Cas9 and Cas12a (Wienert et al., 2019). The repair of the 
double-stranded cut caused by Cas9 would modify the degree of CGp islet 
methylation in the case of the Homology-Directed Repair (HDR) but not the Non-
Homologous End-Joining (NHEJ) DNA repair mechanisms (Farris et al., 2020). 
Particular sequence-specificity of the DSB cut sites can also be distinguished 
(Molla and Yang, 2020). TALEN’s FokI nuclease cuts require a T in the 5’ terminal 
position. TALEN also recognizes methylated cytosines compared to CRISPR-
Cas. The reagents are also differentiated by their chromatin affinity sites (Jain 
et al., 2021). SMP polymorphism and its effect on genetic modification on 
Differentially Methylated Regions (DMRs) have not yet been studied in this case 
(Eichten and Borevitz, 2013; Li, Y. et al., 2017; Schmitz et al., 2013). All these 
‘subtle’ but clear differences between nuclease-based gene-editing techniques 
are amenable in scars and signatures databases. The bioinformatic screening 
of these zones is manageable despite the thousands of PAM sequences or 
sequences recognized by ZFN and TALEN, which can be monitored, compared 
to the tens of millions of SNPs used in GWAS11 (Flint-Garcia, 2013; Li et al., 
2020).

The vast number of publications on improving the specificity and efficiency, 
and reducing the number of off-target or unintentional on-target modifications 
show the widespread accidental side effects of NBT techniques (Rezza et al., 
2019). In most cases, we are unable to affirm that they are not scars from in vitro 
cultures and related techniques (Ahmad et al., 2020; Anderson et al., 2008; 
Cullot et al., 2019; Gauchier et al., 2020; Germini et al., 2018; Kawall et al., 
2020; Khan et al., 2017; Naeem et al., 2020; Newman et al., 2020; Peng et al., 
2016; Thomas et al., 2019a,b; Wienert et al., 2019). Our inability to master these 
techniques is such that it is still recommended to continue working with TALEN 
for some species rather than with CRISPR-Cas (Jain et al., 2021; Khalil, 2020).

The method of delivery of nucleases may also play a role in leaving a distinct 
signature or scar. For instance, when expressed via a plasmid, a highly specific 
Cas nuclease may be disappointing when delivered as an RNP (Ates et al., 
2020). Depending on the applied dose, RNPs can generate different amounts of 
microdeletion signatures (Momose et al., 2018). Similarly, the delivery of TALENs 
as either DNA or mRNA impacts the unintentional modifications (Jansing et al., 
2019). Once again, a systematic study on the same model of the three forms 
of reagents (DNA, mRNA and RNP) of the nucleases and their variants should 

11  Genome Wide Association Studies
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establish a typology that can be used to identify the NBT used. Moreover, the 
RNAs used generally contain DNA that either contaminates or stabilises the 
RNAs to be introduced (Bertheau, 2019; Jansing et al., 2019). As already noted, 
the stabilising DNA from these frequent DNA/RNA hybridizations can integrate 
into the genome even during transient expressions. Therefore, the knowledge 
of reagent delivery through patents and risk assessment dossiers would help 
identify the residues and scars of these modifications.

The integration sites can also participate in the signature patterns: as in 
transgenesis, SDN3-type integrations, which induce many unintended effects 
(Schnell et al., 2015), aim to target a ‘safe harbour’, such as AAVS1 and Rose26 
in animals, for stable insertion and expression. Such safe harbours are quite 
unknown in plants, except possibly in one case of rice, but systematic studies 
would most likely identify new ones (Altpeter et al., 2016; Cantos et al., 2014; 
CGB, 2004; Papapetrou and Schambach, 2016; Pérez-González and Caro, 
2019; Schaart et al., 2016). Insertions at these locations actively sought by 
breeders would participate in the signature of an artefactual event. Otherwise, 
integrations are almost performed at rearrangement, gene-rich sites, distal 
and often telomeric and subtelomeric chromosomal regions (Filipecki and 
Malepszy, 2006; Svitashev and Somers, 2002). These are fragile areas, such as 
telomere derived ITRs, some of which are recombination hotspots or teloboxes 
(Aguilera and García-Muse, 2013; Dvořáčková et al., 2015; Yaish, 2017). Such 
characteristics may also be a part of the set of signatures or scars of genetic and 
epigenetic changes.

Nuclease-encoding DNA insertions are still the most efficient modification 
system. Such an insertion-based system imperatively requires regulation 
(induction or repression) systems of gene expression to avoid further 
unintentional cuts (Canny et al., 2018; Chen et al., 2017). Alternatively, the Cas 
inhibitors may also be inserted (Davidson et al., 2020; Marino et al., 2020). 
Such inhibitory or regulatory systems can then be retrieved as signatures in the 
progeny of modified plants.

The variants of the nucleases (dCas9, prime editing, base editor, etc.) do 
not seem to modify the ability to identify signatures. Moreover, these variants 
can also increase the frequency of off-targets (Jansing et al., 2019). Indeed, 
modifications of enzymes such as a base editor would cause up to 20 times 
more off-targets than Cas9. Some of these techniques that work well in cell-
free systems are disappointing when applied to in vitro cultures due to the 
interference of cellular mechanisms and many unintended alterations and off-
targets are then generated (Ahmad et al., 2020; Ates et al., 2020; Jin et al., 
2019; Zuo et al., 2019).

Careful sequencing allows the detection of other unintentional modifications 
(Frock et al., 2015), which, like off- and on-target effects, depend on many 
factors (Modrzejewski et al., 2020; Modrzejewski et al., 2018; Modrzejewski 



 Identifying GM plants: detection of ‘hidden’ and ‘new’ GMOs20

Published by Burleigh Dodds Science Publishing Limited, 2022.

et al., 2019). These unintended effects, the sources of signatures, appear more 
frequent than initially expected, despite the lack of strategies to detect them 
(Burgio and Teboul, 2020). Their exceptionally high number leads to what some 
have called ‘genome chaos’ (Ledford, 2020). In other cases, the number of 
copies which participate in the signature may increase (Skryabin et al., 2020).

As the number of genes to be incorporated in the germplasm increases, 
the associated breeding programs become more complex. It is, therefore, 
desirable for plant breeders to integrate at one time multiple traits at a few 
defined loci, preferably safe harbour, to facilitate subsequent breeding efforts. 
This proximity of stacked traits will be in itself a sign of an artefactual modification 
transmitted to the progeny. Moreover, the SDN3 or transgenic stacks could be 
gathered in clusters and delivered by a stack vector rather than being brought 
about by intricate crosses of Elite varieties which is another kind of artefactual 
signature (Glenn et al., 2017; Que et al., 2014),.

The combination of sequencing, off-target prediction software, and other 
tools, such as artificial intelligence, would allow such NBT-induced modifications 
to be easily identified (Billon et al., 2020; Manghwar et al., 2020; Ravindran, 
2018).

3.5  The issue of false positive

As in any mutagenesis technique, false positives of NBT are numerous, while 
reproducibility is not the topical aim of biotechnologists (Bortesi and Fischer, 
2015; Lomov et al., 2019). The reality of the transformation must be verified 
because somaclonal variation can, in some cases, account for the observed 
phenotype (e.g., tolerance to an herbicide) (Anderson et al., 2008; Birch, 1997; 
Liu et al., 2012; Potrykus, 1991).

Numerous false positives and unintended effects undermine the reliability 
and acceptance of these techniques, as recently observed for Cibus’ canola 
(Dong and Sharp, 2007; Oh and May, 2001; Ruiter et al., 2003; Voosen, 2010). 
The Cibus canola was one of the herbicide-tolerant crops (‘hidden’ GMO), 
which led to the 2015 French legal suit. Since 2003, Cibus seems to be the only 
company to continue using the OdM technique on plants, a proprietary method 
called RTDS12 with more than 300 patents claimed (Beetham et al., 1999; 
Beetham et al., 2014). The announced success led to the commercialisation of 
sulphonylurea-tolerant rapeseed that was the subject of an intense advertising 
and lobbying campaign with the European authorities (Editorial, 2015, 2017a; 
Fladung, 2016; Gocal, 2014; Hartung, 2020; Sauer et al., 2016; Songstad 
et al., 2017). However, following the publication of an article describing how to 
detect it (Chhalliyil et al., 2020), this canola was ‘downgraded’ by the company 

12  Rapid Trait Development System™
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and Canadian Agencies to the status of an in vitro culture somaclone. This false-
positive joins the doubts expressed for years by various authors on this NBT 
technique’s efficacy in plants (Dong and Sharp, 2007; Ruiter et al., 2003). As for 
Cibus, pressed by a concern for a rapid return on investment, companies may 
even patent data that do not correspond to the technical and claimed reality 
(CGB, 2004; Seymore, 2018), which can lead to wrong tracks in detecting these 
products and, at the very least, waste much time and money. Distinguishing and 
quickly eliminating these false positives and negatives is essential to assess the 
reliability of the candidate scars and signatures for the detection/identification 
of NBT products. Currently, scientific papers and patents do not appear reliable 
enough, meaning that the analysts will have to gather experimental data unless 
mandatory legal obligations are set out.

New techniques for modifying genomes and epigenomes require either 
tissue transformations (in vivo or in vitro) or in vitro cultures of isolated cells. The 
latter is generally preferred for the supposed absence or reduction of mosaicism 
in regenerated plants. This superimposition of unintentional modifications of 
the different steps increases the difficulties of correlation between genotype 
and phenotype by its numerous false positives or negatives. Therefore, the 
interpretation of the results may be doubtful about the mode of production, 
generally presented in an opaque manner in patents (Seymore, 2018), as is 
reminded by the Cibus herbicide tolerant canola’s recent case. Aware of this 
problem, the European Patent Office (EPO) has recently clarified the claims to 
be made by applicants (Part F IV 23): ‘If a technical feature of a claimed plant or 
animal, e.g. a single nucleotide exchange in the genome, might be the result 
of either a technical intervention (e.g. directed mutagenesis) or an essentially 
biological process (a natural allele), a disclaimer is necessary to delimit the 
claimed subject matter to the technically produced product (see examples in 
G-II, 5.4.2.1, and G-II, 5.4). For the general principles governing disclaimers see 
H-V, 3.5, and H-V, 4’.

In other words, due to the extreme lack of transparency by companies, 
applicants will have to specify with their patent claims the techniques which 
they effectively used to obtain their product.

4  Transmission of detection targets towards commercial 
varieties

GMO proponents generally argue that unintended changes due to GMO 
production on non-recalcitrant genotypes and explants will be discarded 
during the time-consuming and costly backcrosses toward Elite varieties, 
which are the head of germplasms and commercial cultivars (European Group 
on Ethics in Science and New Technologies (EGE), 2021; Haut Conseil des 
Biotechnologies (HCB), 2017; Scientific Advice Mechanism (SAM), 2017). 
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However, the claim about the interest of this ‘cleaning’ step is counterbalanced 
by the contradictory wish of breeders to transform Elite varieties directly. In 
any event, the currently available data are not in favour of the efficiency of 
backcrosses to discard unintended changes, as we will see below.

4.1  Examples of the persistence of genomic and epigenomic 
scars and signatures through the backcrosses

Genetic and epigenetic modifications are primarily carried out on ‘laboratory 
varieties’, whose specific explant material is easily transformable and 
regenerable (Bidabadi and Jain, 2020; Birch, 1997; Rao et al., 2009). New 
trait(s) of interest are then introduced by backcrossing into Elite varieties before 
their transmission, through elaborate breeding schemes, into germplasm and 
commercial varieties (e.g. B73 is a founder of the Stiff Stalk germplasm pool 
of maize, while PH207 is a founder of Iodent germplasm). These ‘laboratory 
varieties’ (such as Hi-II (High type II callus production) for maize, Topaze for 
rapeseed, Golden Promise for barley, etc.) are quite widely used in the same 
way, according to the breeding companies’ practices and know-how (Harwood, 
2012; Lowe et al., 2016; Yadava et al., 2016). Therefore, it would be possible 
to trace back to Elite varieties and ‘laboratory varieties’ using the subsets of 
the markers used in the ISO and UPOV13 standards of cultivars’ identifications, 
as already seen for lab source and selection signatures (ISO, 2019a,b,c, 2015; 
UPOV, 2019a,b,c,d,e; 2011).

The general absence of whole-genome sequencing of transformed, Elite 
and commercial varieties and the wider consideration of the weaknesses 
in genome-wide variability and sequencing procedures make it impossible 
to judge the reality of the theoretical efficiency of genome cleaning by 
backcrossing, (Bayer et al., 2020; Danilevicz et al., 2020; Faino and Thomma, 
2014; Golicz et al., 2020; Kang et al., 2020). Imperfect consensus genomes 
are also used for ‘unbiased’ approaches for detecting off-targets and 
other unintended modifications. Sequencing depths generally remain too 
shallow, while fragment assembly and sequence comparison still show many 
weaknesses (Bertheau, 2019; Cleary et al., 2015; Datta et al., 2010; Steinegger 
and Salzberg, 2020). Thus, the sequence biases remain too numerous to assert 
that non intentional mutations are eliminated by backcrossing.

The national and regional agencies require several plant generations to 
assess the genomes’ stability of ‘transformation events’ in risk assessment. 
However, seven backcrosses are generally considered necessary, in an ideal 
genetic context (i.e. with only sequences segregating according to Mendelian 
laws), to achieve 96–98% genome similarity between the ‘converted’ variety 

13  https://www.upov.int/meetings/en/details.jsp?meeting_id=50791 .

https://www.upov.int/meetings/en/details.jsp?meeting_id=50791
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and the original Elite line, which would then be near-isogenic,14 according to 
the accepted expression. Even in the case of backcrossing, of supposedly fully 
independant traits or genes i.e. without haplotype etc., to reach the theoretical 
limit of about 98% varietal purity, more than 500 million base pairs in the case 
of wheat would not be affected by this genome ‘cleaning’ (Baltes et al., 2017; 
Bertheau, 2019; Glenn et al., 2017; Hedman et al., 2018; Holland, 2007; Hollick, 
2017; Kumar et al., 2014).

Generally speaking, the number of backcrosses needed to approach this 
theoretical purity varies according to numerous factors such as (i) the size of the 
haploid genomes, (ii) the pangenomes and (iii) degrees of ploidy, (iv) the alleles 
and pseudoalleles involved, (v) the number of known traits to be introgressed 
and conserved, (vi) the sizes and loci present in the non-Mendelian segregated 
regions, (vii) the proximity between the trait to be introduced (linkage drag) and 
those to be eliminated, (viii) the type of gene involved (plant defence reaction 
genes), (ix) the autogamy or not of the species or (x) the meiotic drive, among 
others (Ashapkin et al., 2016; Bertheau, 2019; Dulieu, 2005; Flint-Garcia, 2013; 
Flint-Garcia et al., 2003; Gao et al., 2016; Glenn et al., 2017; Golicz et al., 
2020; Liu et al., 2018; Kumar et al., 2014; Rodgers-Melnick et al., 2015; Xue 
et al., 2019). This ‘purification’ of the genome by backcrossing is finally more 
complicated with non-dominant traits. Hence, the use of selection by molecular 
markers and in vitro techniques such as immature embryo cultures, to avoid or 
simplify this lengthy and costly backcrossing. The relative interest of this long 
enumeration of factors affecting the theoretical value stated for back-crossings 
was just to remind us of some of the very many factors affecting this value. 
In most cases, genome cleaning by backcrossing will remain well below this 
theoretical value, as most of the elements are not carefully evaluated despite 
the companies’ know-how. Thus in the majority of cases, many scars will be 
conserved and passed on to subsequent generations, i.e. toward the cultivar.

The lack of standardised binding guidelines for examining unintended 
modifications and their subsequent elimination or transmission is a significant 
shortcoming of applied mutagenesis. As Jansing15 reminds us regarding the 
detection and elimination of unintended changes, ‘It is a question of which 
method you have the equipment and the know-how for’.

Accordingly, numerous examples show that the Elite and commercial 
varieties can still incorporate the scars and signatures of the transformed 
lines. The profiles of the recombination hotspots of these ‘laboratory varieties’ 
(variable-rate by a factor of 1000 within the maize genome) can be established 
(Rodgers-Melnick et al., 2015; Rodgers-Melnick et al., 2016). Changes in sites 
with low recombination rates would thus signal artefactual changes. Despite its 

14  are strains which genetic makeups are identical except for few specific locations or genetic loci.
15  https :/ /ww  w .the  -scie  ntist  .com/  lab -t  ools/  new -m  ethod  s -to-  detec  t -cri  spr -o  ff -ta   rget-  mutat  ions-  30013  

https://www.the-scientist.com/lab-tools/new-methods-to-detect-crispr-off-target-mutations-30013
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technical weaknesses, variety sequencing can trace breeding history through 
SNPs, and probably SMP and MNV (Liu, Z. et al., 2020; Wachsman et al., 2017; 
Wilkesa et al., 2016).

More prosaically, scars can be preserved in the offspring for cost reasons 
and market conquest or conservation, by carrying out an insufficient number 
of backcrosses (Briggs, 1938; Glenn et al., 2017; Luna and Dowd-Uribe, 2020). 
Genome cleaning by backcrosses is also rather impossible for slow-growing 
plants such as trees. It is also inapplicable to vegetatively propagated plants, 
for which various alternatives are being tested (Ahmad et al., 2020).

As the ‘memory’ of water stress reminds us, many of these modifications, 
unintentional, even of somatic origin, are transmitted to the descendants, 
and therefore, are usable in detection (Hofmeister et al., 2020; McCarthy 
et al., 2020; Plomion et al., 2018; Wang et al., 2019). Unlike animals, somatic 
mutations in plants can be transmitted to their progeny (Schoen and Schultz, 
2019; Simberloff and Leppanen, 2019), while these spontaneous mutations 
are dependent on the parents of the hybrids (Bashir et al., 2014). Conversely, 
the heritability of the modifications due to CRISPR-Cas9 and its efficacy varies 
(Mao et al., 2017). More generally, the estimation of the heritability of the traits 
of interest, and the unintended changes, is highly variable, which weakens 
what is expected from the theoretical efficiency of backcrosses (Visscher et al., 
2008).

The intergenerational transmission of unintentional changes also applies 
to epigenomes (Sharma, 2013). Indeed, DNA methylation polymorphism due 
to in vitro cultures can be preserved after more than six backcrosses (Filipecki 
and Malepszy, 2006; Kumar et al., 2014). Conservation over 13 generations 
of expected transient modifications is also observable in animals (Svoboda, 
2020). Part of the non-Mendelian heritability, such as maternal effect, is now 
attributed to transmissible RNAs, never reported in risk-evaluation studies. 
These paramutations are responsible for at least some transmissible epigenetic 
regulation (Bonduriansky and Day, 2009; Grandjean et al., 2013; Liebers 
et al., 2014; Roach and Wulff, 1987). Moreover, it has long been recognised 
that methylation blocks, the DMR’s, present patterns characteristic of species 
and cultivars influenced by the cells’ history (Ashapkin et al., 2016; Eichten 
and Borevitz, 2013; Eichten et al., 2013; Li, Y. et al., 2017; Xu et al., 2020). 
The degree of DNA methylation is one of the causes of the recombination 
hotspots, self-recognition, and signature of sequence insertions, as mentioned  
earlier.

GWAS studies allow the analysis of the many past events that have 
affected genomes. New elements are expected to become available with the 
sequencing in progress (1000 and 10 000 genome projects) followed by the 
1000 epigenomes already proposed (Ashapkin et al., 2016; Koch, 2016; The 
1001 Genomes Consortium, 2016; Van de Peer and Pires, 2018). The resulting 
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evolutionary selection signatures16 can then differentiate between natural and 
artefactual mutations (Ayalew et al., 2020; Stephan, 2019; Xie et al., 2015). More 
generally speaking, the cell lines can be distinguished by the inheritance of 
certain traits almost independently of (back)crosses (Bertheau, 2019; Braatz 
et al., 2017; Burian et al., 2016; McKenna et al., 2016; Yuan et al., 2018a,b). These 
modifications can be so well preserved that the laboratory at the origin of the 
induced changes can be identified (Alley et al., 2020; Nielsen and Voigt, 2018). 

These scars and signatures, which participate in identifying Elite varieties 
and cultivars and their past, despite (back)crosses, were previously mentioned 
about inbred lines, mostly due to breeders’ habits, know-how and available 
material. Such biomarkers are part of the identification methods of varieties 
currently standardised at the ISO and UPOV.

4.2  Distinguishing natural and non-natural modifications

One of the arguments often put forward against the regulation of NBT products 
is the inability to distinguish natural mutations, which are mutations that appear 
spontaneously without direct human intervention on the cells, from artefactual 
modifications caused by the techniques behind GMOs – whether exempt or 
not – an impossible distinction that might thus make this regulation inapplicable 
(European Group on Ethics in Science and New Technologies (EGE), 2021; Haut 
Conseil des Biotechnologies (HCB), 2017; Scientific Advice Mechanism (SAM), 
2017). However, these views do not consider the genomes and epigenomes 
from a holistic viewpoint but rather on the individual constituent levels. Several 
arguments have been provided above for differentiating artefactual from natural 
changes if the context is taken into consideration. Moreover, in vitro mutations 
can be distinguished from in vivo-induced changes by the lower frequency of 
the organisms’ chimaerism and mosaicism (Frank and Chitwood, 2016).

Biotic and abiotic stress-induced mutations and epimutations are 
transmissible and distinguishable from the spontaneous ones (Ashapkin et al., 
2016; Bednarek and Orłowska, 2020; Editorial, 2017b; Goldschmidt, 2014; 
Hahn and Nekrasov, 2019; He and Li, 2018; Kellenberger et al., 2018; Li, S. 
et al., 2017; Niederhuth et al., 2016; Perrone and Martinelli, 2020; Quadrana 
and Colot, 2016; Rath, 2018; Shahryary et al., 2020; Springer and Schmitz, 
2017; Vitti et al., 2013; Yaish, 2017).

The spontaneous mutation frequencies, neutral or not, classically reported 
would be 10−7 to 10−8, depending on the sequence considered. However, it is 
essential to clearly distinguish the mutation rates observed during experiments 
from the substitution rates, which are retained changes; a confusion often made 

16  Signatures of selection are defined as the reduction, elimination or change of genetic variation in genomic regions 
that are adjacent to causative variants in response to natural or artificial selective pressure.
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in expert reports (Exposito-Alonso et al., 2018). The substitution rates in plants 
are between 10−8 and 10−9 per site and generation, independent of the plants’ 
annual or perennial character (Dulieu, 2005; Exposito-Alonso et al., 2018; 
Whittle and Johnston, 2003). Moreover, the somatic mutations transmitted 
from the hybrids are dependent on the parents (Bashir et al., 2014; Dulieu, 
2005; Schoen and Schultz, 2019). In conclusion, the frequency of conserved 
spontaneous mutation is about one point mutation per haploid genome 
per generation for almost 700 epimutations per generation, which allows 
us to understand the excellent conservation of the tree genomes previously 
mentioned (Ashapkin et al., 2016; Kuhlemeier, 2017).

The molecular traces left in progeny define and identify histotypes, cell 
stratifications and lineages (Benítez et al., 2018; Bertheau, 2019; Burian 
et al., 2016; Ledford, 2017; McKenna et al., 2016; Scheres, 2001; Zhou et al., 
2020). Several tissue markers are thus able to trace the history of cells across 
generations. These induced markers have been effectively used in plant 
breeding since the 2000s, with the development of the TILLING technique and 
the corresponding variety identification by markers and selection signatures 
(Anderson et al., 2016; Gregory et al., 2008; Till et al., 2009; Flint-Garcia, 2013; 
McCallum et al., 2000a,b; Unterseer et al., 2014;).

In summary, any stress, biotic or abiotic, induces genetic and epigenetic 
modifications transmitted to the descendants, and the rest of this chapter aims 
to identify these unintentional modifications, verify that they are transferred to 
the descendants even in commercialised plants, and organise the resulting 
data to determine the corresponding GMOs and the technique behind them.

Epigenetic scars and signatures accompany all genomic scars and 
signatures of transgenic GMOs but are never documented in the risk assessment 
files (Ashapkin et al., 2016; Ben Ali et al., 2014; Doerfler, 2019; Filipecki and 
Malepszy, 2006; Vilperte et al., 2016; Waminal et al., 2013), while epimutations 
are known to favour mutations and vice-versa (Mendizabal et al., 2014; Ritter, 
and Niederhuth, 2021). As Doerfler (2019) pointed out, the genomic and 
epigenomic, temporary or transgenerational, sequelae of manipulations 
have never been systematically investigated while inducing genetic mutation 
susceptibility (Mendizabal et al., 2014).

As previously stated, current risk assessment has remained at the genetic 
knowledge level of the 1970s. In conclusion, a holistic view of genomes and 
epigenomes can easily differentiate traits from natural changes from traits due 
to artefacts.

5  Gathering the data into manageable decision tools
Identifying these signatures and their grouping into coherent sets is a science that 
remains to be developed despite the matrix approach’s routine successes (see 
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Chapter 4). The organisation and use of these coherent sets would be based on 
the multiparametric combination of signatures and scars, following the biometric 
strategies17 of the facial, iris or fingerprint recognition methods that are widely 
used (Bertheau, 2019; Liew et al., 2005; Menotti et al., 2015; Unar et al., 2014).

5.1  Databases and decision tools

In the case of NBT products, this screening could integrate the claimed traits, or 
even, according to the databases built and the feedback, other targets such as 
factors for identifying the families of varieties such as breeding signatures. The 
detection of other molecular targets to verify the artefactual nature of the NBT 
product would only be implemented occasionally, in the event of a challenge to 
the detected product’s GM nature. The convergent beam of evidence, possibly 
integrated into decision support systems, would make it possible to remove 
any ambiguity regarding natural or artefactual mutations.

5.2  Routine detection of ‘hidden’, transgenic and ‘new’ GMOs

Ideally, the identification and quantification of all kinds of GMOs should be 
performed without any additional cost. Thus, the best case would be that notifiers 
provide the reference material and methods to identify and quantify their products 
according to the current legislative frame on GMOs. We will consider below the 
worst case, that of unapproved GMOs, by considering all the biomarkers made 
available through the above text. A very simplified routine scheme is proposed in 
Fig. 2, using the matrix approach already described in another chapter in this book.

The situation for detecting unknown new GMOs is essentially similar to that 
for transgenic GMOs and biothreats targeted by biodefense (Hedman et al., 2018; 
Walper et al., 2018). The European experience with unknown transgenic GMOs 
proves its worth. Knowledge management and the matrix approach are already 
functioning (Arulandhu et al., 2016; Barbau-Piednoir et al., 2015; Cankar et al., 
2008; Chaouachi et al., 2005; Debode et al., 2019; Fraiture et al., 2020; Gerdes 
et al., 2012a; Holst-Jensen et al., 2013; Holst-Jensen et al., 2011; Holst-Jensen 
et al., 2012; Milbury et al., 2009; Nesvold et al., 2005; Prins et al., 2016; Ruttink 
et al., 2010; Tengs et al., 2010). The scientific and technological watch already 
plays a significant role in detecting uncontrolled dissemination, but NGOs and 
whistle-blowers are also essential and welcomed sources of information. It is up 
to the ENGL and the third countries’ scientists to take up these ‘new’ and ‘hidden 
GMOs’ for developing the necessary body of knowledge, as previously done for 
transgenic GMOs, and then to pass the validated methods to routine labs for 
compliance with the rules of the Cartagena protocol on Biodiversity .

17  https :/ /to  wards  datas  cienc  e .com  /biom  etric  -auth  entic  ation  -meth  ods - 6  1c966  66883 a 

https://towardsdatascience.com/biometric-authentication-methods-61c96666883a
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Accordingly, from a practical viewpoint, the routine labs would have 
only to use a quantitative PCR targeting the claimed trait(s). In the event of a 
dispute on the natural or artefactual origin of the feature, they could refer to 
the enforcement labs’ validation. It is only in the very few expectable cases of 
an intense dispute that the routine labs would have to perform some additional 
PCR on a few scars or signatures of the presumed GMO. The analysis costs 
would thus not drastically increase because, after a very probable phase of 
tests by the operators to assess the methods’ robustness, the results of the 
matrix approach identification scheme will not be questioned for long.

5.3  Signatures and scars in processed products

Processed food products often result in a mixture of components, making 
species no longer recognisable while reducing to extractible nucleic acids 
sizes. As GMO detection has proven so far, the biomarkers (species present) 
can be detected, and, above all, organised and used in a matrix approach. 
Identifying a GMO in a food processed from several species means that the 
analysts have to manage a larger matrix than previously performed. Design of 
experiments (DOE), machine learning, artificial neural networks, fuzzy logic, or 
genetic algorithms are some of the available tools to manage the big data that 
knowledge matrices could become (Alley et al., 2020; Nielsen and Voigt, 2018; 
Sivarajah et al., 2017; Yang et al., 2020; Yin et al., 2017). The management of 
millions of SNPs used in genomic selection show it is easily manageable.

Figure 1 of the previous chapter and Fig. 2 present very simplified data 
analyses schemes for identifying the GMOs of an agri-food product. Some 
determination criteria such as epigenetic and epitranscriptomic modifications 
have not been incorporated, for ease of reading. However, the principle remains 
the same: after organising the data, the analyses by dichotomous choices 
classically used in the detection of transgenic GMOs will allow, with the help 
of decision support tools (tables, DSS, artificial intelligence), to detect an NBT 
product, to verify that the traits used in the detection and quantification are not 
natural because they are integrated into an artefactual context, the unequivocal 
signature of the GMOs. The convergent flow of evidence given as an example 
in Fig. 2 is particularly illustrated in the case of an SDN1 or SDN2 modification; 
an SDN3 change would be identified by the univocal signature of the insert’s 
edge fragments, as for transgenic GMOs.

5.4  The issue of reference material

The availability of reference material could face two issues.
The first concerns the availability itself. Companies could refuse to provide 

reference material while arguing that third countries do not consider the 
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products of NBT as GMOs. Contentious situations will probably rise rapidly 
until the consumers’ attitudes towards those GMOs will be straightforward 
enough and the opportunities of the European markets considered relevant 
by the companies.

The second concerns the nature of the reference material.
The recent trend to develop alternative cost-effective and replicable 

reference materials, such as plasmids or amplicons, will hamper GMO detection 
capabilities. The newly defined GMOs need to be analysed in terms of the entire 
genome, and probably later the epigenome or even the epitranscriptome. 
Only DNA and RNA directly extracted from whole plant tissue could provide 
the several selection signatures, and the techniques, scars and signatures 
related to the method of mutagenesis, required by the several analyses to be 
performed in case of litigation. This need was already discernible for transgenic 
GMOs when considering the whole set of targets for the matrix approach (Ben 
Ali et al., 2018; Collonnier and Bertheau, 2004; Gruden et al., 2013; Taverniers 
et al., 2013). This general need to preserve reference materials comprising a 
complete, original genome and not PCR-amplified erroneous copies without 
specific epigenetic patterns will be just as prevalent with non-transgenic GMOs. 
Some promising screening techniques will facilitate these matrix approaches 
(Takabatake et al., 2020a,b).

Therefore, it is fundamental that the EU should reject, by appropriate 
regulation or recommendation, any reference material that does not provide 
a complete representation of the organism’s genome and epigenome, sensu 
lato. This obligation would make it possible to avoid the misadventures recently 
experienced with certain reference materials.

6  Proof of concept
We have provided numerous examples and references showing that the 
identification of artefactually induced or introduced traits could identify any 
GMOs without additional cost in routine. However, experimental proof is 
generally needed for proving these considerations.

At least two independent approaches are available to build up the proof of 
concept that scars and signatures of raw plant products can identify the natural, 
artefactual or mixed origin of a presumed GM product. The first one consists 
of an experimental approach for which ultra-deep sequencing differences will 
be sought between the presumed GMO and its closest supposed relative, 
to establish its identification/quantification profile. The ideal is a series of 
in extenso reproducible comparisons of different techniques on the same 
model organism. Data accumulation could also be achieved by comparing 
the numerous transgenic GMO-certified reference materials and their 
corresponding quasi-isogenic varieties. NBT products would then be added, 
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such as the non-browning GM fungus obtained by in vitro transient expression 
(data are not available to confirm that there is no unintended insertion) in 
protoplasts of a CRISPR-Cas insert, from the University of Pennsylvania.

The first products applying for NBT recognition might allow the study of 
the effects of several types of techniques. However, it has to be kept in mind 
that all those NBT products have been obtained by Agrobacterium delivery, 
with an additional in vitro stage, and are, therefore, for these two reasons, 
above all, GMOs. It is indeed the case for the DP-915635-4 maize to be 
examined by EFSA. DP-915635-4 is essentially a GMO for which CRISPR-Cas9 
was used in one of the processing steps to facilitate further introgressions. 
Those case studies could include: (i) the Calyxt soybean accepted as a ‘null 
segregant’ via a TALEN insertion mediated by an Agrobacterium insert, (ii) 
the Del Monte ‘Rosé’ pineapple GMO with its pineapple and tangerine genes 
inserted via Agrobacterium,18 and (iii) Arctic® Fuji non-browning apple from 
Okanagan Specialty Fruit Inc. obtained by RNA interference and ‘cisgenesis’ via 
Agrobacterium plasmid insertion, (iv) the ‘cisgenic’ alfalfa KK179 from Monsanto 
and Forage Genetics International with altered lignin content via insertions 
by Agrobacterium, or finally (v) the antibrowning19 potato lines Innate™ from 
Simplot Co. obtained through ‘intragenesis’ and RNA interference mediated 
by several sequences inserted via Agrobacterium, potato lines that take over 
an already long series of failures.20 All these products show scars resulting 
from in vitro cultures, and for the most part, from the effects induced by the 
transformation of a modified Agrobacterium plasmid, itself a stress inducer, 
by double-stranded DNA cleavage, a biological mutagenesis tool as used for 
the Arabidopsis insertional mutagenesis collection by INRA Versailles (Gelvin, 
2017; Kleinboelting et al., 2015).

A second approach would gather the curated sequences of all GMO types 
present in the international databases. These big data could then be analysed 
by the species and mutagenesis category used to distinguish the similarities 
and differences, at least genetic, caused to species not mutated by man. 
Despite the numerous errors present in the sequence bases (Bertheau, 2019; 
Steinegger and Salzberg, 2020; Tang, 2020), the large number of sequences 
available, whether or not from GMOs, should, with a reasoned use of various 
statistical and DSS software and artificial intelligence, make it possible to 
distinguish scars and signatures (Alley et al., 2020; Block et al., 2013; Cadzow 
et al., 2014; Guillot et al., 2014; Interdonato et al., 2020; Koumakis, 2020; 
Nielsen and Voigt, 2018; Yang et al., 2020). Finally, some experiments should 
be enough to demonstrate the universality of the concept.

18  After 6 years of work
19  Less prone to bruising and black spot browning with a lower asparagine content, that turns under very high 

temperatures into acrylamide.
20   https :/ /en  .wiki  pedia  .org/  wiki/  Genet  icall  y _mod  ifi ed  _pota  to 

https://en.wikipedia.org/wiki/Genetically_modified_potato
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7  Conclusion
Non-exempt GMOs are derived from mutagenesis techniques that had not 
been proven safe for an extended period before 2001. In vitro somaclonal 
variation and random-induced mutagenesis release well-known differentiable 
GMOs. NBTs are a heterogeneous set of techniques ranging from backcrossing 
between GM and non-GM varieties to grafting between GMOs and non-
GMOs, and cell transformation by nucleic acids with or without nucleases. 
The circulating molecules and genomic and epigenomic residues are crucial 
elements in the analytical traceability of these GMOs. Transgenesis and genome 
editing techniques share common basic in vitro techniques and biases, which, 
with other NBT techniques, make them currently GMOs.

The SDN1,21 SDN2 and SDN3 (Sprink et al., 2016) modifications do 
not fundamentally differ from each other. They all rely on natural and error 
prone DNA repair processes (NHEJ, Microhomology-Mediated End-Joining 
(MMEJ), or Homology Directed Recombination (HDR)) that are not mastered 
by related empirical techniques such as cell transformation conditions. 
These NBT techniques induce off- and on-target errors, from point mutation 
and indels to structural chromosomal mutations. The SDNs generate 
numerous genetic stresses at the origin of, for example, (i) transpositions 
of mobile elements, (ii) distal genetic modifications, (iii) epimutations, (iv) 
copy number variations, (iv) integration of plasmid vector and chromosome 
sequences such as Agrobacterium (the most efficient and still most widely 
used vector) or biolistically fragmented inserts transcribed in different sizes. 
SDN3 modifications are the holy grail for users of these nuclease techniques, 
a goal that is difficult to achieve because they are highly dependent on 
cell conditions (cell history, phasis and origin, transformation, and culture 
conditions), all of which contribute to the creation of specific scars and 
signatures.

Off-targets are generally poorly detected due to their research biased 
by misusing imperfect prediction software and comparator genomes or 
using inappropriate prediction and NGS22. The numerous modifications and 
combinations of the various enzymes (hifiCas9, dCas9, i.e., nickase, base 
editing, prime editing, Cas12a, Cas12b, etc.) make it even more complicated 
to predict unintended effects, but always with scars and signatures. Moreover, 
some dramatic unintended changes such as chromothripsis look to be induced 
by related techniques and CRISPR-Cas9.

As Germini et  al. (2018) pointed out, the comparison of techniques on 
the same plant models has unfortunately never been carried out. It would, 

21  Sequence directed nuclease (instead of the misleading ‘site’ directed nuclease)
22  Next Generation Sequencing
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however, shed light on the types of scars and signatures of all NBT examples. 
It would allow scientific verification of whether the matrix approach to scars 
and signatures enables identifying the NBT products and their techniques, 
following the example of what is done at ISO and UPOV to identify varieties. 
These same tools and strategies used for years by firms can manage several 
millions of SNPs, which gives an idea of their capacity, adaptable for SMPs and 
MNVs, and usable in identifying GMOs of all kinds.

It is almost certain that efficient management of the numerous different 
characteristics of the GMOs, from random mutagenesis to genome editing, 
would endly allow analysts to identify the technique at the origin of each 
GMO.

While we are only beginning to be concerned about detecting products 
from techniques that are about a decade old, new candidates could once 
again shake up the landscape of genome editing. The question of whether 
other elements of genome integrity preservation, such as the new ‘retrons’ or 
old ‘targetrons’ or the Cre-Lox recombinase system, will still be relevant in the 
context of a ‘retrohoming’23 with restricted or problematic fields of application, 
takes the forefront (Andrusaite and Milling, 2020; Cech, 1990; Enyeart et al., 
2013; Lambowitz and Zimmerly, 2004; Millman et al., 2020; Pennisi, 2020a,b; 
Vakulskas and Behlke, 2019).

Such a proliferation of molecular tools modified in all directions by 
numerous laboratories without rigorous controls or reproducibility studies 
pleads for a strict application of the precautionary principle. All the scientific 
and technical elements for reliable traceability of ‘hidden’ and ‘new’ GMOs 
are available, only the political will to implement this traceability required by 
consumers is missing. But the problem with NBT products is probably more 
economical than in terms of unintended environmental or health effects and 
modifications. Not considering NBT products as GMOs would mean not 
having to provide the sequences of the inbred or modified traits and their 
origin. This absence of control by risk assessment agencies would allow 
these companies to benefit from the digital information available in private 
and public sequence databases and not have to share the benefits with 
other countries and communities, especially indigenous ones, according to 
the International Treaty on Plant Genetic Resources for Food and Agriculture 
(ITPGRFA) agreements, which are part of the biodiversity protocol. Without 
access to these detectable sequences and analysis by the CBD, countries and 
communities would be hard-pressed to prove that their genetic resources 
have been plundered.

23  https :/ /ww  w .vec  talys  .com/  blog/  lenti  flash  -is -a  -fast  -and-  safe-  gene-  editi  ng -de  liver  y -tec  hnolo  gy -fo   r -cre  -loxp  -mode  ls 
-64 0 

https://www.vectalys.com/blog/lentiflash-is-a-fast-and-safe-gene-editing-delivery-technology-for-cre-loxp-models-640
https://www.vectalys.com/blog/lentiflash-is-a-fast-and-safe-gene-editing-delivery-technology-for-cre-loxp-models-640
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8  Where to look for further information
Beyond considerations of risk and application of the precautionary principle 
claimed by the European Union (https :/ /eu  r -lex  .euro  pa .eu  /lega  l -con  tent/  EN /TX  
T/ ?ur  i =LEG   ISSUM  %3Al3  2042), understanding the political and economic stakes 
underlying the absence of reactions from the European Commission between 
2007 (https :/ /ww  w .wur  .nl /e  n /Pub  licat  ion -d  etail  s .htm  ?publ  icati  onId=  publi  catio  n  
-way  -3338  38353  939) and 2020 is essential to understand its repeated refusal of 
the ENGL's proposals to work on the analytical traceability of NBT products. (https 
:/ /ww  w .inf  ogm .o  rg /72  28 -co  mmiss  ion -a  -refu  se -tr  avail  -expe  rts -t  racab   ilite  -nouv  
eau -o  gm, https :/ /ec  .euro  pa .eu  /food  /plan  ts /ge  netic  ally-  modifi  ed -o  rgani  sms /n  ew 
-te  chniq  ues - b  iotec  hnolo  gy _en , https :/ /pu  blica  tions  .jrc.  ec .eu  ropa.  eu /re  posit  ory /
h  andl e  /JRC6  7059, https :/ /pu  blica  tions  .jrc.  ec .eu  ropa.  eu /re  posit  ory /h  andl e  /JRC9  
5246, https :/ /pu  blica  tions  .jrc.  ec .eu  ropa.  eu /re  posit  ory /h  an dle  /JRC6  9121).

The position of the Commission and of some Member States seems to be a faith-
ful reflection of the positions of the seed industry and other lobbies, who claim that 
any labelling would be discriminatory (https://www .nbtplatform .org/, https :/ /ww  w .sci  
enced  irect  .com/  journ  al /ne  w -bio  techn  ology  /vol/   40 /part/PA , https :/ /www.eur  opean  
scien  tist.  com /e  n /fea  tures  /the-  place  -of -e  urope  -in -t  he -ne  w -pla  nt -breeding -lan  dscap  
e -ev o  lutio  n -of-  field  -tria  ls/, https :/ /ww  w .eur  opabi  o .org  /genome -ed  iti ng  -faq/ , https :/ /
on  linel  ibrar  y .wil  ey .co  m /doi  /full  /10 .1  111/ropr .1  2366, https :/ /eu  rosee  ds .eu  /the-  socio  
-econ  omic-  and -e  nviro  nment  al -va  lue -o  f -pla  nt -br  eedin  g -in-   the -e  u -key  -find  ings/ ).

The current absence of analytical methods to control GMO and non-GMO 
products will hamper the ability to segregate products and therefore to ensure 
the coexistence of GMO and non-GMO supply chains between products 
intended for food, industry or pharmaceutical production. It will also hamper 
the freedom of choice of European consumers (Bertheau, 2013, 2019).
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