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1 Introduction

Incubation conditions influence embryo growth and viability, which 
subsequently affect egg hatchability. Along with temperature, environmental 
factors in the incubator that are of primary importance for optimum hatchability 
and chick quality include humidity and vital gas [carbon dioxide (CO2) and 
oxygen (O2)] levels. Because the movements of gases across the eggshell 
occur by diffusion, avian embryos are dependent on the composition of the 
surrounding air, with their development and hatching success being dependent 
on the ambient partial pressures of O2, CO2, and water vapor. The influences 
of the incubational environment can extend beyond embryonic development 
into the post-hatch period with ensuing effects on chick survival, quality, and 
performance. Various studies have been conducted to establish humidity and 
vital gas levels during incubation that will optimize the embryonic and post-
hatch livability and development of poultry. The prospects for the pragmatic 
commercial use of these incubational regimens, as well as the physiological 
bases for their observed effects, are explored in this chapter.
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2  Physical function of the eggshell as a respiratory 
organ for the developing avian embryo

2.1  Eggshell porosity

Different integrated physical or structural properties of the avian eggshell 
determine its porosity, and the transport of water and the vital gases (O2 

and CO2) across the eggshell occurs by their diffusion through the pores of 
the eggshell when in their gaseous phases (Paganelli, et al., 1975). These 
integrated eggshell properties subsequently predispose the proficiencies by 
which water vapor and the vital gases diffuse and are exchanged between 
the exterior and interior of the embryonated egg. The pores of the eggshell 
extend through the shell proper, which is composed of calcite crystals, and 
terminate on two underlying membrane layers. The membranes overlay and 
make immediate contact with the vascularized chorioallantois during the 
first 5–6 days of incubation (Fig. 1). In conjunction with the continual loss of 
water, the exchange of O2 and CO2 occurs across the chorioallantois during 
the prenatal period (Rahn et al., 1979). The conductance of the eggshell to 
gases, as governed by its porosity, and differences in the partial pressure of 

Figure 1  Scanning electron microscope micrograph depicting a longitudinal section 
of an avian eggshell. The cuticle, pore, and shell membranes are indicated (scale bar = 
100 µm, image magnification 200×). The chorioallantois will form underneath the shell 
membranes.
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gases between the outside and inside of the egg contribute to the control of 
gas exchange across the eggshell. It has been summarized that the flux of gas 
across the eggshell is determined by the product of its effective conductance 
and the partial pressure gradient of the gases between the inner surface 
of the eggshell and the ambient air surrounding the eggshell (Visschedijk, 
1980). The passage of water vapor and the vital gases through the pores of 
the eggshell proper and underlying membranes allows for their exchange in 
the circulation and tissues of the developing avian embryo (Paganelli, 1991). 
Consequently, embryonic and post-hatch chick development are significantly 
influenced by the transfer of heat and the exchange of O2, CO2, and water 
between the internal and external environments of the egg (Boleli et al., 
2016). Meir and Ar (1990) have noted that an increase in the rate of egg mass-
specific O2 consumption by ostrich embryos 1 day prior to external pipping is 
associated with their active movement inside the egg in accommodation for 
a change in their means of O2 uptake during the shift from chorioallantoic to 
pulmonary respiration. Furthermore, regional gas tensions in the air spaces 
within the egg are also a consequence of the ratio of diffusive conductance to 
the perfusion of blood in the chorioallantois and can change with location on 
the eggshell (Paganelli et al., 1988; Paganelli, 1991).

2.2  Water vapor conductance and incubational egg weight 
loss

Water vapor, O2, and CO2 share common pathways through the pores that 
traverse the eggshell (Paganelli et al., 1978), and the shell proper itself has 
the primary influence on the partial-pressure differences that exist for these 
gases between the internal and external environments of the egg (Rahn et al., 
1979). Moreover, variations in water vapor conductance reflect proportional 
variations in the conductance values of O2 and CO2 (Paganelli et al., 1975). The 
determination of water vapor conductance is the easiest to measure because it 
can be calculated from the rate of water loss from an egg, which equates to its 
weight loss, and egg weight is reciprocally and equally affected by the uptake 
of O2 and the loss of CO2. Therefore, water vapor conductance is commonly 
used to also represent the functional conductance of an eggshell to O2 and 
CO2. In brief, the physiological function of the eggshell as an embryonic 
respiratory component is more specifically best described in terms of its 
water vapor conductance since water vapor conductance incorporates the 
interactions of these gases with the eggshell’s physical properties (Peebles and 
McDaniel, 2004). The water vapor partial pressure gradient that exists between 
the inside and outside of the egg and which is determined by the difference 
in the levels of humidity between the egg’s internal and external environments 
is affected by the temperature of the egg and the local barometric pressure. 
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The determination of water vapor conductance is a function of the division of 
the rate of water loss from the egg by the water vapor gradient across the shell 
at a particular temperature and barometric pressure (Ar et al., 1974; Tullett, 
1984; Peebles and McDaniel, 2004; Pulikanti et al., 2011b). However, Rokitka 
and Rahn (1987) have reported that there may be regional differences in the 
rates water vapor conductance over the entire eggshell surface. For example, 
eggshell water vapor conductance over the air cell may be higher by a factor of 
1.6 in comparison to the other regions of the eggshell (Rokitka and Rahn, 1987). 
It should be noted that embryonic metabolism and hatchability are impaired if 
eggs that are laid at a low altitude are subsequently incubated at a high altitude 
(Visschedijk, 1980). A reduction in the atmospheric barometric pressure, 
associated decrease in O2 tension, and an increase in eggshell conductance or 
functional porosity, leading to an excessive loss of CO2 and water are the major 
causes of this impairment (Visschedijk, 1991).

The loss of egg weight in association with the loss of water during 
incubation is known to influence embryogenesis and the post-hatch nutrient 
utilization, metabolism, growth, and development characteristics of broiler 
chicks (Peebles et al., 2005). A negative correlation has been observed between 
the average daily percentage egg weight loss of broiler hatching eggs from 
10.5 days to 18.5 days of incubation and the body weight of chicks relative to 
set egg weight through 12 h post-hatch (Pulikanti et al., 2012b). Pulikanti et al. 
(2012b) have more specifically suggested that a higher eggshell water vapor 
conductance adjusted for egg weight results in increased metabolism of the 
broiler embryo presumably due to increased O2 uptake, which then increases 
the successive growth and rate of yolk sac absorption of the chicks through 
3 days post-hatch. Influences of the water vapor conductances of eggshells 
on various physiological attributes of broilers can extend into the middle and 
late post-hatch grow-out periods (Pulikanti et al., 2013). Pulikanti et al. (2013) 
further observed that adjusted eggshell water vapor conductance values were 
positively correlated with breast muscle weight on day 48 post-hatch. Because 
the incubational weight loss of broiler hatching eggs through the first 10.5 days 
of incubation has been shown to be negatively correlated with hatchling body 
weight and to influence day 49 processing yield (Peebles et al., 2014), it should 
be closely monitored, particularly during the first half of incubation.

2.3  Influences of incubational temperature and airflow

Changes in egg temperature can be affected by changes in the rate of water 
loss from an egg during incubation. Because the physical change of water 
from a liquid to vapor requires heat, an increase in the loss of water would 
result in an increase in the loss of heat from an egg due to evaporative cooling 
(French, 2009b). An increase in evaporation rate promoted by an increase in 
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the rate of water vapor conductance can help reduce the effects of increased 
embryonic metabolic heat production on egg temperature (Meir and Ar, 
1990). Nevertheless, other studies have specifically focused on incubation 
temperature and airflow rate as factors that contribute to the control of water 
vapor and vital gas exchange across the eggshell (Robertson, 1961b; French, 
1997, 2009a). Wilson (1991) indicated that small incremental deviations from 
37.0°C to 38.0°C dry bulb incubational temperature can significantly impact 
embryo development and subsequent hatchability. Nevertheless, it has been 
emphasized that incubator air temperature and the internal temperature of 
the egg can be distinctly different, as the temperature that the developing 
embryo experiences is not only dependent on incubator temperature 
but also influenced by the transmission of heat between the external and 
internal environments of the egg and the production of metabolic heat by 
the metabolizing embryo (French, 1997, 2009a). French (2009a) has precisely 
indicated that the temperature that the developing embryo inside the egg 
experiences should be considered as the real or true incubation temperature. 
The temperature of the external environment of an egg influences heat 
transfer to or from the egg, and the rise in temperature of the air passing 
over the egg is inversely proportional to the rate of airflow or airflow volume 
(French, 2009a). Nevertheless, airflow rate itself can be effectively used to 
regulate the external temperature of an egg without directly affecting its 
moisture content, because the rate of airflow over an egg has a negligible 
effect on its rate of water loss (Kaltofen, 1969; Spotila et al., 1981). When 
maintaining an optimum air temperature around eggs, a lower air speed is 
required when the spacing between eggs is increased (French, 1997).

2.4  Measurement of internal egg temperature

Pulikanti et  al. (2011a) reported that temperature transponders could be 
inserted into the air cells of broiler hatching eggs between 12 days and 
14 days of incubation without negatively influencing eggshell porosity or 
causing physiological stress to the growing embryo. Peebles et al. (2012) have 
suggested that the use of transponders in the air cells of embryonated eggs 
circumvents the confounding effects that the thermal properties of the eggshell, 
as well as the flow of air across the shell, may impose on the temperature that 
the embryo actually experiences. Moreover, Pulikanti et al. (2012a) observed 
that transponders in the air cells of embryonated eggs detected minute 
internal temperature fluctuations and recorded mean temperatures that were 
consistently higher than those of non-embryonated eggs as well as the external 
microenvironments surrounding the eggs between 13 days and 18 days of 
incubation. Using transponders, Peebles et al. (2012) have likewise concluded 
that in comparison to eggshell surface temperatures, air cell temperatures were 
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higher and closer to those of actual broiler embryo temperatures previously 
reported in other studies. At a 75% survival rate, it has also been concluded 
that temperature transponders could be successfully implanted in the air cells 
of broiler hatching eggs at 10.5 days of incubation to determine internal egg 
temperature for the subsequent accurate calculation of eggshell water vapor 
conductance unadjusted or adjusted for set weight (Pulikanti et al., 2011b, 
2012a,b), as well as their water vapor conductance constants (Pulikanti et al., 
2012a,b).

The measurement of internal egg temperature is the most accurate and, 
therefore, the most ideal means to assess embryo temperature; however, it 
is not practical in commercial operations (French, 2009a). Sotherland et  al. 
(1987) have suggested that the measurement of eggshell temperature is 
more pragmatic and has been shown to be closely related to internal egg 
temperature. Using eggshell temperature to measure embryonic temperature 
(Lourens et al., 2005; Joseph et al., 2006), it has been reported that deviating 
from a constant eggshell temperature of 37.8°C can result in 10% differences 
in the yolk-free body mass and hatchability of broiler hatchlings (Lourens et al., 
2005). Therefore, because eggshell temperature is affected by embryonic 
metabolic heat production, and because embryonic heat production can be 
affected by the amount and efficiency of energy utilization by the embryo, 
changes in eggshell temperature can subsequently impact embryogenesis, 
hatchability, and chick quality (Meijerhof, 2002; Lourens et al., 2011).

The topics discussed in this section have described various aspects that are 
the bases for understanding how humidity and the O2 and CO2 concentrations 
of the air within incubators affect embryo development, hatchability, and 
post-hatch chick development. The techniques by which the concentrations 
and exchange or flux of water, O2, and CO2 between the external and interior 
environments of the embryonated egg are measured and the environmental 
factors that affect their values have also been considered. The following 
sections describe in more detail the individual effects of humidity, O2, and CO2 
on embryo and post-hatch chick development.

3 Humidity

3.1  Egg water content and its production and loss during 
embryonic development

Water is the dominant constituent in eggs, comprising approximately 75% of 
the internal contents of an egg. The concentrations of water in the albumen, 
yolk, and eggshell are 88.8%, 47.5%, and 1.0%, respectively (Romanoff and 
Romanoff, 1949; Vieira and Moran, 1999). A partial loss of this water must occur 
throughout incubation for embryonic development to be properly achieved 
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(Barbosa et al., 2013). As summarized by Davis et al. (1988), the total internal 
water content of an egg during embryonic development is affected by the loss 
of water through the pores of the eggshell (Paganelli, 1980) and the production 
of metabolic water by the oxidation of yolk lipids (Ar and Rahn, 1980). 
Considering the smaller portion of water that is lost to the external environment 
by its diffusion across the eggshell, the water content of the embryo is increased 
by its absorption from the extra-embryonic tissues including the amnion, 
allantois, and yolk sac (Davis et al., 1988; Ar, 1991b). Furthermore, the accretion 
of metabolic water as a byproduct of the metabolism of lipids by the embryo, 
which increases with development (Ar, 1991a), is responsible for approximately 
8–13% of the water content of the embryo (Ar, 1991b). Not only does the loss 
of water during incubation have an important association with the loss of heat 
that is produced by the metabolically active embryo, but it is necessary for 
the formation of the egg air cell or chamber (Rahn and Ar, 1980; Visschedijk 
et al., 1980), which will possess a volume of gas that is positively related to the 
volume of water that is lost from the egg (Durojaye et al., 2018). A substantial 
air cell with an adequate volume and a well-proportioned supply of vital gases 
is critical for the subsequent hatching success of the embryo (Rahn et al., 1979; 
Ar and Rahn, 1980; Ar, 1991b; Barbosa et al., 2013; Uçar et al., 2021). Most 
importantly, it is essential that the air cell volume is large enough to support 
the embryo’s initial breathing activities and to allow for the adequate filling 
of its respiratory system, including its lungs and air sacs. The volume of the 
air cell space needed to accommodate the pipping and subsequent hatching 
processes is approximately 14% of the total egg volume (Rahn et al., 1976).

3.2  Relative humidity

As described by Cormick (2021), absolute humidity is the amount of water 
contained in air (g/m3), regardless of temperature, whereas relative humidity 
(RH) is the volume of moisture that air can hold at a given temperature and is 
expressed as a percentage. At a given RH, air at a cold temperature holds less 
moisture, whereas at a higher temperature it holds more moisture (Cormick, 
2021). Relative rather than absolute humidity has been commonly used as the 
mode of measurement in hatcheries. Because the absolute humidity of the air 
surrounding the egg modulates the rate of water loss through the pores of 
the eggshell (Ar and Sidis, 2002), the RH of the incubational environment is a 
primary means by which the internal water content of the egg can be influenced 
and altered (Davis et al., 1988). The rate of water loss from an egg increases as 
the RH of the air surrounding it decreases. Therefore, to augment the proper 
development of the embryo, the RH of the air that surrounds a fertile hatching 
egg should be monitored and controlled (Decuypere et al., 2001).
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3.3  Egg water loss requirement

Interspecific and intraspecific egg water loss during incubation can vary 
substantially (Walsberg, 1980). However, it has been well established that 
prior to pipping, eggs laid by poultry species must lose between 12% and 
14% of their fresh weight at set by the loss of water through the pores of their 
eggshells to hatch successfully (Ar, 1991a). Lundy (1969) has further stated 
that peak hatching success can be achieved in domestic fowl when total egg 
water loss equals 10–12% of initial egg weight. In the review article by Barbosa 
et al. (2013), it was summarized that the RH of an incubator containing broiler 
hatching eggs should be set between 56% and 60% to allow for a 12% loss of 
set egg weight through 18 days of incubation and that maintaining a weight 
loss range within 11–13% during the first 18 days of incubation led to a better 
rate of hatch than did weight losses that were lower. When considering the 
effects of altitude changes on the water vapor conductance of eggs, Visschedijk 
(1991) has noted that in order to compensate for an increase in the water vapor 
conductance rate of eggs at higher altitudes, the water vapor gradient across 
the eggshell must be reduced to allow water loss to remain similar to that at 
lower altitudes (sea level).

3.4  Effects of relative humidity on hatchability and hatchling 
quality

A 5% change in humidity results in a 1% difference in moisture loss by 18 days 
of incubation (Cormick, 2021). Although the incubation of broiler breeder eggs 
of similar weight at either a 33% or 50% RH did not affect the absolute yolk sac 
weights of hatchlings, Tullett and Burton (1982) observed that, in conjunction 
with a lower incubational egg weight loss, their body weights were higher when 
they were incubated at the higher RH. If the RH during incubation is too low, 
embryonic moisture loss will be excessive, which will affect hatchability and will 
cause hatchlings to be dehydrated and to have lower body weight. Conversely, 
if the RH during incubation is too high, an early hatch of mushy chicks may result 
(Barbosa et al., 2013). The effects of these improper RH settings can further extend 
into the post-hatch growing period resulting in sub-optimal performance and 
decreased processing yield (Bruzual et al., 2000b; Pulikanti et al., 2012b; Peebles 
et al., 2014). Adjustment of an RH in the hatcher that is higher than that in the 
setter has been used to facilitate the hatching process of chicks. Upon examining 
the effects of setter and hatcher humidities on the hatchability of Bobwhite quail 
eggs, Wilson and Dugan (1992) concluded that previous recommendations for 
setter and hatcher RH levels of 55.4% and 75.0%, respectively, were satisfactory 
for optimum hatchability. Nevertheless, after conducting studies on the effects 
of incubational RH during the last 5 days of incubation, Bruzual et al. (2000b) 
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summarized that despite the lack of an effect on hatchling body weight, optimal 
performance was achieved overall by incubating eggs from young broiler 
breeder hens at an RH of 53% rather than at 43% or 63%.

3.5  Effects of relative humidity on embryo metabolism and 
embryonic and post-hatch chick development

Although varying RH outside a 42–70% range was not found by Barott (1937) to 
significantly affect the time of hatch of chicks, when set at 42% or 70%, it decreased 
embryonic energy metabolism and thereby compromised their growth. Barott 
(1937) concluded that the metabolic activity of the embryos occurred at a higher 
level at an RH of 60%. Lundy (1969) later reported that the optimal RH range is 
wide and can be between 40% and 70%, but Robertson (1961a) has concluded 
that RH should be approximately 50% to maximize hatchability. Robertson 
(1961b) further noted that within a 40–70% range in RH, hatchability and hatchling 
body weight, which reflect embryonic growth, were not significantly affected. 
However, it was found that the two endpoints of that RH range inversely altered 
the rate of egg weight loss, thereby potentially disrupting embryo metabolism at 
various stages of development, with the subsequent consequence of increasing 
embryonic mortality. In that report, it was also indicated that egg size may be a 
confounding factor in determining an optimum RH, with larger eggs requiring a 
lower RH. Because both incubation RH and temperature not only affect the loss of 
heat from the embryonated egg but also affect its rate of water loss, eggs that are 
incubated at a high or low RH may need to be incubated at a different incubation 
temperature to maintain the same embryo temperature when incubated in a 
more normal (55–60%) RH range (Molenaar et al., 2010; van der Pol et al., 2013; 
Boleli et al., 2016). A higher level of hatchability for broiler eggs was obtained by 
van der Pol et al. (2013) when they were incubated within a 55–60% range of RH 
and when their eggshell temperature was 37.8°C.

Upon comparing the effects of incubating layer hatching eggs at a 45% or 
55% RH, Hamdy et al. (1991) reported that chicks hatched from eggs incubated at 
55% RH had higher body weights at the hatch in comparison to those from eggs 
that had been incubated at the 45% RH. However, this difference ceased to exist by 
day 2 post-hatch, suggesting that the chicks from eggs incubated at the 45% RH 
were able to soon adapt physiologically and compensate in growth. Furthermore, 
although incubational RH treatment did not affect chick feed intake, feed conversion, 
or rectal temperature through 4 weeks post-hatch, after exposure to 39.0°C for 48 
h, fewer chicks in the 45% RH treatment group died in comparison to those in the 
55% RH treatment group. Bruzual et al. (2000a) tested the effects of 43%, 53%, 
and 63% RH incubational settings from the time that broiler hatching eggs were 
set to the time that the hatch was pulled. With increasing RH, the body weight of 
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the hatchlings was increased, but the time of hatch was not significantly affected. 
In that study, it was also observed that the percentage hatchability of fertile eggs 
was highest at 53% RH, whereas the percentage of late dead embryonic mortalities 
was highest at 63% RH. Therefore, although increasing RH to 63% produced 
the heaviest hatchling body weight, it had a detrimental effect on embryonic 
development. Bruzual et al. (2000b) further tested the effects of 43%, 53%, and 63% 
RH incubational settings during the last 5 days of incubation. Conversely, although 
the time of hatch was likewise not significantly affected by these same RH settings, 
no significant differences in hatchling body weight were noted. Restricting these 
changes in RH to only the last 5 days of incubation, therefore, does not appear 
to impact broiler hatchling body weight. The effects of RH on hatchling BW may 
be associated with the rate of yolk uptake from the yolk sac by embryos. Upon 
comparing the effects of 43%, 53%, and 63% RH incubational environments on 
yolk utilization in broiler hatching eggs, Burnham et al. (2001) noted that the rate 
of embryonic yolk uptake was increased by incubating eggs at the 53% RH. The 
concentration of palmitic acid in the yolk was also reported to be lower at 17 days 
of incubation at the 53% RH setting.

3.6  Influences of breeder age on the effects of relative 
humidity on embryonic development

The results of experiments conducted by Vick et al. (1993) have suggested that an 
incubational RH that produces the best hatch results for broiler breeder eggs is 
influenced by the age of the breeder hen. A 50% rather than a 58% RH resulted in 
a higher level of hatchability and a lower early embryonic mortality in eggs as the 
age of the breeder hen decreased between 28 weeks and 64 weeks. Conversely, 
the 58% RH resulted in a higher hatchability and a lower late embryonic mortality 
in eggs laid by hens that were 60 weeks of age. The 50% RH also led to a lower 
hatchability of eggs from hens that were 66 weeks of age, whereas young hens 
exhibited a higher level of hatchability. The differential influences of breeder age 
on the effects of RH on hatchability can be attributed to changes in the diffusivity 
of the eggshell to water vapor with hen age (Peebles and Brake, 1987; Vick et al., 
1993). In a study exploring the influence of incubational RH on the characteristics 
of broiler embryo progeny from young breeder hens, Peebles et al. (2001) found 
that changes in RH between 43% and 63% did not affect embryo moisture content 
and did not have consistent effects on their crude fat and protein contents. 
However, a reduction in RH to 43% depressed embryogenesis, which may 
augment the inferior performance of broiler chicks from young breeder hens. 
Upon testing the effects of 43%, 53%, and 63% RH settings on broiler hatching 
egg yolk composition, Burnham et al. (2001) observed that the effects of these 
RH levels on yolk lipid content were influenced by breeder age. More specifically, 
the percentage of yolk lipid was higher when eggs from 26-week-old breeders 
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were incubated at a 63% rather than a 53% RH. However, yolk lipid content was 
lower in eggs from 30-week-old breeders when they were incubated at an RH of 
43% rather than an RH of 53% or 63%.

To summarize, an approximate 12% loss of the internal water content of an 
embryonated egg prior to pipping, in conjunction with the formation of an air 
cell with well-proportioned concentrations of O2 and CO2, must occur for the 
embryo to metabolize nutrients, develop, and hatch successfully. The rate of 
water loss during incubation is primarily a consequence of the functional porosity 
of the eggshell and the RH of the air surrounding the egg at a given temperature. 
In addition, hen species and age, egg size, stage of incubation, and the elevation 
at which incubation occurs are influential factors that can further modify the 
rate of water loss. Because RH affects post-hatch chick performance as well as 
embryogenesis, hatchery managers must carefully monitor incubator RH while 
considering the various influential factors which can modify the effects of RH.

4 Vital gases

4.1  Oxygen

4.1.1  Eggshell porosity, air cell oxygen tension and the 
transition from chorioallantois vasculature to pulmonary 
respiration

Burton and Tullett (1983) predicted the O2 consumption of embryos based 
on the diffusion as well as air cell gas composition measurements of O2. In 
the report, it was shown that eggshell porosity affects O2 availability and 
subsequent embryonic metabolism. Throughout incubation up until external 
pipping, all embryonated eggs consume a total amount of O2 equivalent to 
90 cm3 per gram of fresh egg weight (Ar and Rahn, 1978; Tullett, 1984). The 
events of internal and external pipping are associated with changes in the 
partial pressure of O2 in the air cell and various physiological responses of the 
late-stage embryo. It is known that the O2 tension in the gas space of the air 
cell is associated with the metabolic rate of the embryo and that an increase in 
embryonic metabolism lowers O2 tension within the air cell (Rahn et al., 1974; 
Tullett and Deeming, 1982). The tension of O2 in the air cells of eggs reaches 
approximately 14% (100 mmHg) immediately prior to internal pipping (Ar and 
Rahn, 1978; Tullett, 1984). Subsequently, endocrine-induced external pipping 
and successive hatching occur in response to decreased O2 concentrations in 
the air cell (Decuypere et al., 2006; Decuypere and Bruggeman, 2007; Mortola, 
2009). When O2 availability for the embryo becomes limited, its physiological 
demands increase considerably (Tazawa et al., 1983). The loss of access to 
O2 requires a transition to pulmonary ventilation (Vince, 1976: Menna and 
Mortula, 2002). There is a transition from gas exchange that is facilitated by the 
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chorioallantoic vasculature to pulmonary respiration after internal pipping. The 
increased availability of O2 after this transition allows for the predominant use 
of aerobic fatty acid oxidation to produce energy by the embryo (Moran, 2007).

4.1.2  Interactive effects of eggshell porosity, embryo 
metabolism and temperature on embryonic oxygen 
consumption and hatchling quality

As previously discussed, the water vapor conductance of an eggshell is known to 
be controlled by the temperature of the egg. However, as eggshell water vapor 
conductance increases with an increase in egg content surface temperature, 
the O2 diffusive conductance of the eggshell decreases (Meir and Ar, 1990). 
Upon examining the interactive effects of incubational O2 concentration and 
RH on the hatchability of alligator eggs, Reigh and Williams (2020) concluded 
that when RH is adequate, a good level of hatching success can be achieved 
when eggs are incubated under normal ambient O2 concentrations. Moreover, 
Deeming and Thompson (1991) have further indicated that eggs can experience 
higher conductance rates to respiratory gases, such as O2 and CO2, when 
incubated in high humidity environments. Nevertheless, Burton and Tullett 
(1983) have more specifically noted that high porosity eggshells are able to 
adequately provide O2 to late-stage embryos, whereas low porosity eggshells 
may lead to a reduction in embryonic metabolism. In accordance with an 
increase in the metabolic demands of the embryo that are associated with its 
various successive developmental stages, there is an increased demand for gas 
exchange through the pores of the eggshell (Boleli et al., 2016). French (2009b) 
has likewise suggested that an increase in eggshell conductance facilitates an 
increase in embryonic O2 consumption in association with an increase in their 
rate of metabolism. Even though the diffusivity of gases through the eggshell 
is known to be controlled by egg temperature, Lourens et al. (2007) showed 
that the O2 concentration of the surrounding air in an incubator during the third 
week of incubation had a greater effect in determining embryo development 
than did the eggshell temperature. More specifically, in comparing high 
(38.9°C) to normal (37.8°C) eggshell temperatures and high (25%) to low (17%) 
O2 concentrations, it was found that embryonic heat production was highest 
when both eggshell temperature and O2 concentration were highest and that 
heat production was lowest when eggshell temperature was high but when O2 
concentration was low. Facilitation of the high metabolic demands for increased 
O2 availability by the late-stage embryo must, therefore, include a sufficiently 
high partial pressure of O2 in an egg’s external environment regardless of 
eggshell temperature and porosity. It was subsequently observed by Lourens 
et al. (2007) that an increased O2 concentration increased the yolk-free body 
weight and length of hatchlings, while residual yolk sac weight was decreased.
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4.1.3  Physiological responses of the embryo and hatchling to 
environmental oxygen concentrations

Diverse physiological responses also occur to increase the gas exchange 
demands of the late embryo and hatchling that include increases in circulating 
hematocrit, hemoglobin, and red blood cell count values (Morita et al., 2009; 
Tazawa et al., 2011, 2012). Özge et  al. (2006) tested the hypothesis that O2 
supplementation could improve the survival rates of broiler breeder embryos 
during the late stage of incubation. Although the time of hatch and circulating 
red blood cell, packed cell volume, and hemoglobin values were not affected 
by subjecting the eggs to 23% O2 concentrations between 18 days and 21 days 
of incubation, an improvement in embryonic survival rate, in association with a 
decrease in late embryonic mortality, were observed. The hatchlings were also 
heavier and had higher blood glucose concentrations in response to the O2 
supplementation. The use of supplemental O2 as high as 23% may, therefore, 
be a useful means by which to meet the higher O2 demands of late-stage 
embryos. Christensen et al. (1997) tested the hypothesis that providing an O2-
enriched environment to embryonated turkey eggs between 25 days and 28 
days of incubation would increase the survival rate of the embryos from genetic 
lines selected for growth or egg production when compared to their respective 
random-bred controls. They observed significant interactions between O2 
treatment and genetic line for embryonic survival, heart growth, and hepatic 
glycogen concentration. It was concluded that the two types of genetic selection 
resulted in a diminishment in the response of the embryos to O2 enrichment, 
which may be attributed to decreases in their eggshell conductances and 
their altered metabolisms. In a later related study by Christensen et al. (1999), 
in which the metabolism of carbohydrates and lipids was examined, it was 
confirmed that embryos selected for growth or egg production are unable 
to adequately respond to elevated environmental O2 partial pressures by 
normally modifying the metabolism of their energy sources, thereby leading to 
an increase in embryonic mortality during the plateau stage of O2 consumption 
that exists during the latter stage of incubation.

An adequate influx of O2 is vital to the metabolic function of embryos, 
as the partial pressure of CO2 increases in the blood and extraembryonic 
fluids during the period of incubation (Boutilier et al., 1977). In enclosed 
environments, higher rates of embryonic respiration during the later stages 
of incubation can increase deviations from normal atmospheric O2 tensions 
(Deeming and Thompson, 1991). However, higher porosity eggshells that 
allow for increased O2 influx through the eggshell to the embryo counteract 
the natural accumulation of CO2 in the blood and extraembryonic fluids as 
incubation progresses. This effect is manifest in the report by Burton and Tullett 
(1983) showing that a decreased availability of O2 to a developing embryo, 
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due to the low porosity of an eggshell, is a major factor that influences embryo 
weight late in incubation. The atmosphere consists of approximately 21% O2 
at sea level (Stock and Metcalfe, 1984; Weekley and Bland, 2021). Walsberg 
(1980) has noted that the fractional O2 concentration in the typical nests of birds 
is like that in the general atmosphere but can decline during incubation from 
20.9% to about 20.0–20.3%. Changes in the O2 levels in an incubator can affect 
hatching results (Okur, 2019). It has been further observed that hatchability and 
subsequent performance can be adversely affected by O2 levels that are either 
too low (<17%) or too high (25%) (Stock and Metcalfe, 1984; Lourens et al., 2007; 
Molenaar et al., 2010). During the early stages of incubation, chick embryos 
are very sensitive to O2 deprivation; however, embryos display an improved 
tolerance to acute hypoxia as their age increases. The embryo also becomes 
more tolerant to hyperoxia as its age increases between the middle and late 
periods of incubation (Taylor et al., 1956; Taylor and Kreutziger, 1965, 1966; 
Onagbesan et al., 2007). Nevertheless, upon testing the effects of progressively 
increasing atmospheric O2 concentrations between 15% and 50% on chick 
hatchability, Barott (1937) observed that a 21% level of O2 produced the best 
hatch results.

4.1.4  Influences of altitude on the effects of atmospheric 
oxygen concentrations on the embryo and hatchling

Although the O2 concentration in air at any altitude is 21%, there is a near-
linear decrease in the atmospheric partial pressure of O2 as altitude increases 
(Weekley and Bland, 2021). This is a result of a reduction in barometric 
pressure as altitude increases (Visschedijk, 1991). A hypoxic environment, 
due to a reduction in the partial pressure of O2 that occurs at high altitudes 
(approximately 600 m above sea level), can cause increased early embryonic 
mortality (Şahan et al., 2011), reduced organ growth (Bagley and Christensen, 
1989), and reductions in hatchability (Francis et al., 1967; Şahan et al., 2011) 
and hatchling weight (Şahan et al., 2011; Boleli et al., 2016). Boleli et  al. 
(2016) more specifically summarized that the adverse effects of hypoxia 
on embryonic development during the first half of incubation are related 
to increased chorioallantoic development and vascularization, whereas its 
effects during the second half of incubation are related to the compensatory 
responses of the organs. After assessing the effects of incubational O2 
concentrations at high altitudes on the hatchability of chicken and turkey 
eggs in the studies conducted by Ells and Morris (1947) and Meshew (1949), 
Davis (1955) summarized that the hatchability of chicken eggs incubated at 
a high altitude (2195 m) could be increased with the use of supplemental 
O2 concentrations as high as 25%, which equated to a 19% O2 concentration 
at sea level. However, it was also suggested that more rapid genetic 
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improvements in hatchability may be made possible by natural selection in 
an un-supplemented environment at high altitudes and that a higher level 
of hatchability in an environment without supplemental O2 may be a partial 
result of a reduction in the variation of O2 concentrations that is experienced 
between trials in which supplemental O2 is used.

Broiler embryos in eggs incubated at high altitudes, in which hypoxic 
conditions existed, have been observed by Şahan et al. (2011) to show increased 
plasma triiodothyronine (T3) and thyroxine (T4) concentrations and higher T3:T4 
ratios. The effect of high altitude carried over into the newly hatched chicks, 
which also exhibited higher circulating T3:T4 ratios. Şahan et al. (2011) noted 
that newly hatched chicks that had been incubated at a high altitude exhibited 
higher hemoglobin and plasma hematocrit values. Chan and Burggren 
(2005) examined the effects of continuous hypoxia (15% O2) exposure on the 
development of various organs, including the chorioallantoic membrane, at 
several successive critical intervals of development in chicken embryos. The 
differential effects that hypoxia had on the various organs were dependent 
on the developmental stage of the embryo. More specifically, although 
chorioallantoic membrane mass was not affected by hypoxia during the early 
and middle developmental stages, a remarkable compensatory increase in its 
mass was observed by day 18 of development to mitigate the physiological 
effects of the hypoxic condition. Furthermore, eye mass and beak length were 
reduced in middle development, while the masses of the liver, brain, heart, 
kidneys, stomach, intestines, and skeletal long bones were not affected at any 
developmental stage.

In summary, eggshell porosity and the availability of O2 in the external 
environment, in conjunction with changes in air cell O2 partial pressure, affect 
the metabolism, O2 consumption, induction of pipping, and transition from 
chorioallantois vasculature to pulmonary respiration in embryos. Moreover, 
the impacts of O2 availability on embryo development and its physiological 
responses depend on the stage of embryogenesis and the altitude at which 
incubation occurs.

4.2  Carbon dioxide

4.2.1  Effects of changes in carbon dioxide production by 
the developing embryo on incubator carbon dioxide 
concentrations and the influences of temperature

Increased levels of CO2 early in incubation are known to cause a more 
rapid acidification and liquefaction of the albumen, and development of 
the sub-embryonic fluid (Benton and Brake, 1996; Bruggeman et al., 2007). 
Tona et al. (2013) have further noted that the albumen pH of layer hatching 
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eggs decreases more rapidly than that in broiler hatching eggs. The normal 
production of CO2 by the embryo is 0.7 times the uptake of O2 (Visschedijk, 
1991). In association with the output of CO2, a byproduct of embryonic 
metabolism under standard incubation conditions, the CO2 concentration in 
a single-stage incubator can gradually increase from 0.05% at the beginning 
of incubation to approximately 0.3–0.5% at the end of incubation (Özlü et al., 
2019). Because the CO2 concentration in the air surrounding eggs in a nest 
is linearly related to the production of CO2 by the embryo (Romanoff and 
Romanoff, 1967; Walsberg, 1980), the CO2 concentration in nests peaks near 
the end of incubation, but it is when the embryo is less sensitive to elevated 
levels (Lundy, 1969). Deeming and Thompson (1991) have further stated that 
increased rates of metabolic CO2 production, in conjunction with the higher 
respiratory rates of late-stage embryos, can cause a more intense divergence 
from normal atmospheric CO2 partial pressures in the air within an incubator. 
However, Tona et al. (2013) have also hypothesized that reductions in elevated 
incubator temperature and CO2 concentrations resulting from the increased 
production of heat and CO2 by late-stage embryos can be achieved when 
the eggs are incubated at standard ventilation rates. Lourens et  al. (2006) 
found that when standard incubator temperature was decreased by 0.30°C 
for 1 h, embryonic CO2 production was initially increased by 0.5%, but then 
decreased thereafter. Conversely, when machine temperature was increased, 
CO2 production initially decreased by 0.4%, but then increased thereafter. 
The embryos, therefore, displayed an initial inverse response followed by 
a more long-term direct response to the short-term change in incubational 
temperature. It was surmised that the changes in CO2 production were not 
due solely to the level of embryonic heat production, but that alterations in 
the flow of blood in the chorioallantois that followed changes in incubation 
temperature affected heat transfer and the rate of CO2 diffusion. Lourens et al. 
(2006) further concluded that the ability of the embryo to liberate CO2 may 
limit its development under higher temperatures.

4.2.2  Effects of changes in incubator carbon dioxide 
concentrations on embryogenesis and hatchability

Carbon dioxide levels ranging between 0.1% and 0.5% are customarily used in 
the incubation of poultry eggs (Onagbesan et al., 2007). Hatching results are 
affected by changes in CO2 concentration in an incubator (Okur, 2019). Despite 
the possible confounding influences of various environmental factors during 
experimentation, it has been suggested that incubational CO2 levels above 
1.0% can adversely affect hatching success in domestic fowl (Lundy, 1969). In a 
series of studies (Taylor et al., 1956; Taylor and Kreutziger, 1965, 1966), it was 
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shown that the effects of hypercapnia on the hatchability of chicks were related 
to the period of incubation in which they occurred in a setter unit. For instance, 
hatchability was reduced when CO2 levels were equal to or above 1.0% 
between days 1 and 4 (Taylor et al., 1956), 3.0% between days 5 and 8 (Taylor 
and Kreutziger, 1965), and greater than 6.0% between days 9 and 12 (Taylor 
and Kreutziger, 1966). The increased tolerance of embryos to hypercapnia as 
they age during incubation can be partially attributed to the different buffering 
systems that they possess (Onagbesan et al., 2007). Nevertheless, embryos 
in low conductance eggshells not only can experience low water loss and O2 
uptake levels, but an accumulation of CO2 in the egg can lead to a decrease 
in their blood pH levels (French and Tullett, 1991). The processes of internal 
and external pipping are influenced by CO2 partial pressure changes in the air 
cell. A CO2 tension of approximately 6% (40 mmHg) is reached in the air cell 
just before the initiation of internal pipping (Ar and Rahn, 1978; Tullett, 1984). 
Increased CO2 concentrations in the air cell are associated with hormonally 
stimulated external pipping and the complete emergence of hatchlings 
from the eggshell (Decuypere et al., 2006; Decuypere and Bruggeman, 
2007; Mortola, 2009). Nevertheless, it has been suggested in other studies 
that not only may high CO2 concentrations not be detrimental to embryonic 
development and subsequent hatchability, but that higher levels of CO2 can be 
beneficial to embryonic development and to further improve hatchability and 
to stimulate an early hatch response (Bruggeman et al., 2007; Tona et al., 2007). 
The results that were observed were alleged to be related to the conservation 
of energy in association with a greater uptake of O2 in response to physiological 
adaptations including increases in circulating erythrocyte numbers and a 
general improvement in cardiovascular development (Tazawa et al., 2002; 
Decuypere et al., 2006; Verhoelst et al., 2011).

4.2.3  Potential benefits of elevated atmospheric carbon 
dioxide concentrations during incubation on 
embryogenesis, hatchability and post-hatch  
performance

It has been shown that upon exposing broiler hatching eggs to hypercapnic 
conditions, through gradual increases in CO2 levels from 0.7% to 1.5% during the 
first 10 days of incubation, that embryogenesis was accelerated, and hatchability 
was improved (De Smit et al., 2008). Accelerated embryo growth was likewise 
observed by Carlea et al. (2012) when they exposed Cobb 500 broiler hatching 
eggs to 0.85% CO2 concentrations during the first half of incubation. Willemsen 
et al. (2008) concluded that a gradual increase in incubator air CO2 concentration 
up to 1.0% during the first 10 days of incubation decreased embryonic mortality 
and subsequently increased fertile egg hatchability by lowering embryo 
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malposition incidence. However, although higher CO2 levels increased broiler 
body weight through 2 weeks post-hatch, it had no consistent effects on 
body weight at slaughter age. Conversely, Fernandes et  al. (2014) showed in 
a subsequent study that when broiler hatching eggs were exposed to graded 
levels of CO2 between 0.4% and 1.0% during the first 10 days of incubation, 
that although the circulating heterophil:lymphocyte ratios of the birds were 
increased at 42 days of post-hatch age, it did not affect their post-hatch livability, 
performance, heart and liver weights, or heart characteristics. These same results 
were observed even when they were subjected to fluctuating temperatures 
between 35 days and 42 days of age. Gildersleeve and Boeschen (1983) have 
indicated that CO2 levels between 0.3% and 1.5% early in incubation improve 
hatch, and De Smit et  al. (2006) have also indicated that levels in that same 
range early in incubation can also stimulate embryonic growth. In comparison 
to low (0.2%) CO2 concentrations, when high (1.0%) CO2 concentrations were 
applied during only the hatching phase (beginning on day 19) of incubation, 
higher relative heart and lung weights were observed at 12 h after hatch, thereby 
indicating that when applied during the hatching phase, high CO2 levels in an 
incubator may only exert a temporary physiological effect during the early post-
hatch period (Maatjens et al., 2014a). In a subsequent study by Maatjens et al. 
(2014b), in which the same experimental design was employed, it was reported 
that the high CO2 concentration resulted in a lower blood pH and hepatic 
glycogen concentration in embryos that had been internally pipped.

4.2.4  Physiological responses of embryos and hatchlings to 
elevated atmospheric carbon dioxide concentrations and 
the influences of genotype

Increased plasma T3 and T4 concentrations and higher T3:T4 ratios have been 
observed in broiler embryos in eggs incubated under hypercapnic conditions 
at high altitudes. Higher circulating T3:T4 ratios in response to the high altitude 
also subsequently occurred in hatchlings (Şahan et al., 2011). Tona et al. (2013) 
conducted experiments to determine the effects of incubator CO2 concentration 
on the physiological variables of chicken eggs from broiler and layer genotypes 
exhibiting different growth trajectories. It was reported that increasing incubator 
CO2 concentration during the first 10 days of incubation differentially affected 
the growth trajectories and the physiological variables of late-stage embryos. 
It was also noted that the higher CO2 level during incubation led to higher 
plasma T3 and corticosterone concentrations in both genetic lines at the time of 
internal pipping. However, the higher CO2 concentration resulted in a shorter 
length of incubation in only the slower-growing genetic line. Buys et al. (1998) 
further explored the effects of different incubational CO2 levels (0.2% and 0.4%) 
on the hatch results and physiological characteristics of embryo and post-hatch 
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chicks from ascites-sensitive and ascites-resistant broiler lines. At the 0. 2% but 
not the 0.4% level, the ascites-resistant line hatched earlier than the ascites-
sensitive line. Embryos from both lines had higher plasma T3 concentrations 
when incubated under a 0.4% rather than a 0.2% CO2 concentration. In the 
post-hatch period, lower ascites mortalities occurred in chicks that hatched 
from eggs that were incubated at the 0.4% level in comparison to the 0.2% 
level, and heart right ventricular to total ventricular ratios were higher in the 
0.2% CO2 treatment group in comparison to the 0.4% CO2 treatment group.

To summarize, incubational temperature and the increased production 
of CO2 by developing embryos can affect atmospheric CO2 concentrations 
in incubators. However, although increased incubational CO2 concentrations 
can affect hatching success, late-term embryos become more tolerant to 
hypercapnia. Nevertheless, elevated CO2 concentrations during the first half of 
incubation may be used to stimulate embryo growth and improve hatch. These 
effects are mediated by various physiological responses and are influenced by 
altitude and bird genotype.

5 Conclusion

To achieve a successful hatch, an approximate 12% loss of the internal water 
content of an embryonated egg must occur prior to pipping in conjunction with 
a well-formed air cell at the large end of the egg containing a correct proportion 
of O2 and CO2. The rate of water loss is primarily a product of an eggshell’s 
functional porosity and the RH, at a given temperature, of the air immediately 
surrounding an egg. While carefully monitoring the incubational environment 
with these factors in mind, it is also necessary to consider other confounding 
factors previously described in this chapter that can further modify the rate of 
water loss from the embryonated egg.

Knowing the need for the adequate elimination of CO2 and the supply of 
O2 for the developing embryo, it can be summarized that maintenance of the 
vital gas concentrations across the eggshell by proper adjustments of their 
concentrations in the internal incubator environment during the setter and 
hatcher phases of incubation is necessary to meet the embryo’s physiological 
requirements. The physiological needs and adjustments of the embryo in 
response to O2 availability include its metabolism, pipping activity, and transition 
from vascular to pulmonary respiration. Like that of RH, other modifying factors 
that can affect the impact of O2 availability on embryogenesis include the 
stage of development of the embryo and the altitude at which incubation 
occurs. In contrast to the required uptake of O2, the elimination of CO2 as a 
metabolic byproduct of the developing embryo is also required. A subsequent 
accumulation of CO2 in an incubator can occur with an increased growth of 
the embryo. However, after taking into consideration the modifying effects 
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of altitude and bird genotype, the practice of elevating CO2 concentrations 
during the first half of incubation may be used to aid in stimulating embryonic 
growth and improving hatchability.

To understand the subsequent effects of air humidity and vital gas 
composition in an incubator on embryo and post-hatch chick development, it is 
necessary to have a comprehensive knowledge of the interactive effects of the 
physiological function of the eggshell and the modifying influences of the various 
physical factors in the incubational environment. With this knowledge, hatchery 
managers will be better equipped to optimize productivity in their hatcheries.

6 Where to look for further information

It is recommended that researchers consult current company guidelines for the 
incubation of their specific hatching eggs. This would include following their 
recommended procedures for monitoring incubational egg weight loss for the 
proper adjustment of incubational conditions necessary to achieve an optimal 
weight loss prior to pipping. Further information can also be obtained from 
updated extension articles published by a university Poultry Science department. 
Future research should focus on determining fine incubational regimen 
adjustments, including those for temperature and humidity, that could be made 
at various periods during incubation to better accommodate the changing 
growth and metabolic rates of embryos of modern strain hatching eggs.
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