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1  Introduction
Surveillance is the process of tracking health and productivity parameters over 
time to understand population health dynamics and to make better decisions 
on disease control. To be thorough, we note that monitoring and surveillance 
are not quite the same. Specifically, monitoring is the systematic collection and 
evaluation of population data over time, whereas surveillance is monitoring 
along with a plan prepared and ready for implementation if a specific threshold 
or disease condition is identified (Salman, 2003). Although they are not 
synonymous, monitoring and surveillance are generally used interchangeably 
in daily life and, for simplicity, in this review (Paskins, 1999).

The aim of this chapter is to provide a general, non-mathematical 
overview of infectious disease surveillance on swine farms based on testing. 
Because farms vary in size, structure, management, and surveillance goals, 
there is no ‘one-size-fits-all’ surveillance plan that can fit all circumstances and 
meet all objectives. Rather, the design and implementation of a surveillance 
program should be driven by the producer, ideally working in conjunction 
with an animal health specialist, and tailored to meet the specific objectives of 
the production system. Bedrock principles should guide the design process, 
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which should be periodically reviewed after the surveillance program is 
initiated:

 • Surveillance objective(s) should be clear and shared by all involved.
 • The process – from sample collection to data interpretation – should be 

simple, clearly understood, and easily performed.
 • The process should produce timely, accurate, interpretable and actionable 

results.
 • The process must provide a return on investment through the reduction 

or avoidance of disease losses and/or enhancement of the value of the 
product.

 • The process should be adaptable and able to meet new objectives as they 
are identified.

2  Overview
Representative sampling, testing a subset of randomly selected individuals to 
establish the status of the entire population, was the first step toward efficient 
surveillance. First described in 1895 (Kruskal and Mosteller, 1980), statistical 
sampling was rarely used in livestock surveillance until a synopsis by Cannon 
and Roe (1982) made the concepts accessible and understandable to field 
veterinarians. Subsequently, surveillance sample sizes based on binomial 
sampling distributions were routinely designed into swine disease control 
programs, for example, the U.S. pseudorabies (Aujeszky’s disease) eradication 
program (Anderson et al., 2008), and became an integral part of the thought 
processes of swine health specialists.

The two key assumptions underlying binomial sampling are (1) the 
population is homogeneous, that is, randomly selected pigs in the population 
have an equal chance of being positive, and (2) the pigs in the population are 
‘independent,’ that is, the infectious disease status of one pig is not predictive 
of the status of another (Wroughton and Cole, 2013). These assumptions 
were sometimes true in the smaller herds of the past, but are rarely true 
today because pigs on commercial production sites are separated into 
buildings, rooms, and pens by age, production stage, and/or function, with 
little interaction between groups. The result is the heterogeneous distribution 
(clustering) of disease within a production site. That is, some groups may be 
positive and others negative for the pathogen of interest, on the same farm 
at the same point in time. In addition, because infectious agents are most 
commonly spread from pig to pig, pigs in the same pen or barn are likely 
to be of similar status (Rotolo et al., 2017). It follows that, because pigs in 
physical proximity are likely to share the same disease status, they are not 
independent.
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To account for this population structure and the non-random disease 
distribution, at least to the degree possible, it is useful to design surveillance 
based on ‘epidemiological units,’ that is, groups of animals on the site that share 
a common environment and/or a comparable risk of exposure to the pathogen 
of interest (OIE, 2021). For example, in the U.S. pseudorabies (Aujeszky’s 
disease) eradication program, ‘each segregated group of swine on an individual 
premises … (was) considered a separate herd.’ Thus, according to the program 
guidelines, a farm could consist of one or more ‘herds’ (epidemiological units). 
Regardless of the number, each ‘herd’ was sampled according to the official 
(binomial sampling) protocol, for example, 29 pigs were sampled in each 
barn holding ≥ 1000 animals to achieve a 95% probability of detection at 10% 
prevalence (USDA, 2003).

A further complication to surveillance is the continual turnover of animals 
on swine farms. The production cycle is short for both market pigs (six months 
from birth to market) and breeding stock; that is, the turnover in finishing barns 
may approach 250% per year and breeding herds replace 40–50% of females 
annually (Stalder et al., 2004). As a point of contrast, human population turnover 
in 28 European countries for 2016 ranged from a low of 2.4% in Italy to a high 
of 8.5% in Luxembourg (Eurostat News, 2017). Further, as animals complete 
the production cycle, replacement animals are introduced, either through 
birth or from other farms. If replacements are immunologically susceptible 
to an infectious agent on the farm, they will eventually become infected and 
perpetuate the pathogen on the farm. If new replacements are infected with a 
pathogen not present on the farm, the risk is that it will spread to the remainder 
of the herd. This is a common scenario, that is, moving animals between herds 
is the most frequent route of PRRSV spread (Pileri and Mateu, 2016). Thus, 
sampling and testing must be sufficiently frequent in order to accommodate 
the rate of population turnover and the continual introduction of replacements.

3  Collecting production data
Pig producers have long recognized the value of data. For example, British pig 
producers in the 1920s used records to identify prolific sows that produced 
fast-growing, early-maturing progeny with good carcass characteristics 
(Woods, 2012). With the appearance of specialized pig farms in the mid-
twentieth century, the goals of surveillance were broadened to include other 
health and productivity parameters (Alexander, 1971; Muirhead, 1976). This 
was, in part, a response to new disease challenges. That is, indoor housing 
alleviated health and welfare issues associated with outdoor pig production 
by providing better parasite control, nutrition and protection against extreme 
weather. However, confinement also changed the ecological balance among 
pigs, pathogens, and their environment and, in some circumstances, led to 
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the emergence of new multifactorial disease syndromes (Muirhead, 1976; 
Woods, 2012). This problem remains with us, a contemporary example being 
the porcine respiratory disease complex (PRDC), ‘a combination of primary 
and opportunistic infectious agents, often facilitated by adverse environmental 
and management conditions’ (Yaeger and Van Alstine, 2019). Responding 
to the challenge, swine health innovators of the time recommended a new 
approach based on the systematic collection and analysis of farm data to 
establish herd baselines, unravel complex disease causalities, and evaluate 
the effects of management decisions on health and productivity (Muirhead, 
1976; Schwabe, 1982; Stein et al., 1987). Working at the cusp of this transition, 
Stein et  al. (1987) aptly described this process: ‘... just as the stethoscope 
and thermometer are fundamental tools for individual medicine, production 
and health recording systems are fundamental tools for effective population 
medicine.’

Production and health recording systems relied on hand-written records 
into the 1970s and later, but producers readily adopted electronic data 
management as computer technology became accessible. Thus, Pepper et al. 
(1977a) described the use of a Fortran computer program for the analysis of 
reproductive parameters. On the farm, the data were written on ‘sow cards.’ 
The cards were then taken to a computer center for data entry and analysis, 
for example, litters per sow per year, weaning-to-service intervals, etc. Pepper 
and Taylor (1977b) used this system, in combination with necropsies of 
all pigs that died between Sunday 9:00 am and Friday 9:00 am, to achieve 
major improvements in performance in a 260-sow breeding herd. Electronic 
production records became increasingly commonplace after affordable 
desktop computers became available in the mid-1980s and continuous 
improvements in information technology have brought us to the point where 
it is now possible to collect and analyze data across entire production systems 
with thousands of animals distributed among multiple production sites 
(Magalhães et al., 2022).

4  Collecting surveillance data
In contrast to systems for the collection of production data, the tools needed for 
practical infectious disease surveillance required breakthroughs in diagnostic 
medicine, which have only been realized in recent years. Among these 
developments, we will focus on tests and specimens compatible with live animal 
surveillance in commercial swine herds, that is, assays able to detect pathogen-
specific antigen, antibody or nucleic acid in specimens collected from live pigs 
or their environment. Diagnostic technology continues in a state of ongoing 
development and a periodic review of new commercially available tests and 
their performance is advised for the sake of keeping up with innovations.



Published by Burleigh Dodds Science Publishing Limited, 2023.

On-farm surveillance of pigs 5

4.1  Testing technology

The first major breakthrough in testing came with the development of the 
enzyme-linked immunosorbent assay (ELISA) in 1971 (Engvall and Perlmann, 
1971; Van Weemen and Schuurs, 1971). This was followed quickly by the 
development of a variety of pathogen-specific antibody ELISAs (Schuurs 
and Van Weemen, 1977). ELISAs can be designed to measure either antigen 
or antibody, but both use an enzyme to detect antigen–antibody binding. 
Essentially, in the presence of antigen–antibody binding, the enzyme converts 
a colorless enzyme substrate (chromogen) to a colored product. The strength 
of the color reaction is measured using a spectrophotometer, with the 
measurement (optical density) directly proportional (indirect ELISA) or inversely 
proportional (blocking and competitive ELISAs) to the concentration of the 
target in the sample. Currently, ELISA remains the most widely used antibody 
detection method because of its simplicity, low cost, consistent performance 
and wide commercial availability.

In addition to ELISAs, a variety of other immunoassay technologies have 
been reported, but most have not been commercialized. These assays take 
on a wide range of formats, but most consist of an antigen or antibody that is 
immobilized on a surface (planar or microbead-based) and binds virus-specific 
antigens or antibodies present in a sample. By adding a reporter protein, it is 
possible to detect a pathogen-specific immune signal to confirm the presence 
of pathogen-specific antibody. Many of these systems show promise, point-
of-care tests being one example. However, they need to meet regulatory, test 
performance and commercial expectations (Hobbs et al., 2021).

In surveillance, the role of antibody testing is to detect infection with a 
pathogen (in the absence of vaccination), track an outbreak over time, assess 
the response to vaccination or controlled exposure and/or assess the level 
of protective immunity within a population (Arnold and Chung, 2018; Cutts 
and Hanson, 2016; MacNeil et al., 2014). Depending on the agent, pathogen-
specific antibody is usually detectable one to three weeks post infection, and 
thereafter for months to years in various diagnostic specimens, for example, 
serum, oral fluids, feces, mammary secretions or tissue exudate (‘meat juice,’ 
processing fluid). Notably, maternal antibody or antibody induced by vaccines 
cannot usually be differentiated from wild-type infections, with the exception of 
antibody induced by DIVA (differentiating infected from vaccinated individuals) 
vaccines (van Oirschot, 1999). DIVA vaccines induce protective immunity. 
However, they are missing one or more epitopes present in the wild-type 
pathogen. Thus, DIVA-vaccinated animals are negative for specific antibodies 
that are present in wild-type-infected animals. Pseudorabies virus DIVA vaccines 
and the accompanying ELISA made pseudorabies virus control and elimination 
possible (Mettenleiter, 2020).
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The second major diagnostic breakthrough came with the publication of 
the principles underlying the polymerase chain reaction (PCR) (Saiki et al., 1985). 
As with the ELISA, PCRs were quickly adapted to swine diagnostic medicine, 
with pseudorabies virus DNA detection being among the first examples of 
its use (Belak et al., 1989; Jestin et al., 1990; Maes et al., 1990). PCR is based 
on the amplification of nucleic acid into quantities that can be detected and 
analyzed. PCR begins with the addition of short DNA sequences (primers) to 
denatured (single-stranded) DNA. Except that, in the case of RNA viruses, PCR 
is preceded by a step to produce a complementary DNA template (cDNA) 
from viral RNA by the addition of a reverse transcriptase enzyme. Binding of 
primers to the single-stranded DNA forms double-stranded DNA and triggers 
a thermostable polymerase enzyme to extend the sequence and produce 
a full, complementary strand of DNA. End-point methods then measure the 
amount of amplified product (‘amplicon’) accumulated over the course of the 
reaction. The development and commercialization of fluorometry-based real-
time PCR, that is, quantitative real-time PCR (qPCR or RT-qPCR for RNA viruses), 
improved and simplified the process of amplifying and detecting nucleic acid 
sequences while allowing for simultaneous and more precise quantification of 
their concentrations (Klein, 2002). Thus, samples with a higher concentration 
of target nucleic acid will require fewer PCR amplification cycles to reach the 
cycle threshold (Ct) established as the assay cutoff for detection (Schmittgen 
and Livak, 2008).

Depending on the pathogen, detectable levels of pathogen-specific 
nucleic acid may be present hours to days after infection in various diagnostic 
specimens, for example, serum, oral fluids, feces, mammary secretions, or 
tissue exudate (‘meat juice,’ processing fluid). The ability of PCR to detect 
acute infections makes it particularly useful in verifying freedom from infection 
in animals scheduled for upcoming movement. PCR is also compatible with 
testing environmental samples, for example, surfaces, water and air, but it 
should be borne in mind that current qPCRs cannot differentiate between 
viable and non-viable (inactivated) pathogens. That is, a positive result 
indicates the presence of pathogen-specific genetic material, but not its 
viability or infectivity.

Although not strictly a breakthrough in diagnostic technology, the third 
significant development in surveillance was the creation of systems for 
managing, storing and analyzing testing data. In top-tier veterinary diagnostic 
laboratories, this would include laboratory information management systems 
(LIMS) that are capable of tracking samples, retrieving/storing electronic output 
from test devices, and reporting results to clients in any of the various electronic 
formats. In smaller laboratories or in on-farm testing, this may only include 
receiving results as electronic data. Regardless, these technologies have played 
a major role in improved throughput and timely data analysis/response.
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4.2  Samples and specimens

The antemortem specimens commonly used in surveillance are listed in Tables 
1 and 2 for specific bacterial and viral pathogens, respectively. These tables are 
intended to provide an overview and should not be considered comprehensive. 
To begin this section, a brief overview of sampling terminology may be useful.

‘Discrete’ samples are defined as samples collected at one point in time 
from a specific source and location (Cameron et al., 2003; Patil et al., 2010). 
Without time and place identifiers, it is not possible to interpret test results 
in the context of the population under surveillance. Discrete samples may 
be specimens from one animal, for example, serum, nasal swabs, etc., or 
simultaneously collected from more than one animal (‘aggregate’ samples), for 
example, pen-based oral fluids or environmental samples.

Two or more discrete samples may be combined (composite or ‘pooled’ 
samples) into one for testing. The purpose of pooling is to reduce the number 
of test samples and, thereby, reduce cost. Pooling is not a new idea. For 
example, Dorfman (1943) tested pooled serum samples when screening World 
War II draftees for syphilis. The concept of detection at a lower cost is highly 
alluring and there is an extensive body of literature on the subject of pooling 
(Daniel et al., 2021). However, pooling should be used cautiously because it 
increases the rate of false negative results. That is, combining negative and 
positive samples must necessarily dilute the concentration of the test target in 
the pool. The risk is diluting the sample to a concentration below the threshold 
of detection. For example, Rovira et  al. (2007) compared the detection of 
PRRSV in blood swab and serum samples during acute infection (1 to 15 days 
post inoculation) and found that pooling in groups of five resulted in 6% fewer 
RT-qPCR-positive serum samples and 8% fewer positive blood swab samples 
compared to testing the samples individually. Ultimately, the decision to 
pool (or not) depends on the cost of false-negative results versus the savings 
afforded by performing fewer tests. If pooling is done, it should be done in 
such a way as to preserve sampling location and date integrity. That is, pooling 
samples from different locations or dates will produce uninterpretable results.

4.2.1  Blood-derived specimens

Commonly used blood-derived specimens include whole blood, serum and 
blood swabs. Methods for collecting blood samples from pigs are described 
elsewhere (Ramirez and Karriker, 2019). Pig blood coagulates quickly, and 
when collecting whole blood, the sample should be collected directly into a 
vacutainer blood-collection tube containing an anticoagulant. Djordjevic et al. 
(2006) reported that sodium heparin inhibited PCR amplification, but other 
anticoagulants did not, that is, sodium citrate, K3 EDTA and lithium heparin. 
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Serum, the liquid portion of clotted blood, is recovered by centrifugation 
of blood samples collected without an anticoagulant. Blood swabs, a major 
innovation for the detection of pathogens that produce a pronounced viremia, 
for example, PRRSV, are collected by puncturing a superficial vein with a needle, 
saturating the swab with the blood that pools at the site of the puncture, and 
then placing the swab into a tube containing normal saline (Reicks et al., 2006). 
Under some circumstances, blood swabs can be collected without animal 
restraint, and therefore, may be a practical alternative to standard blood 
collection methods in boars or adult pigs (Carlson et al., 2018).

4.2.2  Oral cavity and upper respiratory tract specimens

Oral fluid, originally reported for the detection of PRRSV-specific nucleic acid and 
antibody (Prickett et al., 2008a), is the liquid collected by placing an absorptive 
device in the buccal cavity. Oral fluids are collected from individual pigs or from 
a group of pigs by suspending a length of cotton rope in their pen and allowing 
them to chew it for 15–30 minutes. The sample is recovered by squeezing the 
rope after placing it in a plastic bag. The fluid that accumulates in the bottom 
of the bag is then poured into a tube. Oral fluids are easily collected, and as 
reviewed by Henao-Diaz et al. (2020a), nucleic acid and/or antibody have been 
reported in oral fluids for essentially all common pathogens of swine.

Oral swabs (aka buccal swabs) are collected from the rostral portion of 
the oral cavity, that is, inner cheek mucosa, tongue, teeth and gums. They have 
been used for the isolation of swine vesicular disease virus, Campylobacter 
spp., and foot-and-mouth disease virus (Callahan et al., 2002; Kodama et al., 
1980; McOrist and Lawson, 1989). For sample collection, the pig’s mouth is held 
open with an oral speculum and a sterile swab is inserted into the oral cavity. 
The swab is moved in circular motion in the mouth while trying to avoid feed 
or other contaminants and then placed into a tube containing the appropriate 
medium (Arai et al., 2018). Oral swabs are sometimes considered equivalent 
to oral fluid, but as reviewed by Henao-Diaz et  al (2020a), the simple act of 
restraining the pig to collect an oral swab induces a stress response that results 
in vasoconstriction of vessels supplying the buccal tissues. This then reduces 
the flow of fluids to the mouth and alters the composition of buccal fluids. This 
explains why, in a direct comparison, Prickett et al. (2008a) reported a lower rate 
of detection in oral swabs vs oral fluid samples from the same animals.

Nasal swab samples were first reported in the late 1960s and early 1970s 
for the isolation of Mycoplasma spp., Bordetella bronchiseptica, parvovirus, 
cytomegalovirus and influenza A virus (Gois et al., 1969; Kemeny and Amtower, 
1973; Pirtle, 1975; Watt, 1978). To collect a nasal swab sample, a sterile pre-
moistened swab is inserted into one naris of the pig and rotated while avoiding 
contact with the outside of the nostril. This process is repeated in the other naris 
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with the same swab or with a new one and then the swab(s) is (are) placed in a 
tube containing an appropriate medium.

The caudal portion of the oral cavity, including the soft palate, throat, 
tonsils and the back of the tongue are an excellent sampling site because the 
tonsils are the site of primary replication and/or chronic persistent infection 
for many of the most troublesome bacterial and viral pathogens, for example, 
Salmonella spp., Actinobacillus pleuropneumoniae, PRRSV, foot-and-mouth 
disease virus and classical swine fever virus (Horter et al., 2003). Samples 
collected from the oropharynx include swabs, tonsil biopsies, and tonsil 
scrapings. Oropharyngeal swabs are collected by holding the pig’s mouth 
open with an oral speculum, swabbing the oropharynx with a pre-moistened 
sterile swab, particularly targeting the tonsils, and placing the swab into a tube 
containing an appropriate medium. Biopsies of the tonsil of the soft palate 
were done routinely in the US ‘hog cholera’ eradication program (USDA, 1981), 
but the procedure requires considerable technical skill. Tonsil scrapings are a 
highly effective and less invasive alternative to tonsil biopsies. The sample is 
collected by scraping the tonsils of the soft palate with a stainless steel spoon 
while holding the pig’s mouth open with an oral speculum. The material that 
pools in the bowl of the spoon is then collected with a sterile swab and placed 
in a tube containing the appropriate medium (Wills et al., 1997). Tracheal 
swabs were originally reported for the isolation of influenza A virus and later 
for the isolation of Glasserella parasuis and Mycoplasma hyopneumoniae 
(Carrou et al., 2006; Kirkwood et al., 2001; Shortridge and Webster, 1979). 
Tracheal swabs provide improved detection for some respiratory pathogens 
but the procedure requires technical skill (https://vetmed .iastate .edu /story /vdl 
-tracheal -sampling).

4.2.3  Miscellaneous specimens

Fecal samples are easily collected, but may present practical challenges due 
to stool consistency and/or the potential risk of contamination during handling 
(Choudhury et al., 2019). For fecal collection, restrain the pig, insert two fingers 
of a gloved hand into the rectum, recover the sample, and place it into a clean 
tube or plastic bag for testing or storage. Alternatively, fecal samples may be 
collected by inserting a sterile swab or fecal loop into the rectum and rotating 
gently against the bowel wall. The swab (or fecal loop sample) is then placed 
into a tube containing the appropriate medium. The specimens may serve 
for pathogen isolation, but false negatives can occur because the analyte 
concentration is lower than in the actual fecal samples (Choudhury et al., 2019).

Processing fluids are serosanguineous fluids recovered from testicles and 
tails collected at the time of piglet processing. They were originally proposed 
as a sow surveillance tool for the detection of PRRSV, influenza A virus, porcine 

https://vetmed.iastate.edu/story/vdl-tracheal-sampling
https://vetmed.iastate.edu/story/vdl-tracheal-sampling
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circovirus 2, porcine parvovirus, Mycoplasma hyopneumoniae and Salmonella 
enterica (Boettcher et al., 2010). This original observation has been supported 
by subsequent research (Campler et al., 2021; López et al., 2018; Vilalta et al., 
2018).

Colostrum and milk were first used to evaluate antibody responses in 
dams immunized against influenza A virus (Young and Underdahl, 1950). For 
collection, udders are cleaned, the first ten spurts discarded, and the sample 
collected in clean tubes. Fat and debris may be removed by centrifugation 
(13 000 x g for 15 minutes), with the middle layer and pellet collected for 
testing (Ha et al., 2009; Poonsuk et al., 2016). Mammary secretions represent 
the infectious disease status of the dam and may be tested either for pathogens 
or for antibodies (Wagstrom et al., 2001).

The use of vaginal swabs includes reports of the isolation of African swine 
fever virus and Brucella abortus (Greig and Plowright, 1970; Stuart et al., 1987). 
Vaginal swabs are collected by introducing a sterile swab ~8 cm into the vaginal 
tract, rotating gently in a circular motion while holding against the vaginal wall, 
and then placing in a tube containing an appropriate medium (Pena Cortes 
et al., 2018). Care should be taken to avoid fecal contamination (Gresham, 
2003).

Semen has been used for the detection of sexually transmitted pathogens 
such as Brucella abortus and PRRSV (Christopher-Hennings et al., 1995; 
Hutchings and Andrews, 1946), but it generally does not provide good 
test performance and other specimens should be given consideration 
(Christopher-Hennings et al., 1995; Maes et al., 2008). In addition, semen 
collection is a technical procedure that requires training both the personnel 
and the boar.

Environmental samples (air, water, surfaces and feedstuffs) are commonly 
reported in the literature and may be useful as surveillance samples. 
However, the limitations inherent in environmental samples are significant. 
That is, if present in the environment, (1) the concentration of target collected 
in the sample is often below the assay’s limit of detection (Girones et al., 
2010; Garrido-Mantilla et al., 2019) and (2) targets are often non-uniformly 
distributed (O’Connor et al., 2006). Thus, negative results may represent 
sampling/testing error, and positive results, if based on nucleic acid detection, 
may be difficult to interpret because the result may represent non-infectious 
material.

5  Test performance
Yerushalmy (1947) originally defined test performance in terms of sensitivity 
or specificity, but the introduction of PCR-based tests necessitated classifiers 
(Saah and Hoover, 1997):



Published by Burleigh Dodds Science Publishing Limited, 2023.

On-farm surveillance of pigs 15

 • ‘Diagnostic’ sensitivity – the probability that a test on a sample from a 
positive source will produce a positive test result. Note that ‘source’ could 
be a specimen collected from an animal or from the environment (air, 
water, surfaces and feedstuffs).

 • ‘Analytical’ sensitivity – an estimate of the lowest concentration of target 
that an assay will detect.

 • ‘Diagnostic’ specificity – the probability that a test on a sample from a 
negative source will produce a negative test result.

 • ‘Analytical’ specificity – a measure of a test’s reactivity with non-target 
substances.

Among the four, diagnostic specificity is the most important parameter in 
surveillance because any uncertainty about a positive result will quickly 
undermine participants’ confidence in the program. Laboratory approaches 
to increasing diagnostic specificity (i.e by reducing false positives) include 
raising assay cutoffs, confirmatory testing of samples that screen positive, or 
re-sampling and re-testing procedures. Processes for dealing with unexpected 
positives should be established and agreed upon before initiating the program. 
Counterintuitively, diagnostic sensitivity is less important. While ‘adequate’ 
diagnostic sensitivity is necessary, detection does not have to be absolute 
because ongoing surveillance will reveal the true status of the population and 
lead to the agreed-upon response.

Although diagnostic specificity tends to be stable over time and across 
specimens, diagnostic sensitivity varies widely as a function of specimen and 
time post infection. For example, Table 3 shows that the choice of specimen 
has a major effect on the detection of early PRRSV infection in boars using 
RT-qPCR, with testing of semen samples producing many false negatives. 
The ‘sampling effect’ is even more profound in the case of chronic persistent 

Table 3 Detection of early PRRSV infection in individual boars using RT-PCR by specimen and 
day post inoculation (Pepin et al., 2015)a

Specimen

Percent (%) positive by day post inoculation

1 2 3 4 5 6 7

Serum 36.5 79.1 89.5 93.8 95.2 97.4 99.9
Blood swab 30.3 73.3 79.4 86.7 87.9 99.9 99.9
Oral fluid 3.6 59.0 89.4 97.6 99.9 99.9 99.9
Whole semen or 
supernatant

0 12.8 17.1 26.5 22.0 28.9 30.8

Cell fraction semen 0 0 14.7 21.4 18.8 47.1 43.5

a Reprinted with the permission of John Wiley and Sons. Probability calculated from data available in 
published reports on the detection of PRRSV in boars under controlled settings and analyzed using a 
binomial logistic regression model with estimates obtained using the least square methods.
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infections, for example, classical swine fever virus (Panyasing et al., 2018b), 
PRRSV (Henao-Diaz et al., 2020b), African swine fever virus (Carrillo et al., 
1994) and latent persistent infections such pseudorabies virus (Beran et al., 
1980). These pathogens often produce inapparent carriers, that is, animals 
in which the pathogen is present for weeks or months after their initial 
infection.

Using PRRSV as an example, viremia is observed beginning early in the 
infection. Resolution of viremia is not an indication of sterilizing immunity; 
rather the infectious virus remains in lymphoid tissues for an extended period. 
Thus, transmission of PRRSV to susceptible penmates was reported 99 days 
post inoculation, and isolation of PRRSV from tonsil-scraping samples for up to 
157 days post inoculation (Wills et al., 1997; Zimmerman et al., 1992). Henao-
Diaz et al. (2020b) estimated that 2% of the animals were viremic at 98 days post 
infection, but the infectious virus was present in 30% (Table 4). Thus, for chronic 
infections, a combination of antibody and RNA assays is typically required to 
achieve the highest rate of detection.

In the case of aggregate specimens, diagnostic sensitivity varies both as 
a function of the proportion of positive members in the pool and their stage 
of infection (Olsen et al., 2013). Logically, increasing the proportion of positive 
individuals contributing to the sample will produce a corresponding increase 
in the probability of detection, as shown for pen-based oral fluids (Table 5). 
Likewise, in Table 5, a comparison of oral fluid samples versus serum samples 
demonstrates the utility of aggregate samples in surveillance, that is, many 
more individual pig samples would need to be collected to match aggregate 
samples’ probability of detection under the same circumstances.

Table 4 Predicted rate of PRRSV positivity over time in PRRSV-infected animals: serum RT-PCR, 
bioassay and serum antibody (Henao-Diaz et al., 2020b)a

Diagnostic approachb

Day post exposure to PRRSV or modified live vaccine

n 3 7 14 28 42 77 98 175

Detection of PRRSV 
RNA in serum 

1973 94% 92% 87% 72% 48%  7%  2%  0%

Detection of 
infectious PRRSVc 

468 ND 77% 74% 68% 61% 41% 30% 7%

PRRSV serum 
antibodyd 

1866 ND ND 92% 92% 92% 91% 91% 90%

a Reprinted with the permission of Elsevier.
b Rates estimated based on prediction equations for PRRSV detection derived from aggregated data 
(n = 4307) from 19 refereed publications (1995–2018).
c Bioassay performed by inoculation of naïve pigs with lymphoid tissue homogenate or virus isolation 
in cell culture.
d Antibody detection in individual serum samples collected at ≥ 14 days post exposure using on IDEXX 
ELISA HerdChek® or IDEXX PRRS ELISA X3 Ab Test (IDEXX Laboratories, Inc., Westbrook, ME, USA).
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6  Surveillance planning checklist and summary
Step 1 - Define the surveillance objective. Surveillance objective(s) should reflect 
the producer’s goals and the conditions found in the production system. The more 
precise the question, the more likely the success of the surveillance program. The 
objectives should be completely clear to all involved. This is also the time to plan 
a response to a positive result, if a response is part of the program. In particular, 
unexpected positives are often highly disruptive to day-to-day operations. What 
is the action plan if an unexpected positive result is received?

Step 2 - Determine the sampling plan. Issues on sampling and testing are 
reviewed in Sections 4 and 5. Simplicity and consistency are key; a complex 
sampling plan either will not be carried out or will not be done correctly. For 
interpretable surveillance data, samples should be collected in the context of 
a population that shares a common environment (epidemiological unit), that 
is, the animals in a pen, room, or barn. Results from animals that do not share a 
direct epidemiological connection are often uninterpretable.

Determination of sample size is complicated by the complexity of farm 
populations. As discussed in Section 2, sample size calculations based 
on binomial sampling distributions assume that (1) the population is 
homogeneous, that is, randomly selected pigs in the population have an equal 
chance of being positive, and (2) the pigs in the population are ‘independent’, 
that is, the infectious disease status of one pig is not predictive of the status 
of another. These circumstances are only occasionally encountered on swine 

Table 5 Effect of within-pen PRRSV prevalence on the probability of detecting RNA or antibody 
using one pen-based oral fluid sample. A comparison of the number of individual pig serum 
samples to achieve the oral fluid detection rate at the same prevalence (right half of Table 5).

Within-pen 
prevalence 
(%) 

Probability of detecting PRRSV in 
a pen of pigs using one oral fluid 
sample (95% confidence interval)a

Number of pig serum samples needed 
to match the oral fluid probability of 
detection (95% confidence interval)a

PRRSV RNA PRRSV antibody PRRSV RNA PRRSV antibody

5 0.31 (0.09, 0.67)  0.17 (0.06, 0.38) 8 (3, 17) 5 (2, 10)
10 0.79 (0.48, 0.94) 0.59 (0.37, 0.77) 11 (5, 16) 7 (4, 10)
15 0.94 (0.76, 0.99) 0.85 (0.67, 0.94) 12 (8, 16) 9 (6, 12)
20 0.98 (0.88, 1.00) 0.94 (0.82, 0.98) 13 (8, 16) 10 (7, 13)
25 0.99 (0.93, 1.00) 0.97 (0.90, 0.99) 13 (9, 16) 11 (8, 13)

a Detection of PRRSV RNA or antibody in pen-based oral fluids were analyzed by logistic regression to 
model the probability of a positive outcome by within-pen prevalence. The number of serum samples 
needed to match the probability of detection for one oral fluid sample was calculated from the 
probability of ≥ 1 positive test by prevalence and sample size assuming hypergeometric distribution 
(J. Zimmerman, personal communication).
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farms. Nevertheless, if collecting individual discrete samples, for example, 
serum, the best option is to use binomial sample size calculations based on the 
population within each epidemiological unit.

Sample size calculators are not available for aggregate samples, for 
example, oral fluids. Rotolo et al. (2017) reported the probability of detecting 
PRRSV in wean-to-finish barns using oral fluids as a function of the number of 
positive pens. In the field, Ramirez et al. (2012) collected six pen-based oral 
fluid samples at two-week intervals in ten barns (most holding ~1 100 pigs) 
from placement to market. Testing by PCR detected porcine circovirus 2 and 
Torque teno sus viruses at one or more samplings in all ten barns, PRRSV in nine 
of ten barns, and influenza A virus in seven of ten. Thus, field results suggested 
that collecting ~6 oral fluids per 1000 growing animals provided a reasonable 
assurance of detection over time.

In the absence of broadly generalizable sample size calculations for pen-
based samples, it may be useful to conduct a sample-size sensitivity analysis 
(Rotolo et al., 2017). Assuming independence among epidemiological units, 
that is, rooms or barns, the overall probability of detection from sampling ≥ 2 
units is:

 P p p p pk= - - - - ¼ -( ( )( )( ) ( )),1 1 1 1 11 2 3  

where pi is the probability of detection in the ith (i = 1,2, …, k) unit. If the units are 
similar in design and are sampled using the same plan, then pi can be assumed 
equal among units and the formula simplified to:

 P p k
= - -( )( )1 1 ,  

where
P = cumulative probability of detecting the target in ≥ 1 of the 

epidemiological units sampled,
p = pr*pse, where pr is the probability of selecting an infected pen within a 

unit for sampling and pse is the probability that the pen-based sample will test 
positive (see Table 5), and

k = number of units sampled.
The impact of the number of pen-level samples per unit on the probability 

of detection is embedded in ‘pr.’ That is, if we suppose that one of five pens 
is positive in each unit and the decision is to sample one pen per unit, then 
pr = 1/5 = 0.2. If there are five units, and the pen-level probability of detection is 
assumed to be 0.79 (this assumes within-pen prevalence of 10% - from Table 5), 
then the cumulative probability of detection among the five units is calculated as,

 P = - -( )( ) =1 1 0 2 0 79 40 3
5

. * . . %.  
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If two pens per unit are sampled then pr = 0.4, and

 P = - -( )( ) =1 1 0 4 0 79 68 0
5

. * . . %.  

Sample size for breeding herds is more problematic. Typically, it is not 
practical to sample a statistically sufficient number of sows on a routine basis. 
Alternatively, oral fluid samples may be collected from group-housed sows, 
but behavioral and detection information is sparse (Pierdon et al., 2016). More 
frequently, the status of recently farrow litters or piglets within litters is used as 
a proxy for the sow herd itself using serum samples from suckling piglets, oral 
fluids, or processing fluids (Almeida et al., 2021a,b,c; López et al., 2021).

Although the information discussed above is all relevant to the question 
of sample size, the ultimate decider of sample size is the budget allocated to 
sampling.

Step 3: Sample allocation and frequency.

Infectious diseases in swine farms tend to cluster, that is, pigs physically close 
to each other are more likely to be of similar infection status versus pigs 
further apart. Conventional sampling strategies based on ‘random’ selection 
are usually less efficient and more expensive than spatially based methods 
because randomization tends to result in over- or under-sampling disease 
clusters. That is, the cluster is either not sampled (missed entirely) or sampled 
multiple times when a single sampling would suffice. In contrast, spatially 
based methods take spatial autocorrelation and heterogeneity into account. 
Thus, within rooms or barns, Rotolo et  al. (2017) showed that ‘fixed spatial’ 
sampling was as good or better than random sampling and that repeatedly 
sampling the same pen(s) over time provided logical and interpretable data. 
Here, ‘fixed spatial’ sampling is defined as uniform spatial allocation such that 
samples are spread equidistantly to each other over the room or barn being 
sampled.

There are no formulas to determine sampling frequency. Ultimately, the 
driver is the urgency of detection (the more urgent, the greater the frequency). 
Based on the literature, one or two samplings per month provide interpretable 
and actionable data (Ramirez et al., 2012; Rotolo et al., 2017).

Step 4: Plan for data analysis.

Every surveillance program needs a plan for collecting, managing, and analyzing 
surveillance data. The particular analyses will depend on the specific objective(s). 
Regardless, statistical process control (SPC), an approach that originated from 



 On-farm surveillance of pigs20

Published by Burleigh Dodds Science Publishing Limited, 2023.

quality control in industry, is highly useful in monitoring disease trends, detecting 
change points and understanding normal variation in the population. A description 
of SPC is beyond the scope of this review, but resources and examples of its use 
are widely available (Baum et al., 2005; de Vries and Reneau, 2010).

7  Conclusion
In swine production, herd immunity is manipulated to reduce clinical losses, 
biosecurity implemented to stop the entry of pathogens, and surveillance 
performed to verify that herd immunity and biosecurity are functioning effectively. 
Historically, surveillance was rarely feasible because of logistical and cost 
considerations, that is, sampling a meaningful number of individual animals was 
cumbersome, testing was slow and the entire process was expensive relative to 
the return. These impediments have largely been removed by developments in 
diagnostic medicine that provide for efficient sampling/testing and advancements 
in computer technology that facilitate the collection, manipulation and analysis of 
data. Importantly, these technical improvements are only tools whose use must 
be guided by a clear surveillance objective; a sampling/testing plan that is easy 
to implement, affordable and strategic; a system for the on-going analysis and 
interpretation of test data; and an action plan for responding to testing results.

8  Abbreviations
AB  Antibody
APPV  Atypical porcine pestivirus
ASFV  African swine fever virus
CSFV  Classical swine fever virus
DIVA  Differentiating infected from vaccinated
ELISA  Enzyme-linked immunosorbent assay
FMDV  Foot-and-mouth disease virus
HEV  Hepatitis E virus
IAV  Influenza A virus
LIMS  Laboratory information management system
NA  Nucleic acid, either DNA or RNA
OIE   World Organisation for Animal Health, formerly Office 

International des Epizooties (OIE)
PCMV  Porcine cytomegalovirus
PCR  Polymerase chain reaction
 qPCR Quantitative PCR (starting material DNA or cDNA)
 RT-qPCR Reverse-transcriptase qPCR (starting material RNA)
PRDC  Porcine respiratory disease complex
PCV2  Porcine circovirus type 2
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PDCoV  Porcine deltacoronavirus
PEDV  Porcine epidemic diarrhea virus
PPV  Porcine parvovirus
PRRSV  Porcine reproductive and respiratory syndrome virus
PRV  Pseudorabies (Aujeszky’s disease) virus
SVDV  Swine vesicular disease virus
SVV  Seneca valley virus
TGEV  Transmissible gastroenteritis virus
USDA  United States Department of Agriculture
VESV  Vesicular exanthema of swine virus
VSV  Vesicular stomatitis virus
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