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1  Introduction
1.1  Knowledge domains of monitoring and forecasting 

research

Integrated pest management (IPM) is repeatedly characterized as a knowledge-
intensive approach for plant protection. Thresholds for interventions and 
sampling	for	pest	occurrence,	the	results	of	which	inform	whether	a	threshold	
has	been	 reached,	 form	 the	 foundation	 and	 central	 organizing	principles	of	
all	 IPM	 activities	 (Castle	 and	Naranjo,	 2009).	 Information	 collected	 from	 the	
crop on occurrence or densities of pest(s) must be appraised in respect to the 
status	of	 the	crop	system.	The	system’s	status	concerns,	among	other	 things,	
crop phenology and its associated sensitivity to pests compared with pest 
density	and	prevailing	and	forecast	weather	conditions	that	will	influence	pest	
development.

Based	on	the	information	collected	and	its	appraisal,	a	decision	needs	to	be	
made:	whether	or	not	to	intervene	and	how	to	intervene?	Decisions,	in	turn,	are	
appraised	through	a	socioeconomic	filter:	crop	value,	cost	of	intervention,	the	
farmer’s	level	of	risk	taking	and	ecological,	economic	and	social	considerations	
of	 the	sustainability	of	crop	production.	Farming	objectives,	 the	farmer’s	and	
society’s	values	and	attitudes	and	the	farm’s	economic	situation,	all	modulate	
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the	selection	of	tools	needed	for	information	collecting	and	appraisal,	as	well	
as the decisions made based on that information.

To	 develop	 efficient	 tools	 for	 the	 implementation	 of	 monitoring	 and	
forecasting	 in	 practice,	 we	 need	 scientific	 research	 and	 knowledge	 and/
or technological innovations from at least four different domains (Fig. 1): 
(1)	 biology	 and	 ecology	 of	 the	 pest	 and	pest	 identity;	 (2)	 pest	 detection	 to	
estimate	 the	 pest’s	 density	 or	 proportion	 of	 infested	 sampling	 units;	 (3)	
evaluation of the data on pest densities for decision-making with the help of 
pre-established	reference	thresholds	that	bring	bioeconomics	into	the	picture;	
and (4) forecasting of anticipated pest developments within and/or between 
the	growing	seasons.	In	the	case	of	invasive	pests,	detecting	and	forecasting	
concern also their dispersal and establishment in new geographical regions. 
Forecasting	can	 in	some	cases	replace	direct	pest	detection,	but	more	often	
these two domains complement each other: forecasting results inform the 
grower about when and where to start monitoring.

At this point one thing must be made clear. Sampling and monitoring 
are	 not,	 strictly	 speaking,	 the	 same	 thing.	 Sampling	 is	 a	 one-time	 process	
of acquiring necessary information on the real-time pest status of a crop by 
using a sampling protocol (plan). Pests can be sampled for example by directly 
counting	them	on	crop	plants,	by	vacuuming,	sweeping	or	beating	to	remove	
pests	from	plants	for	counting,	or	by	destructive	sampling	by	removing	whole	

Figure 1  Four	 knowledge	 domains	 needed	 to	 develop	 tools	 for	 monitoring	 and	
forecasting	 insect	 pests.	 Identified	 challenges	 are	 listed	 after	 the	 domain	 name.	 EIL,	
economic	injury	level;	ET,	economic	(damage)	threshold;	AT,	action	threshold.	The	arrows	
indicate the dependence of the domains on each other (see text for details).
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plants or plant parts for counting pests on them. Flying pests can be sampled 
using different types of traps: suction traps or traps that attract pests with 
colour,	light	or	odour	sources	and	that	are	equipped	with	a	sticky	surface	or	a	
vessel	filled	with	liquid	where	insects	are	trapped.	Depending	on	the	sampling	
method,	pest	 counts	 are	either	 absolute	or	 relative.	Monitoring	denotes	 the	
use of a sampling plan sequentially in time to monitor the change in the 
density of the target pest population – such repeated sampling can be called 
cascaded	sampling.	(Binns	et	al.,	2000).	Pest	forecasting	concerns	the	predicted	
occurrence and/or activity of biotic agent(s) that could cause economic 
damage	to	a	crop,	usually	in	the	near	future.	Forecasting	is	customarily	based	
on the knowledge concerning the impact of weather or climate on pest 
biology	(Olatinwo	and	Hoogenboom,	2014)	 in	order	to	predict	the	timing	of	
pest	attack	or	pest	population	development	(Finch	et	al.,	1996;	Phelps	et	al.,	 
1993)

The arrows in Fig. 1 depict how the four knowledge and technology 
domains associated with pest monitoring and forecasting interact with each 
other.	 Knowing	 the	 pest’s	 biology,	 ecology	 and	 behaviour	 and	 being	 able	
to identify it are necessary for developing reliable detection methods and 
decision-making	 tools.	 Economic	 injury	 levels	 (EILs)	 and	 economic	 damage	
thresholds	 (ET)	 cannot	 be	 developed	 without	 understanding	 how	 the	 pest	
utilizes its plant resources in comparison with farmers’ goals regarding those 
resources.	Each	method	of	detecting	the	pest	requires	associated	knowledge	
on the relationship between pest counts and economic damage to the plant 
population. The nature of the economic damage imposes requirements on the 
nature of detection methods (e.g. how early the pest must be detected so as to 
be	able	to	manage	it	with	the	existing	tools	for	intervention).	Pest	identification	
issues	 are	 often	 intricately	 related	 to	 the	 detection	method,	 since	 the	 latter	
influences	the	condition	in	which	the	pest	is	available	for	identification	and	how	
many	other	species	interfere	with	the	identification	task.

The	 biological,	 ecological,	 phenological	 and	 sometimes	 even	 genetic	
fundamentals of the pest must be known so as to be able to develop forecasting 
models that accurately predict pest emergence and population dynamics. The 
forecast	results,	in	turn,	contribute	to	or	wholly	enable	decision-making	concerning	
interventions and their timing. Simulation models may reveal important new 
aspects	of	the	pest’s	behavior,	biology,	ecology	and/or	bioeconomics	that	would	
be very laborious and resource-demanding to study empirically.

1.2  Mini reviews on 12 pest species to collect information on 
bottlenecks and challenges in the knowledge domains

For	this	chapter,	the	way	of	identifying	the	bottlenecks	and	challenges	concerning	
monitoring and forecasting was as follows: a total of 12 key insect or mite 
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pests	of	seven	important	fruit,	berry	and	vegetable	crops	–	apple,	strawberry,	
cruciferous	vegetables,	onion,	tomato	+	cucumber	and	carrot	–	were	chosen	for	
mini reviews on their status of monitoring and forecasting (Table 1). These pests 
included species that directly damage the end product and those that damage 
only	non-saleable	parts	of	the	crop.	Whiteflies	were	chosen	as	pests	for	a	closer	
case	study,	as	the	author	is	most	familiar	with	their	biology	and	management.	
Through	the	12	mini	reviews,	 it	was	possible	to	obtain	a	picture	of	 the	status	
of research and implementation of monitoring and forecasting in horticultural 
crops	 that	 form	 important	 parts	 of	 the	 human	 diets	 all	 over	 the	 world,	 with	
emphasis	on	the	boreal,	temperate	and	Mediterranean	climate	zones.

Literature	 searches	 were	 made	 for	 the	 chosen	 pests	 on	 the	 status	 of	
the	 methods	 for	 their	 practical	 identification	 and	 detection	 and	 sampling	
programs,	 and	 also	 decision-making	 tools	 and	 forecasting	 of	 phenological	
development	or	population	dynamics.	The	status	of	knowledge	on	the	biology,	
ecology,	etc.,	of	the	pests	was	reviewed	only	to	the	extent	that	was	necessary	
to understand why there were bottlenecks in the above knowledge domains. 
Based on reviewing the status of monitoring and forecasting for the chosen 
pest	species,	the	issues	depicted	in	Fig.	1	were	identified	as	crucial	ones	for	the	
development of monitoring and forecasting systems for pests of horticultural 
crops. Other issues could have emerged had the sample of crops and pest 
species been larger.

1.3  Overview of bottlenecks and challenges in pest monitoring 
and forecasting

Sampling	 and	 detection	 require	 time,	 labour,	 and	 identification	 skills	 (Binns	
et	al.,	2000).	There	is	a	tendency	for	farmers	and	scouts	to	try	to	minimize	the	
time needed for sampling based on in situ counts and checking traps (Agnello 
et	 al.,	 1994;	 Hamilton	 et	 al.,	 2004;	 Rincon	 et	 al.,	 2020).	 At	 the	 same	 time,	
farmers’	tendency	for	risk	aversion	is	influenced	by	the	‘uncertainty	associated	
with	pest	sampling	and	forecast	 information’,	EILs	and	ETs	(Gent	et	al.,	2011;	
Milner-Gulland	 and	 Shea,	 2017).	 Uncertainties	 are	 caused	 by	 for	 example	
yearly	 trends	 in	 commodity	 values	 (Damos,	 2014)	 and	 abiotic	 and	 biotic	
conditions	that	influence	pests	and	natural	enemies,	efficacy	of	pesticides,	yield	
levels and losses and the correlation between pest densities and economic 
losses	 (Johnson	 et	 al.,	 1992;	 te	 Beest	 et	 al.,	 2013).	 If	 exact	 information	 on	
these variables is not available at the time of sampling and forecasting pest 
population	development,	the	inclusion	of	their	variance,	by	way	of	a	probability	
distribution,	 in	 calculations	 of	 ETs	 can	 be	 used,	 instead	 of	 explicitly	 known	
values.	This	results	in	probabilistic	EILs	(Peterson	and	Hunt,	2003),	which	instead	
of	taking	mean	values	for	the	parameters	C,	V,	I	and	D	in	the	EIL	function	(see	
Fig.	2),	use	the	whole	range	of	probabilities	for	values	of	these	variables.	For	
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growers	this	means,	for	example,	that	they	can	choose	from	different	levels	of	
EILs	depending	on	their	risk	aversion	level.	A	risk-averse	grower	could	choose	
a	lower	EIL	that	occurs	only	25%	of	the	time,	due	to	uncertainties	associated	
with	the	above	variables	(Higley	and	Peterson,	2009).	Probabilistic	EILs	and	ETs	
are	rare,	although	they	would	address	the	very	problem	of	uncertainty	of	EILs	
and	ETs	and	farmers’	risk	aversion	and	its	consequences	for	decision-making.	
Uncertainty	of	information	tends	to	result	in	treating	the	crop	even	when	there	
would	be	no	need	to	treat	it	(Gent	et	al.,	2011;	McRoberts	et	al.,	2011)	or	taking	
control	actions	before	pest	 forecasts	 recommend	 taking	action	 (Evans	et	al.,	
2017;	Möhring	et	al.,	2020).	For	farmers,	the	value	of	information	about	yield	
prospects and not suffering yield losses tends to be higher than that about pest 
density	 (Pannell,	1994).	Farmers’	 risk	aversion	and	uncertainty	of	 information	
concerning pest numbers must be taken into account when developing and 
implementing	sampling/monitoring	and	forecasting	tools	(Evans	et	al.,	2017).

Pest	insect	identification	is	seldom	a	problem	with	traps	based	on	female	
sex	 pheromones	 that	 only	 attract	 males	 to	 the	 traps	 (Witzgall	 et	 al.,	 2010).	

Table 1 Pests	of	five	horticultural	crops	chosen	 for	mini	 reviews	 that	were	used	as	 the	basis	
of identifying bottlenecks and stalled research concerning the pest species’ monitoring and 
forecasting.	EILs	and	ETs	are	available	for	all	these	pest	species,	either	based	on	in	situ	counts	
or	counts	from	traps,	or	both

Crop
Pests causing direct damage 
to the end product

Pests causing indirect 
damage to the crop

Apple  1. Cydia pomonella (codling moth)1,2,5,6
 2. Argyresthia conjugella (apple fruit 

moth)1,2,4,5,6

 3. Panonychus ulmi 
(European	red	mite)4,5,6

Strawberry  4. Drosophila suzukii (spotted wing 
drosophila) 2,3,4,5

 5. Anthonomus rubi (strawberry weevil)2,4,5

 6. Phytonemus pallidus 
(strawberry mite)4,5,6

Crucifeours 
vegetables

 7. Delia radicum	(cabbage	root	fly)2,3,4,5,6
	 8. Plutella xylostella (diamondback moth) 

(direct pest in some crops)1,4,5,6

 10. P. xylostella (indirect pest 
in some crops)1,4,5,6

Onions  11. Delia antiqua	(onion	fly)	3,5,6

Carrot  12.  Psila/Chamaepsila rosae	(carrot	fly)3,6

Tomato and 
cucumber 
(greenhouse)

13.		 Whiteflies	(Trialeurodes 
vaporariorum 
greenhouse	whitefly,	
Bemisia tabaci 
sweetpotato	whitefly)3,4,5,6

1	Sex	pheromone	available	for	attracting	males	to	traps;	2Other semiochemicals available or under 
product	development	for	attracting	both	males	and	females,	either	alone	or	 in	combination	of	sex	
pheromones;	3Visual	traps	commonly	used	for	monitoring;	4Sampling plans available for in situ counts 
from	plants/soil	for	estimating	abundance;	5EILs	and/or	ETs	available	for	decision-making	at	least	in	
some	crops; 6Degree	day	or	phenology	models	available	for	predicting	emergence,	flight	peaks	and/
or	population	dynamics/trajectories,	at	least	in	some	crops/regions.	References	will	be	given	later	in	
the text.
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Sex	pheromones	are	available	for	all	 three	Lepidopteran	pests	mentioned	in	
Table	1,	but	not	all	pest	species	use	sex	pheromones	for	attracting	mates.	The	
performance	of	 sex	pheromones	 is	not	always	 sufficient	or	 it	 is	 too	variable,	
as with Plutella xylostella	 (Evenden	and	Gries,	2010);	 their	use	could	benefit	
from	combining	them	with	additional	semiochemicals	(Dai	et	al.,	2008;	Li	et	al.,	
2012).	The	high	selectivity	of	sex	pheromones	can	be	problematic,	 too.	With	
only	male	captures,	it	is	difficult	to	make	exact	projections	of	crop	damage,	as	
it is ultimately the females that are responsible for the damage. The correlation 
between	captured	male	counts	and	crop	damage	is	not	necessarily	very	good,	
thus the precision of trap catches in predicting damage needs improving for 
some	pests	(Adams,	2017).	Therefore,	it	is	desirable	to	also	attract	females	to	
traps but without attracting too many non-targets.

Usually	only	a	few	traps	based	on	sex	pheromones	are	used	per	orchard	or	
field,	but	even	so,	checking	them	still	takes	time	and	effort	and	requires	walking	
to the traps to check them. This issue is addressed nowadays with traps equipped 
with cameras to enable automated checking of traps and even automated iden-
tification	 of	 trapped	 insects	 (see	 Section	 2.1).	 Furthermore,	 the	 frequency	 of	
false negatives and overestimated positives (e.g. codling moth trapping) can 
be	high	with	single,	widely	spaced	traps,	adding	to	the	uncertainty	of	trapping	
results.	(Adams,	2017).	Males	entering	traps	baited	with	sex	pheromones	do	not	
always	 indicate	damage	potential,	even	 if	 thresholds	are	exceeded.	Knowing	
the pest’s biology and ecology is important. The apple fruit moth (Argyresthia 
conjugella)	lays	eggs	in	apples	only	when	there	are	insufficient	rowan	berries	for	
the	whole	female	population	(Kobro	et	al.,	2003;	Tuovinen,	1987).	It	is	therefore	

Figure 2  Phases	 of	 developing	 economic	 injury	 levels	 and	 economic	 thresholds	 for	
decision-making	in	pest	management.	Based	on	Radcliffe	et al.	 (2009)	and	Higley	and	
Pedigo (1996).
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important to know not only the number of males coming to traps but also the 
number of rowan berries available for egg-laying with respect to the estimated 
size of the female population. Methods exist for this and should be combined 
with	the	use	of	traps	(Edland,	1974;	Tuovinen,	1987).

Food baits or plant-derived kairomones alone may not be as effective 
at	 attracting	 insects	 as	 sex	pheromones	 (Landolt	 et	 al.,	 2007),	 and	 it	 can	be	
difficult	 to	 find	 the	 right	 kinds	 of	 combinations	 of	 substances	 that	 would	
function	equally	well	 in	all	plant	species	backgrounds	(Knudsen	et	al.,	2017).	
The chemical ecology of herbivores has been a thriving domain of science only 
since the 1990s. There are still surprises to be revealed about how herbivores 
interact	with	their	biotic	environment,	as	exemplified	by	the	recent	advances	in	
the chemical ecology of Drosophila suzukii.

Low	 sampling	 and	 trapping	 selectivity	 is	 an	 important	 bottleneck	 for	
reliable estimation of pest densities and can seriously hinder the uptake of 
sampling	plans	by	practitioners.	New,	more	efficient	solutions	for	detecting	and	
trapping	pests	lead	to	the	need	for	developing	new	EILs,	ETs/action	thresholds	
(AT).	The	ET	is	theoretically	dependent	on	the	EIL	(Pedigo	et	al.,	1986),	but	it	
is	very	common	for	an	ET	to	be	established	 in	 isolation,	as	a	practical	action	
level	 arrived	 at	 through	 experience	 or	 direct	 field	 testing.	 This	 is	 because	
substantial	research	is	required	to	derive	an	EIL	(Fig.	2),	so	revisions	of	ETs	are	
often	based	on	experimentation	 (Hamilton	et	 al.,	 2009a).	 Such	experimental	
revisions may be possible for combinations of different pests that occur in the 
crop	simultaneously,	but	once	natural	enemies	are	incorporated	into	EILs	and	
ETs,	mere	empirical	research	can	get	very	complicated.	Modelling	is	needed	to	
understand	how	natural	enemies	influence	pest	density	in	different	scenarios	
of pest population dynamics.

Determination	of	 EILs	 for	 crop	plants	 had	 its	 peak	period	 in	 the	 1980s,	
and	since	then	this	 research	activity	has	been	declining	(Castle	and	Naranjo,	
2009).	 The	 context	 for	 use	 of	 EILs	 and	 ETs	 is	 gradually	 changing	 due	 to	
removal of rapidly acting pesticides from the market for reasons of human and 
environmental	health	(Collier	et	al.,	2020).	Thus,	EILs	and	ETs	may	gradually	lose	
their importance as mere thresholds for curative intervention with pesticides. 
Binns	et al.	(2000)	consider	EIL	too	narrow	a	concept:	in	its	current	form,	it	does	
not	take	into	account	that	a	grower	may	have	other	values	than	profit	that	guide	
her/his decision-making.

With	increased	reliance	on	biological	control,	cultural	management	and	host	plant	
resistance,	pest	control	decision	rules,	and	especially	monitoring,	will	become	even	
more	 important.	Because	 it	 is	often	difficult	 to	quantify	 the	abundance	of	 natural	
enemies,	let	alone	predict	their	impact,	monitoring	[i.e.	repeated	sampling	on	time,	
particularly when there are multiple pest generations per growing season] is a useful 
tool for assessing the effectiveness of biological control.

(Binns et al., 1996)
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The	 incorporation	of	natural	enemies	 in	ETs	brings	along	several	 challenges	
related	to	the	uncertainty	of	factors	that	influence	the	EIL	and	ET	and	methods	
of	 threshold	 development.	 Growers	 in	 developed	 countries	 in	 particular	
tend	 to	 focus	 on	 economic	 returns	 and	 risk-averse	 management	 tactics,	 as	
explained	above.	Therefore,	they	may	consider	reliance	on	biological	control	
too	risky	(Giles	et	al.,	2017	and	references	therein)	unless	they	have	access	to	
reliable,	standardized	impact	data	reports	on	biological	control	efficacy	that	are	
comparable	across	cropping	systems,	just	as	pesticide	efficacy	tests	are	reported	
(Giles	et	al.,	2017).	According	to	Macfadyen	et al.	(2015),	when	assessing	the	
impact	of	natural	enemies,	the	timing	and	consistency	of	mortality	caused	by	
natural enemies between seasons can be more important than the magnitude 
of mortality attributed to them. Impact assessments must be tailored according 
to	 the	 needs	 of	 farmers	 and	 the	 specific	 pest	 problems	 they	 face	 so	 that	
natural	enemies	can	be	 incorporated	as	an	 integral	part	of	decision-making,	
particularly	upon	reliance	on	conservation	biological	control	(Macfadyen	et	al.,	
2015).	But,	 as	 these	 authors	 state,	 studies	on	 tangible	quantified	 impacts	of	
natural	enemies	associated	with	ETs	are	still	scarce.	Macfadyen	et al.	(2015)	list	
the challenges and key research questions associated with assessing the impact 
of natural enemies and describe methods to assess the impacts. Whether 
obtaining	 such	 impact	data	 is	possible	at	 all,	 and	under	what	 circumstances	
such	data	can	be	relied	upon,	is	a	matter	of	investing	in	empirical	research	and	
modelling	of	 the	 impact	of	 natural	 enemies,	 communicating	 the	 results	 and	
understanding farmers’ perceptions and approaches to IPM when developing 
EILs	 and	 ETs.	 EILs	 and	 ETs	 incorporating	 natural	 enemies	 will	 require	more	
thorough information on the role and biology of natural enemies in different 
crops	as	well	as	how	to	sample	for	them	(Giles	et	al.,	2017)	(Fig.	3).	This	calls	
upon	new	biological,	ecological	and	behavioural	research	on	natural	enemies	
and	the	factors	that	influence	their	performance.	Modelling	the	interaction	of	
pests and natural enemies also becomes more important than before in order 
to	be	able	to	incorporate	their	impact	into	EILs	and	ETs.	To	calculate	economic	
impacts	of	natural	enemies,	modelling	can	be	used	as	a	starting	point	to	create	
hypotheses that can be tested empirically in subsequent phases of research. 
One example is modelling the quantitative effects of entomopathogenic fungi 
in	reducing	yield	losses	of	cereals	by	aphids	(Saussure,	2019).

The development and use of new sampling protocols must be included 
in	the	skill	repertoire	of	crop	protection	researchers,	consultants	and	growers,	
and that also involves skills to use models for validation. Sampling methods 
for natural enemies must be developed and their robustness compared and 
established to satisfy the requirements of trustworthiness of sampling (Table 2). 
In	this	new	situation,	ensuring	the	practicality	of	sampling	can	become	an	issue,	
as it is challenging even now. The interaction between theory and practice will 
gain a heightened importance.
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Validation	of	 sampling	plans	 that	 include	 natural	 enemies	 is	 even	more	
important	 than	 validating	 sampling	 plans	 for	 pests	 alone,	 but	 Castle	 and	
Naranjo (2009) stated that validation of sampling plans is often not done 
despite the fact that methods have been available since the 1990s (Hamilton 
et	 al.,	 2009b;	Hull	 and	Beers,	 1990;	Naranjo	 and	Hutchison,	 1997).	 In	 2009,	
roughly	half	of	the	ETs	developed	were	not	accompanied	by	a	corresponding	
sampling	plan	 for	 their	effective	 implementation	 (Castle	and	Naranjo,	2009).	
This is unfortunate because validation is particularly important for sampling 
plans	developed	for	applying	a	decision	rule	involving	ETs,	the	corner	stones	
of	decision-making	in	IPM	(Castle	and	Naranjo,	2009).

Success of insect pest management actions is largely determined by 
the	 efficacy	 of	 the	 management	 action,	 the	 appropriate	 life	 stage	 of	 the	
pest	targeted	and	the	appropriate	timing	of	the	intervention	(Tonnang	et	al.,	
2017). Forecasting is undertaken to predict the timing of crucial events in pest 
lifecycles so that management actions can be applied when they are likely to 
be	most	effective	 (Collier	et	 al.,	 2020).	 Forecasting	 is	based	on	models,	 that	
is,	 representations	of	 the	 construction	 and	working	of	 systems	of	 interest.	A	
model must be both realistic and simple. Two general types of modelling 
approaches are commonly used for pest forecasting in IPM: mechanistic and 
statistical.	Mechanistic	models	 can	be	 theoretical	 (analytical),	 or	 they	 can	be	
simulation	models	 of	 a	 given	 specific	 system.	 Simulation	models	 are	meant	
for experimenting on how the output changes when input parameters and 

Figure 3  Phases	 of	 development	 of	 a	 formal	 validated	 sampling	 plan,	 with	 short	
descriptions of the empirical and probability models needed to obtain the required 
parameters in different phases and perform sampling. Including natural enemies in the 
sampling	will	add	a	new	layer	or	several	new	layers	to	the	picture,	depending	on	how	
many	natural	enemy	species	must	be	taken	into	account.	Based	on	Binns	et al.	(2000);	
Hoy	(1991);	Naranjo	(2008);	Pedigo	and	Buntin	(1993).
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configuration	 of	 input	 variables	 are	 changed	 in	 the	 system	of	 interest.	 They	
should preferably involve stochasticity (i.e. at least one of the input or output 
variables	 is	 probabilistic)	 (Maria,	 1997).	 In	 pest	 forecasting,	 the	 goal	 is	 to	
understand the role of different factors for the change in pest or natural enemy 
population	dynamics	(Prasad	and	Prabhakar,	2012).

The mechanistic approach is based on causality and tracks pest dynamics 
in a process model that simulates the development of the target organism and 

Table 2 Attributes	of	trustworthy	sampling	plans	(Binns	et	al.,	2000)

A trustworthy 
sampling plan has What does it mean?

Good	practicality A	simple	enough	procedure	to	appeal	to	users,	not	be	
misunderstood	and	must	fit	in	with	the	agenda	of	the	user	
regarding sampling time and the time it takes to collect the 
samples. 

High representativeness No unaccountable biases in the sampling protocol in 
selecting which instances of pest occurrence become 
sampled. This means several things (see bias) 

Low	bias Bias is the difference between the expectation of an estimate 
and	the	true	value.	Bias	is	caused	by	many	things,	for	
example,	by:	(a)	taking	too	few	samples	(can	be	a	problem	
in sequential sampling plans if a minimum sample size 
is	not	given);	(b)	taking	samples	from	just	some	parts	of	
a	field	and	leaving	other	parts	unsampled;	(c)	selecting	
samples	based	on	how	easy	it	is	to	reach	and	process	them;	
(d) selecting sample units on the basis of a characteristic 
which is correlated with the properties to be investigated by 
sampling;	and	(e)	substituting	omitted	or	rejected	sample	
units by more readily observable units.

High reliability No	uncontrolled	variables	should	influence	the	
sampling protocol. They include the person collecting 
the	data,	weather,	or	possible	diurnal	behaviour	of	
the pest (determines sampling time). Reliability and 
representativeness	together	ensure	that	the	sample	mean,	m,	
is	an	unbiased	estimate	of	the	true	pest	density,	μ.

Reasonable relevance The estimate of pest abundance has a reasonable 
relationship to crop yield and loss.

Moderate to high precision 
depending on the goal and 
practicality of the sampling 
plan. 

Refers to how close to its own expectation one single 
estimate is. Increases with increasing number of samples. 
A lower precision is often acceptable in sampling plans for 
decision-making	in	IPM.	Moderate	precision,	is,	however,	
required even then.

Good	accuracy A measure of how close an estimate is to what it is estimating. 
Can	be	estimated	by	the	mean	square	error,	mse	(the	greater	
the	mse,	the	lower	is	the	accuracy).	Incorporates	both	bias	
and	precision.	Example:	an	estimate	may	have	high	precision,	
but low accuracy because of high bias.
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perhaps its host(s) and natural enemies. Mechanistic models are based on 
knowledge	on	how	the	input	variables	lead	to	the	output(s),	whereas	statistical	
models	 give	 little	 or	 no	 insight	 into	 the	 specific	 processes	 leading	 to	 the	
output(s)	(Baker	et	al.,	2018).	Mechanistic	models	enable	the	creation	of	new	
hypotheses	concerning	the	functioning	of	the	system	of	interest,	whereas	the	
purpose of statistical models is limited to prediction (Table 3). Statistical models 
are correlative. They range from simple regressions to much more complex 
models such as Bayesian models where probabilities represent all uncertainty 
contained	in	the	input	parameters	and	outputs,	and	finally	to	models	based	on	
artificial	intelligence	(AI)	methods	operating	on	very	large	data	sets.

Mechanistic	modelling	involves	two	stages.	First,	the	model	is	constructed	
and calibrated by using a subset of the available data. This is done with 
the	 help	 of	 simplified	 mathematical	 formulations	 of	 the	 assumed	 causal	
mechanism.	Second,	another	subset	of	the	data	is	used	to	validate	and	refine	
the	model.	Validating	is	needed	to	determine	whether	the	range	of	possible	
input–output behaviours predicted by the model (the causality hypothesis) 
is	 consistent	 with	 experimental	 observations.	 After	 validation,	 the	 model	
can	be	used	 in	applications	where	experiments	are	 impossible	or	difficult	 to	
achieve	(Baker	et	al.,	2018).	Magarey	and	Isard	(2017)	list	problems	and	their	
causes	and	solutions	associated	with	creating,	parameterizing,	validating	and	
implementing mechanistic pest forecast models. Problems associated with the 
implementation phase can be rather challenging. Does the model represent 
stakeholder	field	observations?	Are	the	model	outputs	useful	to	stakeholders,	
that	is,	do	they	give	critical	information	for	decision-making	and	is	there	time	to	
act on the information in practice? Do stakeholders take the model into use at 
all	due	to	time	limitations	or	difficulties	in	understanding	the	model’s	outputs?	
These	issues	concern	also	the	development	of	EILs	and	ETs.

Three subcategories of mechanistic models characterized by their input 
variables	and	output	types	are	important	for	pest	forecasting.	First,	phenology	
models	 are	 used	 to	 predict	 adult	 emergence	 time,	 peak	 adult	 flight	 and	
egg-laying	activity,	egg	hatch	or	occurrence	of	damaging	stages	 in	order	 to	
optimize the timing of control measures. The measure of accumulated heat 
(degree days) provides a reference for the physiological age and development 
of	organisms	(Orlandini	et	al.,	2017),	but	other	weather	factors	such	as	rainfall	
or	humidity	can	also	be	important,	as	shown	for	the	emergence	of	the	carrot	fly,	
for	example	(Ovcharenko	and	Nikolaeva,	2020).	Complete	phenology	models	
of insect and mite pests include mathematical functions for development time 
and	 rate,	mortality,	 senescence,	 survival	 and	 reproduction	 of	 the	 species	 in	
question	(Tonnang	et	al.,	2017).

Phenology can be simulated in a deterministic or stochastic manner to 
yield the pest’s life table parameters such as intrinsic rate of natural population 
increase (rm),	 net	 reproduction	 rate	 (R0),	 finite	 rate	 of	 increase	 (ƛ),	 mean	
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generation	time	(G)	and	the	doubling	time	(t)	(Tonnang	et	al.,	2017).	Another	
goal is to simulate the impacts of different pest scenarios on crop production 
when both yield losses and the effect of changing climate on organisms must be 
taken	into	consideration	(Donatelli	et	al.,	2017).	For	this	purpose,	crop	and	pest	
behaviour	models	must	be	coupled,	which	is	not	always	easy	(Donatelli	et	al.,	
2017).	The	eventual	goal	 is,	 in	 fact,	 to	be	able	to	create	complete	simulation	
models	that	include	biological,	ecological,	economic	and	social	processes	and	
their	 interactions,	all	of	which	 together	 influence	crop	production	and	guide	
on	 the	ways	 of	managing	 crop	 systems	 (see	Tonnang	 et	 al.,	 2017	 and	 their	
reference	to	Walters	et	al.,	2016).	Tonnang	et al.	(2017)	list	a	range	of	research	
questions that must be answered to achieve such an ambitious modelling goal. 
In	accordance	with	such	goals,	bioeconomic	models	are	expected	to	gain	more	
importance	as	tools	for	creating	EILs	and	ETs	(Tonnang	et	al.,	2017;	Zhang	and	
Swinton,	2012).	Management	of	simulations	and	updation	of	decision	support	

Table 3 Features	that	differentiate	mechanistic	and	statistical	forecast	models

Feature Mechanistic forecast models Statistical forecast models

Basis of relationship 
between inputs and 
outputs

Causality	(Baker	et	al.,	2018). Correlation	(Baker	et	al.,	2018).

Basic tools Mathematical equations 
describing the phenomenon of 
interest;	associated	assumptions	
to simplify the mathematical 
expressions that describe the 
relation between inputs and 
output	(Maria,	1997).

Tools such as regression and AI 
algorithms	that	filter	out	irrelevant	or	
redundant information to discover 
relevant co-occurrences and 
dependencies in the data (Baker 
et	al.,	2018).

Focus is on (1)	Understanding	the	
mechanisms of pest 
development and infestation 
progression via mimicking 
real-life	events;	(2)	generation	
of novel hypotheses for 
causal mechanisms through 
observations	(Baker	et	al.,	2018).	
Deductive approach.

Prediction via isolating relevant 
inputs from the dataset for a given 
output. Only little or no insight into 
the	specific	processes	leading	to	
the outputs. The predictive power of 
machine learning models increases 
with the number of unique cases that 
can be observed and used to train 
the	predictor	(Baker	et	al.,	2018).	
Inductive approach.

Dataset size Small	data	sets	are	OK	(Baker	
et	al.,	2018).

Large	data	sets	on	historical	or	
current	events	(Baker	et	al.,	2018).

Extrapolation	of	
prediction beyond 
the observed 
conditions

Yes	(Baker	et	al.,	2018). No. Outputs are dependent on the 
specific	input	data	and	can	only	
make predictions that relate to 
patterns within the data supplied 
(Baker	et	al.,	2018).	

Generation	of	new	
hypotheses

Good	possibilities	(Orlandini	
et	al.,	2017).

Less	or	no	possibilities	(Orlandini	
et	al.,	2017).
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systems that use the simulations present large obstacles for implementing 
simulation	models	for	pest	forecasting	(Orlandini	et	al.,	2017).

Improvements of phenology models are still needed to make the outputs 
more	precise	and	to	improve	region	or	site	specificity	of	outputs,	as	shown	for	
root-feeding	insect	pests	such	as	the	carrot	fly	and	the	cabbage	root	fly	(Bažok	
et	 al.,	 2012;	Biron	et	 al.,	 2002;	Collier	 et	 al.,	 2020;	Dreves,	 2006;	Villeneuve	
and	 Latour,	 2017)	 and	 the	 codling	 moth	 (Damos	 and	 Soulopoulou,	 2019).	
Producing phenological forecasting models can be complicated by genetic and 
behavioural	differences	between	different	pest	(or	natural	enemy)	populations,	
as	exemplified	by	the	winter	morphs	of	D. suzukii	(Amarasekare	and	Shearer,	
2013;	Shearer	et	al.,	2016)	and	late	and	early	emerging	forms	of	Delia radicum. 
In	 some	 regions,	 these	 two	genotypes	occur	 (Biron	et	 al.,	 2002),	whereas	 in	
other	regions,	all	flies	emerge	synchronously	(Johansen	and	Meadow,	2006).	
Migrating species such as P. xylostella,	combined	with	climate	warming,	bring	
new challenges to the development of phenological and other forecasting 
models	(Zalucki	et	al.,	2017;	Zalucki	and	Furlong,	2008;	Zhu	et	al.,	2018).

Most of the earlier models lack a stochastic function for variability in 
development	times	among	individuals	within	a	population,	resulting	in	prediction	
errors	 (Orlandini	 et	 al,	 2017).	 Furthermore,	 for	 insect	 species	 that	 exhibit	
seasonality,	diapause	or	aestivation	in	their	life	cycles	should	be	accommodated	
in the models. This can be done with Monte Carlo simulation modelling (Orlandini 
et	 al.,	 2017).	 Mechanistic	 phenological	 models	 are	 often	 built	 considering	
the developmental rate function only. The models can be enriched and their 
accuracy	increased	by	including	elements	of	demographic	models	in	them,	such	
as	the	age	distribution	of	 individuals	which	exit	from	the	overwintering	phase,	
the	 age-	 and	 temperature-dependent	 profile	 of	 the	 fecundity	 rate	 function	
and	 the	 consideration	of	 a	 temperature-dependent	mortality	 rate	 function,	 as	
exemplified	for	Cydia pomonella	by	Pasquali	et al.	(2019).

Second,	 life	 table	 and	 population	 models	 aim	 at	 representing	 and	
understanding	 different	 or	 selected	 factors	 such	 as,	 for	 the	 diamondback	
moth,	 host	 plants	 (Jaleel	 et	 al.,	 2019),	 temperature	 (Ngowi	 et	 al.,	 2017),	
specific	 natural	 enemies	 (Tonnang	 et	 al.,	 2010,	 2009)	 or	 a	 combination	 of	
factors	(Li	et	al.,	2016)	that	influence	population	development	and	abundance.	
A drawback for forecasting the time and size of population peaks is gaps 
in	 the	 ecological	 databases	 such	 as	 short-range	 dispersal,	 overwintering	
behaviour,	colonization	patterns	and	age-specific	mortality	including	inter-	and	
intraspecific	competition	(Prasad	and	Prabhakar,	2012).	Such	obstacles	may	in	
some cases be bypassed using statistical models based on neural networks 
and	large	data	sets	(Tonnang	et	al.,	2010).	There	is	also	some	imbalance	as	to	
modelling the life cycle and population dynamics of different kinds of pests. For 
example,	soil-borne	diseases	have	not	been	modelled	to	the	same	extent	as	
airborne diseases. Primary infection by active inoculum accumulated within the 
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rhizosphere of host plants is the main target for model development (Orlandini 
et	al.,	2017).

One important input for pest modelling is pest observations. Sharing 
pest observations with other growers would allow everyone to see a more 
comprehensive	 picture	 of	 pest	 activity,	 but	 this	 is	 rarely	 done	 and	 tools	 for	
doing	it	are	lacking	(Orlandini	et	al.,	2017).

Third,	 species	 distribution	 models	 (SDM)	 use	 a	 variety	 of	 algorithms	 to	
estimate relationships between species locations and environmental conditions 
and	predict	and	map	habitat	suitability	(Franklin,	2010).	SDMs	for	pest	forecasting	
can be used at two scales: predicting the establishment risk of exotic pests in 
new	geographic	areas	of	distribution	(Franklin,	2010)	and	predicting	where	to	
target	pest	management	actions	in	site-specific	pest	management	within	crop	
fields	or	orchards	(Méndez-Vázquez	et	al.,	2019).	At	both	scales,	SDM	output	is	
a	 risk	map.	At	 the	 larger,	geographic	scale,	SDM	make	use	of	georeferenced	
presence	data	of	species,	digital	maps	of	environmental	variables	and	correlative	
algorithms	such	as	Bioclim,	Genetic	Algorhitm	for	Rule	Production,	Maxent,	or	
General	Linear	Models.	For	predicting	insect	distribution	at	geographic	scales,	
Tonnang	 et  al.	 (2017)	 list	 the	 advantages	 and	 disadvantages	 of	 commonly	
used inductive (statistical) and deductive (causal) approaches to using SDMs. 
Modelling alone is not always enough to predict how exotic species behave in 
new areas of distribution. Surprising results can be obtained with closer research 
as	exemplified	by	the	better	than	expected	overwintering	ability	of	D. suzukii in 
regions	with	cold	winters	(Thistlewood	et	al.,	2018).

At	 the	 field	 scale,	 the	 classic	 precision	 agriculture	 techniques	of	 zoning	
are enriched with one or more spatially explicit ecological layers (species’ 
niches)	 that	 are	 created	 on	 the	 basis	 of	 a	 pest’s	 within-field	 distributional	
patterns	(Méndez-Vázquez	et	al.,	2019).	In	addition	to	the	model	itself,	it	must	
be parameterized using high-resolution environmental data sampled with such 
precision	agriculture	tools	as	wireless	sensor	networks	for	plants,	soil	and	air	
measurements,	drones	and	remote	sensing.

The relative status of mechanistic and statistical forecast models is changing 
with the advancement of statistical modelling approaches based on AI. With 
the	growing	number	of	observations	and	variables,	the	need	for	mechanistic	
models has been reduced and the predictive power of statistical models has 
increased. This is because a very large number of unique cases that can be 
observed and used to train the mechanism-free predictor essentially represent 
the whole reality that is covered in the input–output relationship. In the omics 
research,	high-throughput	methods	of	data	collection	produce	very	large	data	
sets,	 but	 according	 to	 Baker	 et  al.	 (2018),	 the	 research	 community	 remains	
focused on producing a plethora of potential mechanistic models that explain 
small pieces of a much bigger picture. The use of big data for forecasting in 
pest	management	research	is	not	commonplace	as	yet,	either,	as	concluded	by,	
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for	example,	Fenu	and	Malloci	(2021),	who	studied	the	kinds	of	AI	algorithms	
used for forecasting the onset of disease at a pre-symptomatic stage. One 
important obstacle of course is how to collect large amounts of data needed 
for big data analyses.

2  Addressing key issues and challenges of pest 
monitoring and forecasting

2.1  Automated identification of insects from traps and plants

2.1.1  Fixed camera-based systems

Automated	identification	with	up	to	100%	identification	success	was	developed	
for C. pomonella	as	early	as	2011;	this	required	a	modified	trap	equipped	with	
mobile phone cameras of different resolutions and a commercial acquisition 
and data transfer system using wireless technology to transfer the images for 
analysis	(Guarnieri	et	al.,	2011).	Some	other,	smaller,	insects	came	to	the	trap	
also,	but	they	did	not	interfere	with	identification.	The	technical	and	operating	
characteristics	used	by	Guarnieri	et al.	(2011)	are	nowadays	regarded	as	being	
fairly	basic.	When	a	pest-selective	sampling	method	provides	‘clean’	samples	
without non-target species and when the orientation of individuals in the traps 
allows	complete	feature	extraction,	automated	identification	is	relatively	easy	
based on images taken of trapped individuals and image analysis developed 
with machine learning or AI algorithms. With deep learning algorithms even 
the	‘wrong’	orientation	of	insects	in	traps,	background	clutter	and	interference	
from	uneven	 illumination	 in	 the	 images	can	be	overcome	(Wen	et	al.,	2015).	
Developments since 2011 include independent power sources (such as 
solar-powered batteries) for the camera and for sending images via wireless 
channels	 plus,	 of	 course,	 more	 powerful	 data	 analysis	 techniques,	 such	 as	
artificial	neural	networks,	that	can	be	trained	to	identify	patterns	in	images.	The	
newest techniques allow dozens of species from different insect orders to be 
distinguished	from	each	other	(Cardim	Ferreira	Lima	et	al.,	2020).	For	a	recent	
review detailing the strengths and limitations of camera-based traps for pest 
insect	detection,	consult	Preti	et	al.,	2020.

Automated	identification	is	unnecessary	if	insects	can	be	trapped	and	their	
images	sent	to	computer	screens	for	identification	by	expert	entomologists.	
High-quality	 images	are	 required	but	 that	 is	not	a	problem	nowadays,	and	
for	human	eyes,	the	poor	orientation	of	targets	is	not	necessarily	an	obstacle	
for	 correct	 identification	 (unless	 very	 specific	 miniscule	 features	 must	 be	
seen to distinguish co-occurring species from each other). Automated 
traps	equipped	with	specific	or	generic	semiochemicals	and	cameras	have	
been developed and applied successfully for distinguishing different fruit 
fly	 species	 in	 images	 sent	 to	 human	 experts	 (Shaked	 et	 al.,	 2018).	 Shaked	
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et al.	(2018)	also	made	attempts	to	automate	identification	of	individual	fruit	
fly	species	to	distinguish	them	from	other	species	of	fruit	fly	and	from	other	
insects,	but	that	has	turned	out	to	be	difficult	so	far.	Traps	with	fixed	cameras	
are,	 of	 course,	 expensive,	 but	 owing	 to	 the	 miniaturization	 of	 optics	 and	
electronics,	material	costs	are	becoming	lower	in	addition	to	savings	in	travel	
and time of checking the traps.

2.1.2  Mobile camera-based systems

Cheap traps photographed with mobile cameras present another option to 
acquire	pest	 images	automatically.	 Roosjen	et  al.	 (2020)	used	cameras	fixed	
to traps and also cameras attached to custom-made drones (unmanned aerial 
vehicles	–	UAV)	to	take	images	of	D. suzukii	flies	on	red	sticky	trap	surfaces,	under	
various	 illumination	conditions	 in	 the	field.	Deep	 learning	methodology	was	
applied for feature detection. The results for images taken with static viewpoint 
cameras	were	satisfactory,	but	the	positioning	of	cameras	on	the	UAV	produced	
lower-quality images and resulted in limited success in terms of automated 
identification.	In	the	field,	UAVs	should	be	operating	autonomously	for	them	to	
be	feasible	as	mobile	‘photographers’	of	traps.	It	would	not	really	make	sense	
for	a	person	to	walk	in	an	orchard	manoeuvring	UAVs	within	their	sight,	as	the	
whole	 idea	of	 automated	 trapping	 is	 to	 reduce	human	 labour,	making	 their	
presence unnecessary. In a presentation on the project (https://www .abim .ch 
/fileadmin	/abim	/documents	/presentations2019	/ABIM	_2019	_7	_03	_Johannes	
_Fahrentrapp	.pdf),	 the	 authors	 concluded	 that	 trapping	 efficiency	 must	 be	
improved	and	that	a	landing	platform	for	the	UAV	must	be	placed	in	front	of	
the	trap	to	take	better	images.	Even	so,	they	concluded	that	deep	learning,	in	
combination	with	high	resolution,	has	good	potential	for	the	detection	of	small	
insects;	it	is	the	practical	technical	aspects	of	capturing	insects	and	acquiring	
high-quality images that still need to be worked upon.

A commercial example of traps equipped with pheromones or other 
semiochemicals	and	fixed-position	cameras	are	iScout-traps.	Different	types	of	
iScout-traps	are	available	for	several	insect	species,	for	example,	D. suzukii,	C. 
pomonella and P. xylostella,	and	they	include	a	vertically	placed,	coloured	sticky	
trap with a camera in front of it (https://metos .at /iscout .com). Images are sent 
to a web portal for analysis.

2.1.3  Tools for identifying pests with challenging taxonomic 
features such as flies

It	seems	difficult	to	achieve	automated	identification	of,	for	example,	fly	species	
that	closely	resemble	each	other,	occur	together	in	the	field,	and	are	attracted	
to	 the	 same	 traps	 and	 whose	 taxonomy	 involves	 observing,	 for	 example,	

https://www.abim.ch/fileadmin/abim/documents/presentations2019/ABIM_2019_7_03_Johannes_Fahrentrapp.pdf
https://www.abim.ch/fileadmin/abim/documents/presentations2019/ABIM_2019_7_03_Johannes_Fahrentrapp.pdf
https://www.abim.ch/fileadmin/abim/documents/presentations2019/ABIM_2019_7_03_Johannes_Fahrentrapp.pdf
https://metos.at/iscout.com
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minute details of genitalia and hairs on the legs and body. There are as yet 
no	reports	 for	automated	 identification	attempts	of	Delia spp. or Psila rosae. 
Information	on	probabilities	of	host	associations	may	help	in	the	identification	
process	 (Savage	et	al.,	2016),	but	even	so,	 there	 is	 room	for	uncertainty.	The	
visual traps used to detect the presence and relative abundance of D. radicum 
tend to capture a lot of non-target species that also include other Delia species 
not considered as pests. By combining visual stimuli with a feeding attractant 
and	a	new	trap	design,	KLP+	traps	by	CSalomon	have	improved	the	selectivity	
of trapping D. radicum.	 The	 flies	 are	 retained	 by	 glue	 on	 the	 surface	 of	 a	
transparent plastic sheet surrounding the inside of a plastic cup (http://www 
.csalomontraps	.com	/4listbylatinname	/pdffajonkentik	/deliaradicum	.pdf).	 Even	
so,	 the	 trap	manufacturer	 lists	 a	 couple	 of	 other	 Delia	 species,	 flea	 beetles	
and	Ceutorhynchus	weevils	that	are	attracted	to	the	lure,	too.	Thus,	whenever	
different Delia	species	occur	together	in	a	trap,	identification	is	complicated	and	
requires expert skills. The same problem of non-selective traps also concerns P. 
rosae,	although	the	orange	traps	(e.g.	https://www	.andermattbiocontrol	.com	/
sites /products /monitoring -systems /rebell -orange .html) are the most attractive 
for	this	species	and	the	habitus	of	the	carrot	fly	is	more	easily	recognizable	than	
that of different Delia	 species.	Among	carrot	pests,	 the	 identity	of	psyllids	 in	
traps	is	also	difficult	to	verify,	as	species	living	in	wild	relatives	of	carrot	can	end	
up	in	the	traps,	too,	and	can	only	be	distinguished	from	the	carrot	psyllid	based	
on	 differences	 in	 male	 genitalia	 (Nissinen,	 2008).	 The	 costs	 of	 developing	
specific	identification	methods	for	regional	pests	make	an	obstacle	for	R&D.

Molecular methods have been suggested as a replacement for visual 
identification	 of	Delia	 sp.	 from	 traps	 (Thöming	 et	 al.,	 2017).	 In	 some	 cases,	
however,	the	glue	in	sticky	traps	can	compromise	the	possibilities	of	molecular	
identification,	 as	 shown	 for	 sandflies	 vectoring	 a	 human	 disease	 (Halada	
et	 al.,	 2018),	 whereas	 for	 some	 other	 species,	 the	 glue	 of	 sticky	 traps	 has	
been	considered	as	an	excellent	preservative,	and	did	not	hinder	 the	use	of	
molecular	markers	 for	 insect	 identification	 (Chen	et	al.,	 2014;	Frey	and	Frey,	
1995).	The	bottlenecks	lie	in	getting	sufficient	amounts	of	DNA	easily	in	field	
conditions and having to send the DNA samples to a laboratory for processing. 
Rapid	 identification	 tools	 based	 on	 extremely	 small	 amounts	 of	 DNA	 are	
available	 for	 laboratory	use,	 as	 for	example,	 for	eggs,	 immatures	 and	adults	
of	a	psyllid	pest	of	potato	(Sumner-Kalkun	et	al.,	2020).	DNA	can	be	extracted	
from	trapped	individuals	with	Flinders	Technology	Associates	FTA®cards,	that	
is,	 chemically	 treated	 filter	 papers	 designed	 for	 the	 collection,	 preservation	
and shipment of biological samples for subsequent DNA and RNA analysis. 
Lemmetty	 and	 Vänninen	 (2014)	 used	 them	 successfully	 for	 extracting	 DNA	
from Bemisia	adults	on	sticky	traps.	Up	to	now,	FTA	cards	for	DNA	extraction	
have	been	shown	to	work	also	for	11	other	genera	of	insects	including	beetles,	
leafhoppers,	flies,	psyllids	and	aphids	that	were	either	frozen	or	glued	on	sticky	

http://www.csalomontraps.com/4listbylatinname/pdffajonkentik/deliaradicum.pdf
http://www.csalomontraps.com/4listbylatinname/pdffajonkentik/deliaradicum.pdf
https://www.andermattbiocontrol.com/sites/products/monitoring-systems/rebell-orange.html
https://www.andermattbiocontrol.com/sites/products/monitoring-systems/rebell-orange.html


 Pest and disease monitoring and forecasting in horticulture18

Published by Burleigh Dodds Science Publishing Limited, 2022.

traps	(Pusz-Bochenska	et	al.,	2020).	The	method	can	be	used	also	by	growers	
and	advisors	in	the	field,	but	the	cards	must	be	sent	to	a	laboratory	for	analysis.	
DNA	barcodes	can	be	used	for	identification,	but	this	presupposes	that	there	
has been adequate a priori	 identification	of	barcoded	specimens.	The	study	
by	 Savage	 et  al.	 (2016)	 on	 taxonomy	 and	ecology	of	Delia spp. shows how 
important the understanding of biological and ecological differences in respect 
to herbivore–host plant associations is in order to develop the accuracy of 
barcoding.	Differences	in	the	ecology	of	different	populations	can	be	reflected	
also	in	their	DNA,	use	of	host	resources	and	pest	status.

2.1.4  Automated identification based on optoacoustics

New	approaches	for	automated	identification	are	emerging	from	domains	other	
than the visual sensory domain. By combining the acoustic sensory domain 
with	advanced	optical	detection	methods,	new	ways	of	identifying	fly	species	
are	emerging.	The	wing	beat	frequency	of	fruit	flies	that	enter	tachometer	traps	
equipped with attractants can be detected with optoelectronic devices based 
on	 LED	 (light-emitting	 diode)	 light	 probes	 and	 transformed	 into	 frequency	
profiles	to	differentiate	between	the	species	of	interest	expected	to	enter	the	
trap	(Potamitis	et	al.,	2018,	2017,	2015).	The	fundamental	frequencies	of	the	
wingbeats	of	the	flies	of	 interest	must	be	known	and	used	as	a	reference	to	
measure	 if	 the	energy	of	 the	bandwidth	exceeds	a	 threshold.	 If	 it	does,	 it	 is	
a	 verified	 detection.	 Changes	 in	 wingbeat	 due	 to	 temperature	 differences	
can	be	accommodated.	Species	verification	can	be	achieved	either	in	situ	or	
by transmitting the recordings and performing recognition on a server. The 
current	 system	makes	 in	 situ	decisions	about	 the	 identity	of	flies	entering	a	
trap	for	only	one	species.	But,	based	on	the	recordings	that	are	stored	inside	
the	trap	and	transmitted	further,	the	recognition	scores	are	greatly	improved	
and	allow	for	better	discrimination,	even	between	fruit	fly	species,	although	
at the cost of increased power consumption and decreased algorithmic 
complexity	at	the	trap	level.	According	to	Rigakis	et al.	(2019),	the	wingbeat	
frequencies of D. suzukii are included in the research group’s agenda for 
automated detection.

The	 acoustic	 domain	 is	 used	 also	 for	 differentiating	 whitefly	 species	
(Kanmiya,	2006,	1996;	Kanmiya	and	Sonobe,	2002)	and	even	sibling	species	of	
Bemisia tabaci	from	each	other	(Nakabayashi	et	al.,	2017).	Males	of	Trialeurodes 
vaporariorum and B. tabaci drum the leaf surface with their abdomen as mating 
behaviour	in	a	species-specific	manner	(Kanmiya,	2006,	1996).	These	‘acoustic	
signatures’ can be recorded with a sensitive microphone and compared with 
reference	 frequency	 profiles.	Male	 acoustic	 signatures	 are	 likely	 to	 be	 used	
for	 species	 recognition	 during	 courtship	 behaviour.	 In	 the	 citrus	 whitefly,	
it is the females that drum the leaf surface and males orientate towards the 
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females	 using	 vibrations	 as	 cues	 (Liao	 and	 Yang,	 2015).	 Monitoring	 for	 the	
presence of cryptic species of Bemisia (that are indistinguishable on the basis 
of	morphology),	or	finding	mixed	infestations	of	the	greenhouse	whitefly	and	
Bemisia,	 would	 be	 possible	with	 acoustic	 signatures.	Of	 course,	 such	 a	 tool	
should	be	developed	so	that	 it	does	not	require	complex	 ‘studios’	 to	record	
the	whitefly	vibration	sounds	and	so	that	ambient	sounds	do	not	interfere	with	
the	 recording.	The	vibrations	even	provide	avenues	 for	controlling	whiteflies	
(Yanagisawa	et	al.,	2020)

2.2  Improved detection with more selective traps

Sex pheromones for monitoring and subsequently also for mass-trapping 
of	 Lepidopteran	 species	 have	 been	 available	 since	 the	 1960s.	 Aggregation	
pheromones	 are	 currently	 also	 available	 for	 monitoring	 thrips	 (Kirkpatrick	
et	al.,	2017)	and	strawberry	weevils	(Cross	et	al.,	2006b).	Recently,	compounds	
that are most likely to function as potent oviposition stimulants to female D. 
suzukii	were	found	(Tait	et	al.,	2020)	and	developed	into	what	can	be	called	an	
egg-sink that attracts females strongly even in the close presence of attractive 
berries	on	which	to	lay	eggs	(Rossi	Stacconi	et	al.,	2020a).	Other	functions	of	
the	compound	mixture	are	being	investigated,	as	the	ingredients	attract	male	
flies,	too.	Depending	on	the	attractive	distance	of	the	mixture	to	D. suzukii,	and	
its	selectivity,	this	finding	can	mean	a	breakthrough	not	only	in	monitoring	the	
flies	but	also	for	their	control	through	behavioural	disruption.

To	 attract	 females	 selectively	 to	 traps,	 plant-derived	 kairomones,	 as	
attractants,	have	been	studied	intensively	during	the	last	20	years.	Such	efforts	
have resulted in substantial advances in monitoring techniques for several 
horticultural	pest	 insects	 (Table	4),	but	 there	 is	still	work	 to	do.	The	chemical	
ecology of Delia radicum,	D. antiqua and P. rosae received a bout of research 
interest	in	the	1980s–1990s,	but	then	there	was	a	halt.	Interestingly,	since	2010,	
a French research group took the initiative to focus again on the chemical 
ecology of D. radicum	(Kergunteuil	et	al.,	2015,	2012;	Lamy	et	al.,	2018,	2017).	
They have produced new results on both attractive and repellent compounds 
for this species for the purpose of developing a push–pull strategy for managing 
the	cabbage	 root	flies.	A	 similar	bout	of	new	 research	 for	better	monitoring	
techniques is emerging for D. antiqua	in	Japan,	Norway	and	the	United	States	
of	America	(Hoshizaki	et	al.,	2020;	Thöming	et	al.,	2017;	Willett	et	al.,	2020).

Improving the selectivity of traps would have positive consequences for 
automated	identification	of	pest	species	and	for	more	efficient	coverage	of	the	
sampling	universe,	resulting	in	more	accurate	decision-making.	The	following	
criteria for a good trap can be used to guide research on trap selectivity. Traps 
should:	 (a)	 specifically	 attract	 only	 the	 target	 pest	 insect,	 (b)	 be	 effective	 at	
capturing and retaining the majority of pest insects that come in contact with 
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the	trap,	(c)	provide	early	detection	of	the	pest	insect	and	(d)	allow	correlation	
of	 trap	 catch	with	 subsequent	 crop	 infestation	 (Cloonan	 et	 al.,	 2018).	When	
many	attractive	 substances	 are	 available,	 as	 is	 the	 case	 for	D. suzukii,	 odour	
cues from different sources may interfere with each other and reduce the pest’s 
attraction to otherwise attractive odour combinations – a risk to be taken into 
account	(Cloonan	et	al.,	2019).	On	the	other	hand,	the	case	with	Anthonomus 
rubi shows that multi-pest traps are possible when the attractive compounds 
are	 specific	enough	 for	 the	different	 target	pests,	 in	which	case	 they	do	not	
interfere	with	each	other	(Baroffio	et	al.,	2018;	Fountain	et	al.,	2017).

Inspired by inconsistencies and high variability in trapping C. pomonella 
with	sparsely	placed	sex	pheromone	 traps,	a	new	concept	of	understanding	
the interaction principles between traps and pest insects was developed 
recently	 (Adams,	 2017;	Miller	 et	 al.,	 2015).	 The	 new	 concept	 aims	 at	 being	
able to estimate absolute – instead of only relative – population densities in 
the landscape. This is done by specifying the attractive plume radius of the 
attractants and the proportion of target insects caught by the trap per areal 
unit. One outcome from the new concept is a recommendation for placing 
sex pheromone traps in line close to each other to reduce the variability of 
catches that are a problem when single traps placed far apart are used for 
trapping C. pomonella.	 Line	 trapping	 offers	 savings	 in	 time	 and	 cost	 when	
servicing	aggregated	versus	distributed	 traps	 (Adams,	2017).	Specific	action	
thresholds were developed for the pear ester trap and compared with those of 
sex pheromone traps. Traps equipped with the kairomone pear ester improved 
female catches and predicted the egg hatching time of C. pomonella better 
than codlemone traps. The prediction improvement was based on cumulative 
degree-day	totals	required	from	Biofix	until	egg	hatch:	the	degree-day	totals	
had	the	lowest	variability	when	the	Biofix	was	based	on	the	sustained	catch	of	
female	moths	in	a	pear	ester-baited	trap	(Knight	and	Light,	2005b).

Trapping studies with D. suzukii show that lure attractiveness and selectivity 
can change during the season in relation to environmental temperatures and 
phenological,	developmental	and	physiological	stages	of	both	the	pest	and	its	
host plants. Different lures must be implemented in different periods and for 
different	purposes,	that	is,	for	monitoring	or	mass	trapping	(Rodriguez-Saona	
et	al.,	2020;	Tonina	et	al.,	2018;	Wong	et	al.,	2018).	The	plant	background	can	
significantly	influence	trap	catches,	as	shown	for	D. suzukii	(Cha	et	al.,	2018)	and	
A. conjugella	(Cha	et	al.,	2018;	Knudsen	et	al.,	2017;	Knudsen	and	Tasin,	2015).	
Thus,	 the	 same	 lure	 is	 not	 always	 appropriate	 in	 all	 contexts.	 The	 potential	
for trap catches to predict the density of larval populations depends on the 
crop	 species,	 pest	 generation,	 and	 density	 and	 geographical	 region,	 with	
variations	due	to	climate	and	natural	enemy	complexes.	Unique	pheromone-
based predictive models may be needed in different growing regions where 
the	climate	and	the	responses	of	the	moths	to	pheromones	vary.	Furthermore,	
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the	presence	and	composition	of	natural	 enemies	 influence	 the	 relationship	
between	 trap	 catches	 of	 moths	 and	 the	 density	 of	 moth	 immature	 stages;	
therefore,	a	weighing	factor	is	needed	in	the	predictive	model	to	take	the	effect	
of	natural	enemies	into	account	(Miluch	et	al.,	2013).

Depending	 on	 the	 target	 species,	 traps	 integrating	 both	 visual	 and	
olfactory	cues	can	be	superior	 tools	 for	monitoring	 (Kirkpatrick	et	al.,	2017).	
Trap design can have a crucial effect on trap catches as shown for D. suzukii 
(Kirkpatrick	et	al.,	2017)	and	the	multispecies	trap	for	A. rubi,	Lygus sp. (Fountain 
et	al.,	2017)	and	D. radicum (http://www .csalomontraps .com /4listbylatinname /
pdffajonkentik /deliaradicum .pdf).

2.3  Remote sensing for reducing sampling time and overcoming 
sampling problems caused by patchy pest distribution

Most horticultural pest insects and mites are aggregated spatially. This is a 
nuisance when developing sampling plans: patchy distributions make accurate 
estimates	of	populations	difficult,	resulting	in	the	implementation	of	the	wrong	
management strategy. The seemingly more economical approach of taking 
fewer	 than	 the	 recommended	 number	 of	 samples	 has	 little	 value,	 because	
the representativeness of sampling suffers (see Table 2) and information is 
lost through apparent savings in human labour and time investments. A good 
example is P. xylostella in vegetables in Australia: stakeholders tend to favour 
fixed	 sample	 sizes,	 but	 even	 so,	 they	 take	 too	 few	 samples.	 This	 preferred	
sampling plan was shown to erode the criteria for reliable decision-making 
(Hamilton	 et	 al.,	 2006),	 although	 simpler	 and	 more	 time-saving	 sampling	
protocols	are	available	(Hamilton	et	al.,	2004)	but	seemingly	do	not	match	the	
criteria of stakeholders.

The effect of a patchy distribution also concerns phytophagous mites 
(Zahner	 and	 Baumgaertner,	 1984),	 adult	 and	 immature	 whiteflies	 in,	 for	
example,	tomato	(Kim	et	al.,	2001;	Park	et	al.,	2011b),	eggs	and	consequently	
root-inhabiting	maggots	 and	pupae	of	 cabbage	 root	 flies	 in	 cabbage	 fields	
(Bligaard,	1999;	Finch	et	al.,	1978,	1975),	the	carrot	fly	(Jens,	1983),	eggs	and	
onion maggots infesting the roots of seedlings and later the swollen plant part 
sitting	on	the	soil	(Whitfield	et	al.,	1985)	and	larvae	of	P. xylostella that consume 
different types of Brassica	 vegetables	 (Chua	and	Lim,	1979).	Automating	 the	
sampling or detection of patchily distributed pests or plants infested by them 
would	be	a	desirable	option	to	obtain	sufficient	numbers	of	observations	with	
less time and labour. Such automation could concern either in situ counts of the 
pests	themselves	or	measuring	plant	responses	to	the	presence	of	the	pests,	
that	is,	biotic	stress.

Instead	of	farmers	walking	their	crops,	drones	could	do	the	sampling	when	
this	requires	in	situ	counts	or	observations,	particularly	in	very	large	cultivations.	

http://www.csalomontraps.com/4listbylatinname/pdffajonkentik/deliaradicum.pdf
http://www.csalomontraps.com/4listbylatinname/pdffajonkentik/deliaradicum.pdf
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Up	 until	 now,	 most	 research	 on	 the	 use	 of	 drones	 for	 crop	 protection	
purposes has focused on disease detection through plant phenotyping using 
multispectral,	hyperspectral,	RGB	(red,	green,	blue),	fluorescence	and	thermal	
images	of	canopies	as	well	as	landscape	and	habitat	features	(Gogoi	et	al.,	2018;	
Zhang	et	al.,	2019).	In	situ	counts	of	insects	from	plants	using	cameras	attached	
to	drones	are	much	more	difficult.	Illumination,	angle	of	capture	and	shadows	
can	significantly	interfere	with	pest	or	symptom	detection	in	images	taken	with	
drones.	Furthermore,	the	visual	and	spectral	cues	used	to	detect	pests	may	be	
the	 result	of	 several	different	 factors,	 including	other	 insect	species	 than	 the	
target	ones	 that	may	be	present	 in	 the	crop.	Therefore,	 verification	by	other	
methods	of	species	detection	is	often	necessary	(Barbedo,	2019).

There	 have	 been,	 however,	 some	 proof-of-concept	 type	 experiments	
which suggest that drones could have a bigger role in sampling or monitoring 
horticultural	 pest	 insects,	 either	 for	 research	 purposes	 or	 for	 purposes	 of	
actual	crop	protection.	Aerial	thrips	have	been	sampled	with	the	help	of	sticky,	
customized	Petri	plates	attached	to	a	drone,	to	study	trivial	and	long-distance	
dispersal	of	thrips	above	onion	fields	(Smith	et	al.,	2015)	and	to	monitor	several	
insect	species	from	the	air	above	rice	fields	(Kim	et	al.,	2018).	Drones	can	also	
carry a sweep net and sample insects from vegetation in otherwise inaccessible 
places	 (Löcken	et	al.,	2020)	or	fields	 that	are	too	 large	to	sample	by	walking	
(Kovanci	et	 al.,	 2005).	The	 same	approach	could	be	used	 to	 sample	adult	P. 
xylostella in Brassica	 vegetables,	 and	 even	 insect	 larvae	 can	 be	 sampled	 as	
shown	by	Löcken	et al.	(2020).	Adult	carrot	flies	and	cabbage	root	flies	move	
between	crop	fields	and	their	surrounding	habitats	daily.	Drone	sampling	may	
help	to	detect	details	of	these	flies’	dispersal	and	local	migration	behaviour,	for	
which studies on sampling aerial thrips with the help of drones pave the way for 
(Smith	et	al.,	2015).	In	vineyards,	drones	are	being	developed	for	monitoring	
Phylloxera	by	taking	hyperspectral,	multispectral	or	RGB	images	of	the	foliage	
and	correlating	reflectance	spectra	with	pest	densities	(Vanegas	et	al.,	2018).	
Mini	drones	have	even	been	developed	as	artificial	predators	for	monitoring	
and killing moths in greenhouses (https://pats -drones .com/). For research 
purposes,	 drones	 equipped	 with	 UVA	 sensors	 could	 be	 used	 for	 detecting	
insects	treated	with	fluorescent	substances	in	ecological	studies,	for	example,	
for	finding	out	how	insects	move	in	their	habitats	or	between	habitats	(Teickner	
et	al.,	2019).	Fixed	traps	equipped	with	sensors	measuring	abiotic	conditions	
in	 the	 monitoring	 area	 contribute	 to	 data	 collection	 on	 factors	 influencing	
pest occurrence and reproduction and may eventually be integrated with 
forecasting models for pest occurrence and population dynamics.

Infestation	by	phytophagous	mites,	aphids	and	whiteflies	causes	changes	
in	the	spectral	reflectance	of	leaves	and	canopies.	Detection	of	such	changes	
has already been shown to be possible in soybeans infested by aphids 
(Marston	et	al.,	2020)	and	whiteflies	(Barros	et	al.,	2021).	The	same	methods	are	

https://pats-drones.com/
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applied	in	greenhouses	for	pest	detection	through	stress	symptoms	in	plants,	
with the help of drones (https://www .greenhousemag .com /article /the -drones 
-are -close/).	 Pats	drones	have	developed	a	phone-based	app	 that	 uses	GPS	
and	mapping	software	to	autonomously	fly	a	drone	to	points	in	a	field	selected	
by the farmer. The images taken by the drone are interpreted by the app to 
provide	an	accurate	green	area	index	(GAI)	and	to	count	emerging	plants.	The	
quality of the image collected also is good enough to identify weeds and is 
claimed	to	be	sufficiently	accurate	to	capture	insect	damage	on	a	single	 leaf	
(https://pats -drones .com/).	In	horticulture,	low-growing	crops	such	as	cabbage,	
strawberry,	onion	and	lettuce	are	the	easiest	candidates	for	monitoring	using	
drone-based cameras to detect pests or their symptoms. Tall crops such as fruit 
trees,	tomato	and	cucumber	or	berry	bushes	can	be	more	challenging,	due	to	
their more complex vertical structure.

With	 remote	 sensing	 and	AI,	 it	 has	 become	possible	 to	 use	 plant,	 field	
and regional scale phenotypic information and integrate it into predictive 
and	prescriptive	management	 tools	 for	monitoring,	mapping	and	predicting	
outbreaks	(Jung	et	al.,	2021).	When	the	whole	field	can	be	covered	with	remote	
sensing,	implementing	sampling	plans	that	take	the	pest	spatial	distribution	into	
account will decrease in importance. The remote sensing techniques include 
ground-based	 spectroradiometers,	 aerial	 photographic	 cameras,	 airborne	
digital	multispectral	 and	 hyperspectral	 imaging	 systems,	 and	moderate	 and	
high-resolution	satellite	imaging	systems	(Abd	El-Ghany	et	al.,	2020;	Prabhakar	
and	 Thirupathi,	 2018;	 Yang	 and	 Everitt,	 2011).	 Radar-based	 technologies	
make a group of their own that is ground based but focuses on detecting 
insects in the air even in the night time so that it is possible to detect insect 
migrations	 in	 the	dark	 (Abd	El-Ghany	et	al.,	2020;	Prabhakar	and	Thirupathi,	 
2018).

The	reviews	by	Abd	El-Ghany	et al.	 (2020)	and	Prabhakar	and	Thirupathi	
(2018)	list	the	different	vegetation	indexes	that	are	used	to	measure	the	stress	
level of plant canopies and what kind of stress types the indices can reveal. 
Glenn	and	Tabb	(2019)	compared	different	methods	of	determining	the	NDVI	
(normalized difference vegetation index) for apple trees. They concluded 
that	NDVI	 is	 a	 useful	 tool	when	 evaluating	 long-term	 crop	 changes	 such	 as	
pest	 damage,	 chronic	 water	 shortage	 and	 nutrient	 deficiencies	 that	 affect	
chlorophyll,	whereas	NDVI	is	not	useful	for	acute	stresses	such	as	an	irrigation	
pump	failure	or	plugged	irrigation	lines	that	have	an	effect	within	days.	Overall,	
remote sensing techniques for detecting pests or pest-caused changes in 
apple	trees	are	not	very	advanced	yet	(Park	et	al.,	2021),	although	the	use	of	
reflectance	indices	 in	 leaves	 infested	by	different	densities	of	mite	pests	was	
studied	already	 in	 the	1990s	 (Penuelas	et	al.,	1995),	and	a	 review	of	 remote	
sensing and geospatial techniques for fruit tree management was published in 
2010	(Panda	et	al.,	2010).

https://www.greenhousemag.com/article/the-drones-are-close/
https://www.greenhousemag.com/article/the-drones-are-close/
https://pats-drones.com/
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Pests,	diseases	and	 their	 impacts	on	plants	 can	also	be	detected	based	
on	the	chemicals	the	infested	plants	emit	into	the	air.	E-noses	are	suitable	for	
monitoring when they provide information on pest presence at a time when it is 
still	possible	to	initiate,	continue	or	intensify	control	actions.	The	use	of	e-noses	
is	 greatly	 enhanced	 by	 AI-based	 pattern	 recognition	 algorithms.	 There	 are,	
however,	still	challenges	to	overcome	regarding	sensor	performance,	sampling	
and	detection	in	open	areas,	and	scaling	up	measurements,	as	reviewed	by	Cui	
et al.	(2018)	from	the	point	of	view	of	IPM	in	vegetables	and	fruit	trees.

An	important	advantage	of	visual	and	thermal	remote	sensing	techniques,	
particularly	those	based	on	aircraft	and	satellites,	is	the	improvement	of	spatial	
and temporal resolution compared with traditional methods for pest monitoring 
such as traps of different kinds or in situ counts. A disadvantage is that the 
remote-sensing	 tools	 tend	to	be	expensive	 to	use	 in	small	areas,	particularly	
when time-series are the goal. Aerial images particularly are costly if repetitive 
imaging is required to study canopy status. Technical issues include distortions 
in images due to the relative motion of sensors and source. The glasshouse 
environment can be challenging for day-time spectral remote sensing because 
of	inconsistent	lighting,	spectral	scattering	and	shadows	caused	by	glasshouse	
structures. Such problems were overcome when the images were taken after 
sunset	 with	 an	 active	 light	 source	 (Nguyen	 and	 Nansen,	 2020).	 With	 this	
innovation,	leafminers	in	the	leaves	of	bok	choy	and	spinach	could	be	detected	
with	>99%	accuracy.	 Lastly,	data	processing	 requires	 specialized	 training	 for	
analysis	of	images	(Prabhakar	and	Thirupathi,	2018).

Crop pests and diseases commonly occurring in continuous cropping 
pattern	 zones	 are	 best	 amenable	 to	 remote	 sensing,	 whereas	 crop	 pests/
diseases that occur sporadically in time and space are less amenable to be 
monitored	 by	 remote	 sensing	 (Rao	 and	 Lakshmikantha,	 2020).	 Because	
remote sensing of pests cannot be cost-effectively or technically applied to 
all	pest	 species,	 the	approach	 taken	 to	evaluate	 its	possibilities	 in	detecting	
and	forecasting	pest	insects	in	China	is	worth	bringing	up.	Cock	et al.	(2016)	
compiled	 tables	 on	 symptoms,	 thresholds	 for	 action	 and	 options	 for	 pest	
management responses of main agricultural insect pests in important crops. 
Chinese cabbage represented horticultural crops in the study. The authors 
used	the	tables,	among	other	things,	to	evaluate	the	scope	for	remote	sensing	
of the pests in China and how the information generated or forecast would be 
used to improve pest management by existing agricultural extension services. 
Among	 the	 insect	 pests	 and	 diseases	 important	 in	 Chinese	 cabbage,	 three	
were	concluded	to	benefit	from	the	use	of	remote	sensing:	one	viral	and	one	
fungal disease and the diamondback moth P. xylostella. The authors also list 
the	 currently	 existing	 ETs	 and	 intervention	 options	 for	 the	 pests	 of	 biggest	
importance and in so doing integrate with each other the need to adapt 
such	 thresholds	 with	 the	 new	 technology.	 For	 example,	 correlations	 must	
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be produced for results of remote sensing based on vegetation indexes or 
hyperspectral	profiles	and	associated	pest	densities	to	enable	decision-making	
concerning intervention needs.

Results of remote sensing can be integrated into robotic platforms such 
as autonomously moving trolley-mounted robots or robotic platforms in 
greenhouses.	 The	 Ecoation	 robotic	 platform	 includes,	 among	 other	 things,	
an	optochemical	method	 for	detecting	 the	presence	of	whiteflies	 in	 tomato	
(https://www .ecoation .com/) based on changes in plant chemistry. Another 
example	 of	 the	 use	 of	 robots	 for	 the	 same	 purpose	 is	 the	 Greenpatrol-
robot under development in Spain for use in tomato and cucumber crops in 
greenhouses	 (http://www	.greenpatrol	-robot	.eu	/Greenpatrol	-robot).	 A	 user	
interface can be accessed by farmers to determine the robot’s status and see 
a map of healthy and infected zones together with recommended actions. The 
robot is capable of identifying where pests are located and of returning to 
treat	them.	Under	the	farmer’s	instruction,	the	robot	has	the	ability	to	spray	the	
plant with pesticide. Scanning of the greenhouse by the robot is based on IPM 
strategy	algorithms.	There	is	no	information,	as	yet,	whether	the	system	will	at	
some point also include natural enemies as recommended actions.

2.4  Nano-inspired biosensors for plants

Various	 nano-inspired	 biosensors	 have	 been	 reported	 that	 range	 from	
detection	 of	 plant	 infections	 (fungal,	 viral	 and	 bacterial),	 abiotic	 stress,	
metabolic	content,	phytohormones,	miRNAs,	genetically	modified	(GM)	plants	
to transcriptional and genetically encoded biosensors in a very short time span 
(Giraldo	et	al.,	2019;	Kumar	and	Arora,	2020).	Combined	with	abiotic	data	at	
a	microenvironmental	 level,	 the	 nanosensors	would	make	 a	 good	 reporting	
tool	about	 the	status	of	 the	crop	 in	 terms	of	plant	health,	as	so	called	 ‘plant	
wearables’. A plant wearable can consist of an ultrathin and ultra-lightweight 
nanosensor,	 the	aim	being	to	attach	flexible	sensor	devices	directly	on	plant	
tissues	such	as	leaves	for	continuous	monitoring	(Li	et	al.,	2020).	It	is	too	early	
to tell whether they can be used for detecting horticultural pest insects and 
mites.	They	would	probably	complement,	or	replace,	spectral	imaging	tools	as	
biomarkers	 for	detecting	symptoms	caused	by	various	stressors,	but	 it	 is	not	
clear	how	closely	they	can	fingerprint	to	give	the	stressors’	identity.	Sampling	
plans must be developed with a good understanding of the spatial distribution 
of	 the	pest	 species	 and	 the	 criteria	 that	must	be	 fulfilled	 to	achieve	 reliable	
information	about	pest	occurrence	in	the	field	or	greenhouse.

Owing	 to	 their	 small	 size,	 nanosensors	 could	 in	 principle	 be	 ‘sown’	 on	
the	crop	 in	 large	numbers,	or	 they	could	be	 taken	 to	 the	crop	and	attached	
there according to a sampling plan that has a clear goal. If biotic stressors 
are	 detected	 only	 on	 a	 presence–absence	 basis	 in	 a	 few	 locations,	 there	 is	

https://www.ecoation.com/
http://www.greenpatrol-robot.eu/Greenpatrol-robot
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a	 danger	 of	 the	 concept	 of	 the	 EIL	 and	 ET	 becoming	 obsolete.	 That	 threat	
notwithstanding,	 nanostructure-supported	 non-invasive	 detection	 tools	
combined with smartphones pave the way for fast and on-site diagnosis of 
plant diseases and long-term monitoring of plant health conditions. Such 
solutions	are	desirable	particularly	 in	 resource-poor	 settings	 (Li	et	 al.,	 2020).	
A potential application could be nanosensors attached to plants for detection 
of	whitefly-induced	biochemical	changes	in	plants.	The	changes	are	systemic,	
and detection could be improved by placing the sensors in the top and middle 
layer	of	vertical	plants	 to	 target	 leaves	with	L3	and	L4	 immatures	and	adults	
that induce the strongest local and systemic biochemical changes in the plant 
(Estrada-Hernández	et	al.,	2009).

2.5  Natural enemy adjusted thresholds (NEETs)

Decision-making	solutions	(sampling	plans	and	EILs	and	ETs)	developed	in	the	
1990s for managing phytophagous mites in apple have paved the way for new 
research	that	aims	to	include	natural	enemies	in	sampling	plans	and	EILs	(Nyrop,	
1988;	Park	et	al.,	2000;	Van	Der	Werf	et	al.,	1994).	Van	Der	Werf	et al.	(1994)	
developed a sequential sampling program for phytoseiid predators of mites in 
apple and continued the program development by modelling predator:prey 
ratios	for	phytoseiids	and	phytophagous	mites	in	the	same	crop	(Van	Der	Werf	
et	al.,	1994).	Action	thresholds	for	tetranychid	mites	in	some	ornamental	plants	
were developed by incorporating phytoseiid mites as their control agents 
(Alatawi	et	al.,	2005;	Opit	et	al.,	2003).	Later	on,	Zhang	and	Swinton	(2012,	2009)	
undertook pioneering work by developing natural enemy adjusted thresholds 
(NEETs)	for	soybean	aphids	in	the	United	States	of	America.	They	introduced	
a	new	decision	rule	for	 judicious	 insecticide	decisions	using	NEETs.	The	new	
threshold represents the pest population density at which insecticide control 
becomes optimal in spite of the opportunity cost of injury to natural enemies of 
the	target	pest.	Bannerman	et al.	(2015),	also	working	on	soybean,	in	Michigan,	
compared	the	relative	bias,	precision	and	efficiency	of	sampling	methods	for	
natural	enemies	of	the	soybean	aphid.	Such	studies	are	still	rare	though,	and	an	
additional	challenge	is	that	NEETs	require	modelling	and	computer	skills.	Tran	
and	Koch	(2017)	determined	the	spatial	patterns	of	predators	of	a	pest	aphid.	
Decision support systems are considered to be necessary for implementation of 
NEETs,	as	otherwise	turning	sampling	results	into	decisions	is	too	complicated.	
Automated	sampling	and	 identification	 is	unlikely	 to	become	possible	 for	all	
species	of	pest	and	their	natural	enemies;	despite	this,	sampling	plans	should	
be as practical as possible in terms of the time and labour resources required.

It is the farmer who takes the risk of adjusting her plant protection strategy 
that	 may	 or	may	 not	 involve	 natural	 enemies,	 and	 her	 decision	 concerning	
investment in biological control has repercussions concerning pesticide residues 

http://www.predator:prey
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in food and the environment as well as the economics of the farm. Traditional 
cost–benefit	analysis	may	not	be	good	enough	to	estimate	the	socioeconomic	
costs	and	benefits	of	such	investments	comprehensively.	How	does	the	farmer,	
then,	know	whether	it	would	be	good	for	her	or	not	to	invest	in	using	biological	
control? This question was recently addressed by Benjamin and Wesseler 
(2016),	who	used	the	maximum	incremental	social	tolerable	irreversible	costs	
(MISTICs) as a tool for such evaluation. The output of the MISTIC modelling tool 
is	an	estimation	of	when	the	incremental	reversible	benefits	of	the	IPM	strategy	
that includes biocontrol outweigh possible irreversible costs of such a strategy 
by a minimum threshold. Only when the minimum threshold is exceeded should 
introduction of biocontrol as part of farm-level IPM be considered. At the same 
time,	 the	 output	 informs	 us	 how	 the	 individual	 farmer’s	 decision	 influences	
society. The results obtained by Benjamin and Wesseler indicate that including 
biocontrol	in	potato,	but	not	in	maize,	IPM	is	feasible.	According	to	the	authors,	
the reasons behind biocontrol being more feasible in potato could be lack of 
adequate	pesticide	control	of	diverse	pests	in	potato,	the	sensitivity	to	residue-
free products by society and the regulated use of IPM by authorities. Although 
theoretical,	the	modelling	study	by	Benjamin	and	Wesseler	highlights	how	the	
changed	 context	 that	 is	 likely	 to	 involve	 reduced	 efficacy	 and	 availability	 of	
pesticides changes the premises of making decisions concerning the adoption 
of	alternative	pest	management	strategies.	Predicting	the	costs	and	benefits	of	
biocontrol at the farm and societal level gives impetus to develop and target 
the	development	of	NEETs	at	the	crop	level.

2.6  The value of information, sampling plans and economic/
action thresholds: the cases of P. xylostella and T. absoluta

Three papers from three different decades together highlight important 
issues that were brought up in the overview of bottlenecks and the challenges 
of	monitoring	 and	 forecasting.	 The	 first	 is	 that	 when	 sampling	 for	 decision-
making,	 there	 is	a	 lower	 limit	 for	 the	number	of	 samples	 that	must	be	 taken	
to	 obtain	 reliable	 information	 for	 decision-making,	 whereas	 the	 maximum	
number of samples can be adjusted and resources thus saved. The second 
issue	is	that	stakeholders	tend	to	prefer	fixed-size	sampling	with	so	low	sample	
sizes	that	such	sufficient	information	is	not	obtained.	The	third	issue	is	farmers’	
risk aversion that tends to result in ignoring sampling results that recommend 
no action.

The issues culminate in the following questions: (1) which types of sampling 
plan give precise enough results for decision-making in practice and optimize 
the net value of sample information but would still be acceptable to users in 
terms	 of	 practicality;	 (2)	 how	 should	 ETs	 actually	 be	 implemented	 –	 as	 top–
down recommendations that must be strictly followed or as learning tools that 
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are developed together with the stakeholders through a bottom–up principle 
and that give room for the peculiarities of human risk aversion and associated 
decision-making	style;	and	3)	how	to	support	farmers	in	the	implementation	of	
sampling	plans	that	may	first	seem	complicated,	but	which	in	effect	are	quite	
practical and information laden at the same time? These questions concern 
sampling	that	requires	in	situ	counts	of	pests	in	the	crop,	as	they	are	considered	
more time consuming and laborious compared to using traps that concentrate 
pests in one or more locations.

‘Sequential	classification	sampling	plans’	were	strongly	recommended	by	
Binns	et al.	(2000).	Sequential	means	that	the	sample	size	is	not	predetermined.	
Instead,	the	decision	of	whether	to	make	a	decision	(intervene	or	not)	is	made	
during	 the	 sampling	 process,	 based	 on	 the	 cumulative	 counts	 of	 pests	 in	
samples collected so far. There must be some criterion with which to compare 
the	cumulative	count,	of	course,	to	be	able	to	know	if	more	samples	must	be	
taken or if sampling can be stopped and a decision taken. The person assessing 
the crop takes samples and checks whether the cumulative count of insects is 
below or above the stop boundary after every sample.

There	can	also	be	two	stop	boundaries,	in	fact;	in	this	case,	the	sampling	is	
called	‘tripartite	classification	sampling’.	With	‘sequential	tripartite	classification	
sampling’,	 the	 farmers	 get	 more	 information:	 depending	 on	 where	 they	
end	 up	 with	 the	 cumulative	 sample	 size,	 they	 must	 either	 intervene	 now	
or	not	 intervene,	 they	also	 receive	a	 recommendation	 for	when	 they	 should	
sample again on a later date (e.g. after 7 days). Because the sampling result 
now	informs	the	farmers	about	future	actions,	so	that	the	sampling	plans	are	
‘chained’	in	time,	a	tripartite	sampling	plan	is	also	called	a	‘cascaded	tripartite	
classification	sampling	plan’.	If	the	sampling	plan	can	advise	the	farmers	reliably	
about	when	in	the	near	future	the	next	sampling	bout	should	be	undertaken,	
and	 the	 interval	 (e.g.	 being	 7,	 14	 or	 21	 days)	 between	 current	 and	 future	
sampling	plan	depends	on	 the	current	sampling	 result,	 the	sampling	plan	 is	
called	‘adaptive	frequency	classification	sampling’	Nyrop	et al.	(1994).	Cornell	
University	produces	tripartite	classification	sampling	plans	for	apple	growers	for	
decision-making	concerning	the	management	of	the	European	red	spider	mite	
(Anonymous,	2020).	The	plans	are	presented	as	charts	and	with	instructions	on	
how to undertake the sampling and how to compare the sampling results with 
the chart for decision-making.

Precision	of	a	sampling	plan	refers	to	SEM/m,	the	ratio	of	the	standard	error	
to	the	sample	mean	(Green,	1970).	A	fixed,	or	predetermined,	precision	level	
of	0.25–0.30	is	often	considered	sufficient	for	decision-making	purposes	in	IPM.	
The	total	number	of	samples	needed	to	be	taken	depends,	then,	on	the	degree	
of	 precision	 required.	 In	 sequential	 sampling,	 sample	 size	 is	 greatest	 when	
the population is estimated to be within a critical range of densities at which 
treatment may be necessary – it is not desirable to make a wrong decision. 
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Sample size is less when the population estimates are well above or below 
that range. The goal is to achieve acceptable sampling precision with minimal 
effort.	In	this	way,	situations	of	taking	unnecessary	samples	can	be	avoided	in	
contrast	 to	fixed-size	 sampling	plans,	where	 the	same	number	of	 samples	 is	
always	taken	(Binns	et	al.,	2000;	Pedigo	and	Buntin,	1993).

Because	 sequential	 tripartite	 classification	 or	 adaptive	 frequency	
classification	 sampling	protocols	give	much	more	 information	 to	 the	grower	
than	simpler	sampling	plans,	in	addition	to	that	they	save	sampling	resources,	
they	were	considered	by	 their	 creators	 (Binns	et	al.,	1996;	Binns	and	Nyrop,	
1992;	Nyrop	et	al.,	1994,	1989,	p.	1989;	van	der	Werf	et	al.,	1997)	to	be	much	
more	 valuable	 than	 traditional	 fixed-size	 sampling	plans.	But	 their	 reception	
among farmers has not been particularly encouraging as they can be considered 
too complicated by the practitioners. The same concerns variable intensity 
sampling	plans,	where	sampling	intensity	(how	many	sampling	units	are	taken)	
is reconsidered after every sampled segment of the sampling transect and 
which	also	fulfils	the	criterion	of	representatively	sampling	throughout	the	field	
(Pedigo	and	Buntin,	1993)	(see	also	Fig.	3).

Monitoring	 the	 diamondback	moth	 in	 broccoli	 fields	 in	Australia	 at	 the	
beginning of the 2000s brought up the issue of sequential sampling again. 
Hamilton	 et  al.	 (2004)	 developed	 a	 sequential	 sampling	 plan	 for	 the	 moth	
larvae. The plan used a dynamic action threshold that accounted for factors 
such	as	the	prevalence	of	parasitism,	crop	growth	stage	and	intended	market	
destination.	It	was	presented	as	a	computer	program.	After	a	couple	of	years,	it	
turned out that the sequential sampling plan was not used: it was considered 
too	 complex,	 and	 stakeholders	 preferred	 fixed-size	 sampling	 plans,	 but	
took	usually	only	10–20	samples	per	field,	which	according	 to	Hamilton	was	
clearly	 too	 few	 to	produce	 reliable	 results.	 Furthermore,	only	a	 small	part	of	
broccoli	fields	was	covered	by	such	low	sample	sizes,	thus	sampling	violated	
the criterion of representativeness. Sequential sampling plans demand that at 
least	a	minimum	sample	size	always	be	taken	from	a	field	to	satisfy	the	criterion	
of	 representativeness.	 To	 achieve	 even	 better	 representativeness,	 a	 variable	
sampling plan (see Fig. 2) can be applied.

In Hamilton’s case of sampling for P. xylostella,	he	showed	that	to	achieve	
a	 good	 enough	 level	 of	 precision	 using	 a	 fixed	 sampling	 size,	 at	 least	 45	
samples	should	be	taken	per	field.	This	was	in	contrast	to	the	industry	standard	
of	fixed	 sample	 size	of	10–20	 samples	per	field,	 too	 few	 to	 result	 in	 reliable	
decision-making.	Hamilton	et  al.	 (2006)	 also	 showed	 that	depending	on	 the	
lower	or	higher	action	threshold	(larvae	per	plant)	used	for	decision-making,	
the probability of making type II error (not treating when there would be a need 
to	 treat)	was	 higher	 for	 the	 lower	AT,	 particularly	 if	 the	 sample	 size	was	 too	
small	(Hamilton	et	al.,	2006).	This	meant	that	when	taking	only	a	few	samples,	
risk aversive growers (who wanted to intervene at lower pest densities) were 
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actually making the type II error more often than growers who accepted 
higher	pest	densities	before	intervening.	Thus,	the	appropriate	sample	size	is	
dependent upon both the AT and the level of type II error that one is prepared 
to accept. The question then becomes: what should be done to encourage 
the implementation of reliable and at the same time less resources-demanding 
sampling plans by the stakeholders to really help their decision-making?

Giles	 et  al.	 (2017)	 offered	 an	 answer	 to	 the	 above	 question:	 ‘These	
thresholds are more likely to be utilized by stakeholders when integrated 
into dynamic web-based IPM decision support systems that summarize pest 
management	 data	 [and	 push	 site-specific	 biological	 control	 management	
recommendations to decision-makers].’ A very interesting approach to answer 
the	same	question	was	offered	recently	by	Rincon	et	al.,	(2020),	who	also	ended	
up recommending IT-based support systems – albeit in a less complicated form 
than	that	of	Giles	et	al.,	to	encourage	farmers	to	take	up	more	reliable	sampling	
plans.	 However,	 their	 approach	went	 deeper	 into	 the	 socioeconomic	 issues	
that may hinder implementation of sampling plans. They began with the issues 
concerning	uncertainty	and	the	value	of	information,	and	the	time	constraints	
of	 farmers	 and	 their	 risk	 aversion,	but	 addressed	also	 the	 issue	of	 fixed	ETs	
which in reality vary according to the variation in product price in particular.

Rincon	 et  al.	 (2020)	 worked	 on	 a	 tomato	 greenhouse	 infested	 with	 T. 
absoluta,	undertook	intensive	sampling	in	the	crop	to	first	determine	explicitly	
the	 level	of	 infestation,	and	 then	evaluated	 two	sequential	and	 two	variable-
intensity	 sampling	 (VIS)	plans	 for	 the	classification	of	pest	density,	by	 letting	
farmers do the sampling and measure the time needed for sampling. The 
re-sampling	was	undertaken	both	with	computer	simulations	and	by	field	trials.	
As	a	result	 they	suggested	a	new	approach	to	ETs:	 that	they	should	be	seen	
not	as	fixed	recommendations	but	as	 learning tools. With the help of such a 
learning	tool,	the	farmers	can	determine	their	own	threshold,	keeping	in	mind	
the	reference,	but	at	the	same	time	adjusting	their	decision-making	according	
to	their	experience,	intuition	and	knowledge	about	market	developments.

Eventually,	Rincon	et al.	(2020)	recommended	variable	intensity	sampling,	
not	sequential	sampling.	The	value	of	the	information	produced	by	VIS	was	the	
highest,	and	the	time	needed	for	sampling	was	no	more	than	that	needed	for	
binomial	presence–absence	sampling.	The	merits	of	the	study	by	Rincon	et al.	
(2020) are in their collaborative approach to developing the sampling plan and 
doing	an	intensive	sampling	first	and	in	using	it	as	a	reference	for	the	farmers,	
who tested the four different sampling plans. The farmers learned about the 
level of uncertainty of the sampling results directly and could themselves 
consult	their	risk-averse	selves	with	regard	to	decision-making.	However,	they	
were	equipped	with	objective	knowledge	about	the	pest	situation.	Rincon	et al.	
(2020) concluded that implementation of the adaptive sampling plan requires 
simultaneous technological developments to make real-time calculations and 
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deliver the information in an appropriate format. They foresee apps that will 
do	the	calculations	for	the	sampler,	as	they	must	get	instruction	to	continue	or	
not	continue	sampling	‘on	the	go’.	In	such	situations,	documentation	based	on	
voice recognition would be of great help as it frees the grower’s or advisor’s 
hands for actual work.

It must be noted that sampling based on counts in situ turned out to be 
adequate for a pest like T. absoluta,	where	the	larval	mines	in	leaves	are	easily	
seen	 and	 counted.	 VIS	 sampling	 that	 is	 based	 on	 counting	 specimens	may	
not	be	 the	best	option	 for	pests	 such	 as	whiteflies	 that	 are	more	difficult	 to	
see.	VIS	can	be	implemented	also	with	presence–absence	sampling,	in	which	
case	 the	difficultly	of	 counting	 very	 small	 and	prolific	 specimens	 is	 avoided.	
Furthermore,	automated	counting	methods	like	the	app	that	recognizes	either	
adult	 or	 immature	 stages	 of	whiteflies	 (Anonymous,	 2021)	 is	 exactly	what	 is	
needed	for	situations	like	this,	and	such	tools,	once	available	for	use	in	the	field,	
can play a decisive role in the willingness of stakeholders to adopt a sampling 
plan.

2.7  Forecasting

Innovations regarding mechanistic models and advances in statistical models 
brought about by the use of AI and associated growing importance of Big Data 
and data quality are some of the key developments in forecasting for IPM. These 
developments concern not only horticulture but primary production in general. 
Several	authors	emphasize	‘seeing	the	wood	for	the	trees’,	that	is,	moving	from	
reductionist mechanistic models towards more systemic or holistic approaches 
to modelling as a tool of pest forecasting in IPM. Harvey (2015) calls for Big 
Data for conducting meta-analyses and constructing powerful models for IPM 
in	temperate	horticulture.	Orlandini	et al.	(2017)	describe	the	need	to	develop	
agroclimatology-based	mechanistic	models	in	terms	of	how	models	are	built,	
parameterized,	validated	and	 implemented	 to	produce,	as	outputs,	pest	 risk	
maps	 for	 long-term	 decision-making	 and	 preparedness,	 and	 pest	 forecasts	
for	day-to-day	decision-making.	Tonnang	et al.	(2017),	Baker	et al.	(2018)	and	
Orlandini	et al.	 (2017)	all	emphasize	 the	creation	of	a	modelling	culture	 that	
should	involve	model	developers,	service	providers	(e.g.	for	weather	data)	and	
final	users.

New approaches to data analysis such as Big Data algorithms emphasize 
collaboration between computer scientists and biologists. The literature 
is	 replete	with	 reviews	about	Big	Data	and	 its	possibilities,	but	what	 is	 really	
needed for pest forecasting are more empirical cases of the use of Big Data 
for improving forecasting at wider temporal and spatial scales than before. This 
need poses new requirements for multidisciplinary collaboration and for being 
able	to	identify	what	types	of	data	are	relevant	and	valuable	now,	even	though	
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they may not have been so before. This requires also that the importance of 
data collecting must be made understood to all stakeholders. Otherwise a 
large part of important data could remain only anecdotal and not become used 
(Harvey,	2015).

Orlandini	et al.	(2017)	call	for	coupling	of	pest	models	with	crop	models,	
that	 is,	 a	 step	 towards	 a	 more	 systemic	 approach,	 since	many	 current	 pest	
models do not have outputs that are easy to translate into pest impacts. They 
foresee also an increasing quantity of pest observations and a move toward 
the	 concept	 of	 big	 data	 and	 associated	 technologies	 for	 capturing,	 storing,	
managing and analysing data. Such a move is expected to result in a changed 
balance	 between	 mechanistic	 and	 statistical	 forecast	 models,	 as	 depicted	
by	 (Baker	 et	 al.,	 2018).	 A	 thorough	 understanding	 of	 mechanisms	 behind	
biological and ecological processes is still needed instead of mere working 
with	 ‘black	 boxes’	 associated	 with	 statistical	 models.	 Developments	 in	 both	
modelling	approaches	are	foreseen	to	better	use	them	together,	and	thus	get	
more out of the combination of deductive and inductive modelling approaches. 
Mechanistic models could be used by machine learning algorithms both as 
transient	inputs	and	as	a	validating	framework.	(Baker	et	al.,	2018).

At	 the	 same	 time,	 technical	 developments	 in	 remote	 sensing	 are	 also	
making mechanistic models more powerful by helping to get better data for 
model validation. One limitation of mechanistic weather-based phenology 
models	has	namely	been	that	data	sets	of	in	situ	temperature	are	very	specific	
to	 the	 locality	 of	 weather	 stations,	 that	 is,	 the	 data	 have	 a	 low	 spatial	 and	
temporal resolution. Satellite-based remote sensors that continuously measure 
land surface temperatures over vast areas can nowadays be used for creating 
more accurate degree-day accumulation maps for large areas. One example is 
given	by	the	studies	of	Marques	da	Silva	et al.	(2015)	on	T. absoluta in Portugal. 
Remotely measured land surface temperature data was combined with the 
threshold temperature and thermal constants of T. absoluta development. The 
outputs were risk maps depicting the number of generations produced by the 
pest in different parts of the country with respect to the spatial and temporal 
variation of degree-days sum. The authors found that the spatial resolution of 
such maps was better than those produced with in situ weather stations. Such 
resolution	improvement	can	make	a	difference	in	site-specific	management	of	
the pest. The authors foresaw an early warning system that could geographically 
locate farmers associated with similar climatological patterns and could warn 
them when higher risk levels are reached.

At	 a	 smaller	 scale,	 precision	 agriculture	 technologies	 enable	 predicting	
the	 zoning	of	 pest	 prone	 areas	within	 fields	 for	 pests	 that	 have	 aggregated	
distributions.	There	are	methods	to	partition	fields	in	management	zones,	but	
zoning for pest management purposes requires spatially explicit ecological 
layers	that	are	created	on	the	basis	of	a	pest’s	within-field	distributional	patterns.	
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Such	 layers	 represent	 a	 species’	 ecological	 niche.	 The	 patterns,	 or	 zones,	
are generated via species distribution modelling (SDM) and high-resolution 
environmental data using tools such as drones and wireless sensor networks 
to map environmental conditions with high spatial and temporal resolutions. 
Méndez-Vázquez	et al.	(2019)	delineated	site-specific	pest	management	zones	
in	 a	 lime	 orchard	 using	 SDM	 by	 first	 mapping	 pest-driving	 environmental	
features within the orchard via precision sampling tools. These measurements 
served as raw data for creating the spatially explicit ecological layer needed 
for predicting where selected pests would thrive. They worked with six virtual 
pest	 species	 (with	known	affinity	 to	 lime	 trees)	and	mapped,	 in	a	correlative	
manner,	 their	 known	 distributional	 ranges	 within	 the	 experimental	 orchard	
using	 a	 subset	 of	 real	 environmental	 predictors.	 Lastly,	 they	 evaluated	 the	
performance of the selected zoning models in terms of multivariate similarities 
between environmental preferences of pests and environmental characteristics 
of individual management zones. The authors concluded that the use of the 
ecological layer that was created for purposes of identifying pest management 
zones according to the environmental requirements of the pest species 
worked better than the classical zoning methods. The approach appears 
rather demanding in terms of measurements that need to be done but may be 
feasible to do in long-term habitats such as fruit orchards.

Tonnang	et al.	(2017)	give	an	overview	of	advances	in	crop	pest	forecast	
modelling	 and	 present	 such	 approaches	 based	 on	 advanced	 mathematics,	
computer	 and	 physics	 theories.	 These	 approaches	 include	 artificial	 neural	
networks,	 cellular	 automata	 coupled	 with	 fuzzy	 logic,	 fractal,	 multi-fractal,	
percolation,	synchronization	and	individual/agent-based	approaches.	Most	of	
the	new	types	of	modelling	tools	presented	by	Tonnang	et al.	(2017)	concern	
spatio-temporal	dynamics	of	pest	distributions	and	densities.	For	example,	a	
cellular automata modelling was used to predict the risk of the invasion and 
natural spread of T. absoluta from Spain across Africa. The output revealed 
that T. absoluta could reach South Africa 10 years after being detected in 
Spain	 (Guimapi	 et	 al.,	 2016).	 The	 cellular	 automata	model	 integrated	NDVI,	
temperature,	relative	humidity	and	yield	of	tomato	production.	Artificial	neural	
networks (ANN) are showing good promise in predicting pest dynamics more 
accurately.	Examples	include	predictions	for	population	densities	of	P. xylostella 
and its ichneumonid parasitoid Diadegma semiclausum	(Tonnang	et	al.,	2010)	
and	forecasting	paddy	stem	borer	population	occurrence	(Yang	et	al.,	2009).	
More	recently,	Yan	et al.	(2015)	compared	multiple	regression	(MR)	and	ANN	
for predicting monthly pest risks of Thrips palmi and P. xylostella. MR is the 
simplest and most widely used method for pest-risk prediction. The advantages 
of ANN are that the modelling can be conducted without prior knowledge: any 
relationship between given predictors and dependent variables can be learned 
by	 the	neural	networks,	 regardless	of	 linearity	or	non-linearity.	Non-normally	
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distributed	data,	multicollinearity	issues	and	data	noise	are	also	tolerable	when	
training	the	network.	But	when	using	ANN,	the	importance	of	predictors	to	a	
given	dependent	variable	cannot	be	explicitly	identified	by	ANN	as	it	performs	
like a black box.

Yan	et al.	(2015)	list	a	number	of	characteristics	of	MR	and	ANN	that	have	
importance for the modelling process and output. These authors are among 
those	that	see	benefits	in	combining	the	mechanistic	and	statistical	modelling	
approaches. MR could be used to identify key variables that contribute to pest 
development,	that	is,	MR	can	open	up	the	black	box	that	ANN	cannot	do	and	
can	reduce	the	model	complexity	and	improve	the	training	efficiency	and/or	
accuracy	 (Yan	et	 al.,	 2015).	 Likewise,	Kumar	et  al.	 (2018)	 also	 found	out	 that	
ANN produced more accurate outputs than classical regression in predicting 
incidence of two rice insect pest species and one natural enemy species using 
weather variables as inputs. ANN and fuzzy logic were used also to predict daily 
risk	of	the	western	flower	thrips	in	roses	grown	in	greenhouses	using	only	four	
variables in comparison with earlier models that needed a large number of 
variables	to	produce	desired	output	(Tay	et	al.,	2020).

D. suzukii	exemplifies	several	of	the	issues	that	Magarey	and	Isard	(2017)	
list in their troubleshooting guide concerning mechanistic forecasting models. 
As D. suzukii	 is	an	invasive	species,	the	biggest	of	problems	or	gaps	concern	
details	of	its	biology	and	ecology,	but	also	a	validation	of	models	that	predict	
the	development	of	its	life	stages	or	fitness	in	the	new	regions	of	its	distribution.	
Degree-day-based models and stage-structured models are not always 
validated to see how well they predict the inter-annual variation in the activity of 
the	pest.	Initial	population	development	after	invasion,	survival	at	temperature	
extremes,	 and	 conditions	 necessary	 for	 the	 development	 of	 damaging	
populations are not known well enough to use these details as input for models. 
Existing	models	may	rely	on	development	measured	in	laboratory	experiments	
(Kinjo	et	al.,	2013;	Tochen	et	al.,	2016)	instead	of	utilizing	field	detection	data	
from traps or fruit samples. Data on winter survival and spring populations 
of D. suzukii	 in	 regions	with	cold	winter	conditions	are	 limited	 (Dalton	et	al.,	
2011;	Shearer	et	al.,	2016;	Stockton	et	al.,	2018);	thus,	there	is	a	need	to	further	
evaluate	and	predict	fly	activity	using	field-collected	data	on	adult	flies.	The	age	
structure of estimated populations suggests that trap and fruit infestation data 
are	 of	 limited	 value	 for	 validating	models	 concerning	 the	 fly’s	 development	
(Hamby	et	al.,	 2016;	Tochen	et	al.,	 2016;	Wiman	et	al.,	 2014).	Despite	 these	
issues,	D. suzukii activity was concluded to be predictable and environmental 
conditions	(such	as	the	annual	number	of	days	below	0°C,	the	number	of	winter	
and	spring	days	above	10°C	and	the	fly	activity	in	the	preceding	year)	can	be	
used	in	temperate	regions	to	provide	regional	risk	warnings	(Leach	et	al.,	2019).

P. xylostella is a migrant species whose appearance in new regions comes 
as a nasty surprise. A climate niche model has been developed for the moth. 
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The model has been used to predict the global geographic distribution of P. 
xylostella,	 but	 the	moth’s	 seasonal	 abundance	 for	 various	 locations	 has	 not	
been	used	in	construction	of	the	model.	The	model	was	also	used	to	‘predict’	
historical	 population	 dynamics	 in	 Hangzhou,	 China,	 over	 several	 years,	 and	
for	analysis	of	recent	outbreaks	of	the	species	in	the	British	Isles	(Zalucki	and	
Furlong,	2008;	Zhu	et	al.,	2018).

Climate warming has created the need to update phenological models 
for	many	pests,	 including	Psila rosae,	D. radicum and D. antiqua,	whose	peak	
flight	 and	 start	 of	 egg-laying	 are	 predicted	 with	 phenological	 models.	 The	
likelihood of D. radicum producing a fourth generation in the autumn in the 
United	Kingdom	is	foreseen	if	mean	annual	temperatures	increase	by	5	or	10°C,	
coupled	with	 earlier	 hatching	 of	 the	 flies	 from	overwintering	 pupae	 (Collier	
et	al.,	1991).	The	warming	climate	can	 influence	 the	flight	dynamics	of	pests	
such	as	the	codling	moth	during	the	growing	season	(Roşu-Mareş	et	al.,	2020),	
resulting in prolonged periods of control and increased damages to crops. 
Samietz	 et  al.	 (2013)	 took	 advantage	 of	 the	 improved	 spatial	 and	 temporal	
resolutions of climate model projections and modelled the phenology and 
generations of the codling moth. Their results also indicate that the pest’s 
impact on apples would increase and its management would become more 
difficult	with	climate	warming.	Using	49	climate	indices	and	undertaking	further	
analyses	with	 climate	projections,	Bradshaw	et  al.	 (2019)	predicted	 that	 in	 a	
2–4°C	warmer	world,	B. tabaci	could	pose	a	risk	to	outdoor	UK	crops,	including	
vegetables,	 in	 July	 and	 August.	 Currently,	 the	 pest	 occurs	 outdoors	 at	 the	
latitudes of southern France.

3  Case study: whitefly sampling, monitoring and 
forecasting

3.1  Two forms of plant injury by whiteflies complicate EIL and 
ET development

The	 relationship	 between	 yield	 reduction	 and	 plant	 injury	 by	 whiteflies	 has	
been	 elusive	 for	 a	 long	 time,	 since	 whiteflies	 cause	 economic	 damage	 in	
two ways: directly by depleting plants of photosynthates and indirectly by 
secreting honeydew. Honeydew accumulates on leaves and fruits and causes 
two	 types	of	harm:	firstly,	by	 favouring	 the	growth	of	 saprophytic	 fungi	 that	
block	access	of	light	to	leaves	and	secondly,	by	causing	aesthetic	and	technical	
harm	through	contamination	of	fruits,	resulting	either	in	loss	of	grade	A	fruits	
or in the need for washing them prior to sale. Honeydew production by the 
adult and larval stages and the effect of temperature and nitrogen fertilization 
on	 its	 production	 are	 known	 (Blua	 and	 Toscano,	 1994;	 Costa	 et	 al.,	 1999;	
Henneberry	et	al.,	2001;	Hong	and	Rumei,	1993).	This	 could	 in	principle	be	
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used as a proxy for estimating the variable feeding intensity of immatures. In 
practice,	measuring	honeydew	production	is	difficult	and	must	be	limited	for	
research	purposes	and	the	EILs	and	ETs	must	be	based	on	the	proportion	of	
contaminated fruits.

In	 Fig.	 4,	 the	 components	 and	 their	 correlations	 needed	 to	 understand	
the	direct	 and	 indirect	 effects	 of	whiteflies	on	 yield	quantity	 and	quality	 are	
summarized. The light green and light blue components denote variables 
that	 have	 been	 measured	 traditionally	 to	 study	 whitefly	 economic	 damage	
impacts	 on	 plant	 yield:	 feeding	 and	 honeydew	 secretion.	 Johnson	 et  al.	
(1992)	showed	that	the	yield	of	field	grown	tomato	correlated	negatively	with	
cumulative	immature	whitefly-days	(per	1	cm	leaf	disk	of	tomato).	(The	whitefly	
days indicate the prolonged pest pressure on the physiology of plants due to 
feeding	by	both	adults	and	immature	stages.)	A	5%	direct	yield	loss,	but	little	
loss	to	sooty	mould,	occurred	after	69	cumulative	immature	whitefly	days	(with	
a maximum of 0.7 nymphs/cm2 in weekly samplings per plot). On the other 
hand,	a	5%	yield	 loss	 in	grade	A	 fruit	caused	by	sooty	mould	contamination	
alone	would	have	been	reached	after	298	cumulative	greenhouse	whitefly	days	
(peak	density	=	8.3	immatures/cm2	tomato	leaflet).	At	that	point,	a	total	loss	of	
26%	tomato	yield	would	have	occurred	due	to	the	combination	of	feeding	and	
sooty	mould	contamination.	No	clear	initial	plateau	in	yield	could	be	discerned;	
instead,	yield	reduction	was	 linear	 throughout	 the	sampled	 levels	of	whitefly	
abundance. It appears that direct yield reduction was more important than 
contamination of fruits with honeydew.

3.2  Sampling, monitoring and identifying of whiteflies

In	 an	 ideal	 world,	 tomato	 or	 cucumber	 growers	 can	 choose	 a	monitoring	
protocol that depends on the size of their crop and willingness to invest in 
monitoring	the	pest.	In	a	relatively	small	greenhouse,	say	5000	m2,	they	can	
use yellow sticky traps (YST) for monitoring by placing them at a distance of at 
least 15–20 m2 from each other (1 trap per 200–400 m2,	roughly)	so	that	they	do	
not	produce	spatially	redundant	information	as	shown	by	Kim	et al.	(2001)	and	
Park	et al.	(2011b).	Besides	the	usual	YSTs,	LED-enhanced	or	LED-based	traps	
that	attract	whiteflies	have	been	developed	and	equipped	with	fixed	cameras	
that take an image at selected intervals and send it to a computer screen 
(Stukenberg	et	al.,	2015;	Stukenberg,	2018).	Counting	of	adult	whiteflies	from	
YSTs is being made easier by automatic counting using machine-vision-based 
apps (https://play .google .com /store/ /apps /details ?id=<aidev .cocis .makere 
re.	 org.whiteflycounter	 &hl=fi&gl=US)	 (https://www	.koppert	.com	/natutec	- 
scout/)	(McCarthy	et	al.,	2020).	A	statistical	model,	based	on	machine-vision	
data,	for	distinguishing	T. vaporariorum and B. tabaci adults from each other 
in	 traps	 has	 also	been	developed	 (Moerkens	 et	 al.,	 2019).	 Even	 immature	

https://play.google.com/store//apps/details?id=
http://www.aidev.cocis.makerere.
http://www.aidev.cocis.makerere.
https://www.koppert.com/natutec-scout/
https://www.koppert.com/natutec-scout/
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stages on leaves can nowadays be distinguished from each other and 
counted	automatically,	but	such	phenotyping	is	currently	cost-effective	and	
practical	 only	 for	 research	 purposes	 used	 in	 the	 laboratory	 (Anonymous,	 
2021).

From	the	traps,	the	grower	monitors	both	the	pest	and	a	predatory	bug	M. 
pygmaeus and can conclude from their relative counts whether biocontrol by 
the	predator	 is	going	well	or	not	 (Böckmann	and	Meyhöfer,	2017;	Moerkens	
et	al.,	2020).	Based	on	trap	catches	of	the	parasitoid	Encarsia formosa,	she	can	
also conclude whether parasitism is going on well: six or more individuals per 
trap	 indicates	 the	parasitoid	 is	keeping	 the	pest	 in	control	 (Böckmann	et	al.,	
2014). Should the grower want to check the parasitization rate of puparia 
on	the	leaves,	she	can	use	the	threshold	of	80%	black,	parasitized	pupae	for	
concluding	that	the	whitefly	situation	is	in	control	(van	Roermund	et	al.,	1997).	
And	 if	 the	 grower	 is	 well	 updated,	 she	 knows	 that	 she	must	 place	 Encarsia	
cards	so	that	there	is	no	more	than	an	8	m	distance	from	one	point	to	another.	
Otherwise	 there	 will	 be	 areas	 that	 parasitoids	 do	 not	 cover	 (Pérez	 et	 al.,	 
2011).

Figure 4 Factors	needed	to	understand	plant	 injury	and	economic	damage	caused	to	
plants by Trialeurodes vaporariorum.	Data	for	cucumber	(green	boxes)	(Rumei	and	Liying,	
1991)	were	used	to	indicate	the	relative	strength	of	correlations	between,	plant	growth	
indices,	yield	quantity	and	quality	and	abundance	of	T. vaporariorum. Thick green line: 
correlation	significant	at	0.01.	Thin	green	line:	correlation	significant	at	0.05.	Dashed	thin	
line:	correlation	almost	significant.	The	correlations	between	honeydew	production	with	
growth	indices	are	not	based	on	empirical	results,	just	sketched	to	show	the	relationships.	
The	orange	boxes	give	the	most	recent	research	targets	for	the	impacts	of	whitefly	on	
plants,	and	eventually	yield.	Their	direct	correlations	with	variables	in	the	green	and	blue	
boxes	are	not	known,	but	all	correlate	significantly	with	whitefly	density.	References:	1	
(Cai	et	al.,	2016;	Chen	et	al.,	2011)	for	tomato,	2	(Darshanee	et	al.,	2017;	Su	et	al.,	2018)	
for	tomato,	3	(Shannag	and	Freihat,	2009)	for	cucumber.
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3.3  Possibilities of physiological EILs

To	succeed	in	biological	control,	the	grower	must	have	started	control	measures	
as	soon	as	she	observed	the	first	whiteflies	in	the	crop.	The	whiteflies	reduce	
the	chlorophyll	content	of	leaves,	the	performance	of	the	remaining	chlorophyll	
gets	poorer	than	normal	and	the	stomatal	conductance	also	decreases;	these	
negative	 consequences	 take	 place	 in	 both	 tomato	 (Buntin	 et	 al.,	 1993)	 and	
cucumber	(Rumei	and	Liying,	1991;	Shannag	and	Freihat,	2009).	Provided	that	
there	were	no	more	than	five	to	six	adult	whiteflies	per	plant	in	the	beginning	of	
the	infestation	(an	EIL	in	greenhouse	cucumber	where	the	economic	damage	
will	develop	into	significant	yield	reductions	in	2–3	months	in	the	absence	of	
control	measures,	 as	 shown	 by	 Jeon	 et  al.	 (2009)),	 such	 reductions	 in	 plant	
performance	will	not	be	reflected	in	the	yield	immediately.	In	cucumber,	20%	
of chlorophyll content of leaves can decrease before it results in yield decrease 
(Rumei	and	Liying,	1991);	at	this	point,	sooty	moulds	due	to	honeydew	secretion	
are	not	present	yet,	 so	yield	 reduction	 is	directly	 from	 the	sucking	action	by	
whiteflies.	So	there	is	time	to	act	after	detecting	the	whiteflies	but	the	length	of	
time	depends	on	the	initial	level	of	infestation	and	on	stages	of	whiteflies	of	the	
initial	infestation	(Rumei	and	Liying,	1991).

The extent to which stomatal conductance and chlorophyll content and 
performance are reduced and transpiration is increased depends on how plants 
are	fertilized,	how	much	light	they	receive,	how	high	fruit	load	they	have	and	
what other biotic and abiotic stressors are affecting them. The physiological 
direct	yield	response	varies	depending	on	environmental	conditions,	but	this	
correlation remains understudied. Current portable phenotyping instruments 
such	 as	 fluorometers	 for	 measuring	 chlorophyll	 and	 secondary	 metabolites	
(Groher,	2019),	chlorophyll	meters	(Chrysargyris	et	al.,	2020;	Vesali	et	al.,	2017),	
porometers	 for	 measuring	 stomatal	 conductance	 (Buntin	 et	 al.,	 1993)	 and	
Fv/Fm-meters	 for	measuring	 the	maximum	quantum	efficiency	of	 the	plants’	
photosystem	 (Poudyal	 et	 al.,	 2019)	 can	 be	 used	 to	 determine	 physiological	
changes in crop plants. The data can be used for determining physiological 
EILs.	Big	Data	approaches	should	help	 in	revealing	the	correlations	between	
such physiological responses and environmental factors.

3.4  Simultaneous mass trapping and monitoring with sticky 
traps: consequences to ETs?

In year-round tomato and cucumber crops in Finland at the beginning of the 
2010s,	 nominal	 thresholds	 for	 initiating	 occasional	 treatments	 with	 selective	
pesticides	 were	 based	 on	 whitefly	 catches	 with	 sticky	 traps.	 Relatively	 few	
growers	 monitored	 whitefly	 dynamics	 with	 YSTs	 at	 that	 time.	 Following	 a	
collaborative	project	in	2010–12	(Vänninen	et	al.,	2015),	the	use	of	sticky	traps	
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for monitoring increased and nominal thresholds developed with input from 
growers	and	advisors	were	taken	up	more	widely.	At	the	same	time,	however,	
large	yellow	sticky	bands	for	mass	trapping	gained	popularity,	as	an	approach	
to	 improve	whitefly	management	 in	year-round	crops	where	biocontrol	does	
not work as reliably as in summer crops. This has created a new situation: the 
small	YSTs	used	for	monitoring	seem	to	catch	fewer	whiteflies	nowadays,	as	the	
large yellow glue bands hung above every row of the crop seemingly compete 
with	the	small	traps	by	attracting	more	whiteflies.

At	 the	 moment,	 there	 are	 no	 fixed	 thresholds	 and	 decision-making	
is	 based	 on	 the	 experience	 of	 growers	 and	 advisors,	 either	 in	 counting/
observing	adults	 from	 leaves	 in	plant	 tops	or	monitoring	whiteflies	with	YST	
or a combination of these approaches. Decision-making based on experience 
can	work	well	but	seems	to	be	 insufficient	 in	years	when	whitefly	pressure	 is	
high	due	to	outdoor	weather	conditions	that	promote	whitefly	reproduction	in	
wild	plants	near	greenhouses;	subsequently,	the	pest	pressure	in	the	autumn	
from outdoors is high when winter crops of tomato and cucumber are planted 
in	the	greenhouses	and	attract	whiteflies	from	outdoors	when	the	weather	gets	
colder.	The	large	yellow	glue	bands	can	also	influence	the	spatial	distribution	
of	whiteflies	 in	 the	crops.	No	 formal	 studies	on	whitefly	distribution	 in	 these	
cropping systems have been made so far but are now being conducted.

3.5  New approaches to whitefly monitoring

Spotting	and	 locating	whitefly	hot	 spots	 is	one	goal	of	monitoring.	This	 can	
be	achieved	using	information	on	spatial	distribution	of	whiteflies	to	cover	the	
greenhouse	 area	 with	 appropriate	 placement	 of	 YSTs,	 as	 described	 above,	
or by plant sampling plans. Plant sampling is not a common procedure in 
greenhouse tomato and cucumber except for observing adults in tops of 
plants	when	working	on	the	plants	daily.	Growers	develop	nominal	thresholds	
based on experience of seeing adults on the top leaves and combine this 
information	with	YST	counts,	 if	 the	latter	are	used.	Formal	sampling	plans	for	
adult and immature counts have been developed for outdoor tomato crops. 
Sequential	 sampling	plans	with	fixed	precision	 for	B. tabaci immatures were 
shown	 to	 reduce	 the	number	of	needed	 leaf	 samples	by	60–70%	compared	
to	conventional	 sampling	plans	based	on	fixed	sample	sizes	 (Gusmão	et	al.,	
2006,	2005)	–	a	considerable	reduction	in	time	and	labour	for	sampling.	Better	
coverage of microclimate monitoring would help in recognizing risk zones for 
whitefly	hot	spots,	as	shown	below.

For	 very	 large	 greenhouses	 where	 even	YST	monitoring	 is	 impractical,	
robotic platforms based on optochemical techniques are already available 
(https://www .ecoation .com). They scan plant rows for pests and fruit ripeness 
automatically but take in also human observations in digital form. The 

https://www.ecoation.com
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detection	can	be	based	on	multispectral	or	hyperspectral	 imaging,	but	also	
on detection of volatile organic compounds emitted by infested plants – no 
information is available on this. A detection process that covers all plant rows 
makes the need for knowledge on spatial distribution of the pest obsolete 
and helps detect hotspots. The platform’s AI system is so designed that it can 
correlate	pest	pressure	and	microclimatic	conditions	(temperature,	humidity,	
light	 intensity,	 air	 currents)	 and	 therefore	 can	 help	 identify	 zones	 of	 high	
pest risk. The system also does future projections to forecast pest pressures 
within the coming week which helps to order the right amounts of biocontrol 
agents. Sophisticated AI-based statistical algorithms based on data that is 
accumulated continuously are doing the job that is too complex for humans 
alone	(Ecoation,	n.d.).

3.6  Simulation of whitefly population dynamics

Many mathematical simulation models have been created to map the 
responses	of	whiteflies	to	temperature.	They	include	both	linear	and	non-linear	
phenological	 models,	 with	 or	 without	 stochasticity,	 for	 development	 times	
or	 rates	 based	 on	 temperature	 (and	 host	 plant)	 (Chandi	 et	 al.,	 2021;	 Drost	
et	al.,	1998;	Gamarra	et	al.,	2020;	Muñiz	and	Nombela,	2001;	Nava-Camberos	
et	 al.,	 2001;	Wang	 and	Tsai,	 1996).	 In	most	models	 air	 temperature	 is	 used,	
but leaf temperature has been shown to explain development time better 
(Park	 et	 al.,	 2011a).	 Life-table	 and	population	dynamic	models	 for	whiteflies	
include	 differential	 equations,	 matrix	 models,	 dimension-changeable	 matrix	
models	and	box	car	train	models	(Giessen	et	al.,	1995;	Hulspas-Jordaan	and	
van	Lenteren,	1989;	van	Roermund	and	van	Lenteren,	1992;	Yeow	and	Becker,	
2018).

The	 interaction	of	whiteflies	with	 their	 important	natural	enemy	Encarsia 
formosa has been modelled by several researchers (e.g. Hulspas-Jordaan 
and	 van	 Lenteren,	 1989;	 Yano	 et	 al.,	 1989).	 Rodríguez	 (2016)	 also	 included	
the	whiteflies’	 interaction	with	powdery	mildew	 that	often	occurs	on	 tomato	
leaves	together	with	whiteflies	and	can	influence	both	the	pest	and	its	natural	
enemies.	Rincon	et al.	(2015)	produced	an	algorithm	to	simulate	the	effect	of	
within-plant	 heterogeneity	 on	 whitefly–predator	 dynamics	 based	 on	 explicit	
prey spatial distributions. Such models can be used to scale-up functional 
responses	 of	 natural	 enemies.	 Giessen	 et  al.	 (1995)	 explored	 the	 effects	 of	
antibiotic	resistance	of	tomato	plants	on	whitefly	population	development	with	
a	deterministic	model.	Moerkens	et al.	(2020)	used	simple	statistical	modelling	
based	 on	 whitefly	 and	 Macrolophus counts in YSTs to predict the success 
level of biocontrol. With the development of wireless sensors or moving 
robotic AI-platforms that measure microclimate on the go and accumulate 
data	 on	 pest	 densities	 at	 the	 same	 time,	 the	 predictive	 use	 of	 forecasting	
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models	 is	 being	 integrated	 into	 whitefly	 management	 in	 decision	 support	 
systems.

4  Conclusion
Pest monitoring in horticulture is developing technologically to reduce time and 
labour needed for sampling and to produce more accurate pest predictions. 
New	 ways	 of	 detecting	 pests	 based	 on	 selective	 e-traps,	 e-noses,	 cameras	
and acoustic signatures are already in use or emerging. Remote sensing of 
pests	 requires	 the	development	of	new	economic	 injury	 levels	 and	ETs.	The	
relative importance of mechanistic and statistical models is changing due to 
AI-technologies and Big Data. The use of Big Data will force researchers to 
collect,	use	and	value	data	differently	than	before.	The	incorporation	of	natural	
enemies	 in	 ETs	will	 take	 place	 gradually	 and	 require	 researchers	 to	 acquire	
modelling skills. Research for advancing monitoring and forecasting also must 
include the socioeconomic factors that determine whether new technologies 
will be implemented by farmers. Developing trustworthy sampling plans and 
forecasting	models,	 and	 validating	 and	 implementing	 them	 in	 collaboration	
with	stakeholders,	remains	important.

5  Future trends in research
The	new,	high-technological	approaches	to	data	collection	and	management	
appear very prominently in the research literature of pest management 
nowadays. The feasibility of these new technologies in annual and perennial 
horticultural crops of different sizes is an issue that needs to be considered as 
one	of	the	research	targets.	Remote-sensing	techniques	require	new	ETs	to	be	
developed. Criteria can be developed in advance concerning the feasibility 
of	 new	 solutions	 for	 specific	 purposes	 as	 exemplified	 by	 the	 study	 of	 Cock	
et al.	 (2016)	evaluating	 the	usefulness	of	 remote	 sensing	 for	monitoring	key	
agricultural	pests.	Feasibility	evaluations	should	not,	however,	restrict	empirical	
research	too	much,	as	practice	often	produces	serendipitous	new	information	
and seeds for innovations that cannot be produced only by theory.

Remote	sensing	can	indicate	the	occurrence	of	a	pest	in	the	crop,	without	
having to pay attention to the pest’s spatial distribution when collecting 
data. But can remote sensors tell also on the abundance of all pests or the 
abundance	of	natural	enemies	that	 influence	the	future	trajectory	of	the	pest	
population?	 Hardly.	 Phenological	 models	 will	 use	 increasingly	 site-specific	
data	and	become	very	accurate,	but	their	output	does	not	tell	whether	the	pest	
really	occurs	at	a	specific	site	or	how	many	pests	there	will	be.	Possibilities	of	
using mobile phones for implementing accurate enough sequential sampling 
plans that are also user-friendly and not costly to use deserve research 
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investments.	The	uncertainty	of	information	is	an	issue	that	influences	growers’	
willingness	 to	 follow	ET	 recommendations.	Does	 their	willingness	 to	 rely	 on	
fixed	ETs	change	 if	 they	obtain	 reliable	evidence	on	how	certain	 the	ETs	are	
or	should	ETs	see	as	learning	tools	that	help	growers	to	adjust	their	behaviour	
regarding	intervention	decisions?	Are	ETs	that	take	into	account	the	level	of	risk	
aversion	of	growers	more	readily	accepted	than	fixed	one-option	ETs?	 If	ETs	
are	probabilistic,	does	this	increase	or	decrease	growers’	willingness	to	apply	
them? How to address the gap between the theory and practice of sampling 
and	monitoring?	Sampling	plans	are	worth	nothing	if	they	serve	only	the	CV	of	
researchers and publication lists. Fitting them into the agenda and activities of 
stakeholders	is	the	ultimate	goal	and	must	be	included	in	research	on	sampling,	
monitoring and forecasting.

While	digitalization	is	gaining	a	foothold	in	horticulture,	the	importance	of	
biology,	ecology	and	physiology	of	organisms	is	actually	being	accentuated	with	
the advancement of new technologies. The Big Data collected must represent 
relevant life stages and events in the pests’ life cycles. A similar requirement 
comes	from	the	inclusion	of	natural	enemies	in	ETs.	Biological	research	is	needed	
also	to	couple	the	knowledge	concerning	the	pest,	its	natural	enemies	and	the	
crop plant with each other for modelling purposes and for the timing of control 
actions	such	as	push–pull	technologies,	use	of	trap	crops	or	spatial	and	temporal	
performance of biocontrol agents. Sampling methods and decision thresholds 
for natural enemies will gradually become more important research targets. 
Studies	on	tangible	quantified	impacts	of	natural	enemies	associated	with	ETs	
are still scarce and must be incorporated in bioeconomic models. Improvements 
of phenology models of both pests and natural enemies are still needed to make 
the	outputs	more	precise	and	to	improve	region-	or	site-specificity	of	outputs.	
Climate	change	is	also	contributing	to	this	research	need,	as	updated	data	are	
required	 on	 pest	 and	 natural	 enemy	 biology	 and	 interactions	 (Collier	 et	 al.,	 
2020).

Sharing pest observations among growers and researchers with the help 
of	current	IT	solutions	should	be	encouraged	by	research	to	show	its	benefits	
for collecting Big Data and for being able to adjust sampling and management 
decisions with changing contexts of farming. Field-level precision farming 
decisions can then be combined with knowledge obtained from wider spatial 
and	temporal	scales	that,	depending	on	the	pest	species,	can	influence	local	
pest	 conditions	 and	 decision-making.	 Using	 Big	 data	 successfully	 requires	
collaboration	between	 theory	 (in	 the	natural	 sciences)	and	practice	 (farmers,	
IPM	researchers,	advisors,	AI	specialists)	so	that	we	understand	the	type	of	data	
that is valuable and what are not. 

Research	on	the	application	of	automated	identification	and	more	selective	
trapping	of	insects	will	continue.	New	sensory	domains	(olfaction,	acoustics)	are	
already included in research agendas concerning insect and mite responses 
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to their environment and the application of sensors to identify insects. For 
example,	could	wingbeat	frequencies	be	used	to	distinguish	species	of	Delia 
when they enter semi-selective traps? No information exists as yet. It seems that 
studies on the chemical ecology of several pest species are being revived now 
that	 research	methods	have	become	more	sophisticated,	our	understanding	
of insect olfaction has increased and successful examples of kairomone traps 
are available as examples. New approaches must be compared with existing 
sampling	methods	 in	 terms	of	efficacy	and	cost,	 to	choose	 the	best	solution	
from the practical point of view.

6  Where to look for further information
6.1  Further reading

 • A concise overview of sampling principles and practices in lecture form: 
Barbour,	 J.	 Sampling	 Insect	 Populations	 for	 Pest	 Management:	 http://
pnwpestalert .net /uploads /meetings /BarbourIPMsampling .pdf.

 • Binns,	M.	R.,	Nyrop,	J.	P.,	van	der	Werf,	W.	and	Wopke,	W.	2000.	Sampling 
and Monitoring in Crop Protection: The Theoretical Basis for Developing 
Practical Decision Guides. CABI.

 • Higley,	L.	G.	and	Pedigo,	L.	P.	1996.	Economic Thresholds for Integrated 
Pest Management.	University	of	Nebraska	Press.

 • Koul,	O.	 and	Cuperus,	G.	W.	 (Eds.).	 2007.	Ecologically Based Integrated 
Pest Management. CABI.

 • Pedigo,	L.	P.	and	Buntin,	G.	D.	1993.	Handbook of Sampling Methods for 
Arthropods in Agriculture. CRC Press.

 • Remote	sensing	for	insect	pests	–	reviews	and	case	studies	(Potamitis	et	al.,	
2017;	Roosjen	et	al.,	2020;	Suckling	et	al.,	2020;	Zhang	et	al.,	2019).

 • Review	on	the	role	of	kairomones	in	IPM:	(Murali-Baskaran	et	al.,	2018).
 • A	review	of	sampling	and	monitoring	methods	for	beneficial	arthropods	in	
agroecosystems	(McCravy,	2018).

 • Local,	regional	and	global	performance	of	models	and	effects	on	resource	
use	of	 research:	how	to	direct	efforts	and	resources,	also	 in	 the	context	
of current IPM programs and monitoring and forecasting as one of its 
principles	(Berlin	et	al.,	2018).

 • Big	 Data	 and	 IPM:	 Data	 types	 and	 collection	 (Zaza	 et	 al.,	 2018);	 Data	
processing	 (Pratheepa	 and	Antony,	 2018);	 Data	 valuation	 (Demirel	 and	
Kumral,	2021;	Weersink	et	al.,	2018).

 • Integrated	 Pest	 Management	 Pheromones	 Market	 Size,	 Share	 &	 Trends	
Analysis Report (2020–2027): https://www .grandviewresearch .com /industry - 
analysis /ipm -pheromones.

http://pnwpestalert.net/uploads/meetings/BarbourIPMsampling.pdf
http://pnwpestalert.net/uploads/meetings/BarbourIPMsampling.pdf
https://www.grandviewresearch.com/industry-analysis/ipm-pheromones
https://www.grandviewresearch.com/industry-analysis/ipm-pheromones
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6.2  Examples of companies offering tools for automated 
monitoring and identification of pests and platforms for 
documentation of scouting and sensor data

 • https://metos .at /iscout/.
 • https://www .trapview .com /v2 /en/.
 • https://www .ecoation .com/.
 • https://arisbv .nl /en /vision -for -phenotyping /ornamental -crops -2 /

phenotyping -products /cirillo.
 • https://www .botany .nl /en /cirillo.
 • https://www .koppert .com /natutec -scout/.
 • https://www .letsgrow .com.
 • https://www .30mhz .com /products /platform/.
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