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1  Introduction

A growing world population depends for more and more of its daily needs 
on the food and agriculture system, while planetary resources are infinite and 
bounded (O'Neill et al., 2018; Steffen et al., 2015). Today’s food and agriculture 
systems are facing multiple challenges (e.g. climate change, biodiversity loss, 
and soil degradation), so with the same or even fewer resources in terms 
of fossil fuel and land, more demands have to be met. Some relationships 
between the abovementioned challenges and agriculture systems have been 
more extensively studied than other relationships. For example, there is a fairly 
good and quantitative understanding of the interconnection between climate 
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change and agricultural production (Asseng et al., 2015), i.e. temperature 
increase and productivity effects, which also implies that these have been 
extensively modelled (e.g. Ewert et al., 2015; Rosenzweig et al., 2013). This is 
different for biodiversity loss, where there is still a limited understanding of how 
species loss and species diversity would impact agricultural systems and their 
productivity. Even the challenges are themselves interconnected, so a holistic 
approach towards the agricultural system is required to capture relevant 
development pathways and not be blinded by a deep understanding of one 
domain (i.e. agronomy, economy, supply chains), while missing important 
interactions across domains.

With these challenges occurring at the same time, and the food and 
agriculture system as multi-scale, multi-domain and multi-sectoral, integrated 
modelling approaches for agriculture and food systems are crucial (Harris, 2002; 
Parker et al., 2002). The integrated modelling approaches and the consequent 
modelling results can be used as a method for deepening the understanding 
of the different system analysis, an ex-ante tool to evaluate (policy) options 
for future development, and for sustainability analysis of existing agricultural 
systems. In the past these integrated modelling approaches have been most 
actively developed by linking models presenting domains together into an 
integrated framework, especially in the 2000s; see, for example, van Ittersum 
et al. (2008) and Janssen et al. (2011). In the early 2010s the focus shifted from 
model linking to ensemble analysis of the system components models, like 
economic and crop models, through initiatives such as the Agricultural Model 
Intercomparison and Improvement Project (AgMIP; Rosenzweig et al., 2013) or 
the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP; Warszawski 
et al., 2014). At the same time there has been a lot of focus on the potential 
of digitalisation and data-driven technologies to release new data sources, 
and new analysis techniques (see e.g. Holzworth et al., 2015; Janssen et al., 
2017; Lokers et al., 2016), which could be beneficial to new approaches to 
(integrated) modelling.

It is therefore timely to review the issues involved in integrated modelling, 
especially with respect to an already well-studied relationship between climate 
change and agricultural systems. Even so, many elements require further 
elaboration and discovery in this relationship between climate change and 
agricultural systems.

2  Model-data integration

Every model is created on data. Beyond the model-building process, the 
classical way of informing any kind of model with data is to provide the data as 
input for the model before the run. While statistical models would need input in 
exactly the form with which the models were created, mechanistic models often 
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provide a bit more flexibility with respect to the amount of data that they could 
use for their run. For this chapter, we concentrate on mechanistic, i.e. process-
based simulation models, as at present they still represent the vast majority of 
models in use for climate change impact assessments in agriculture. For these 
models, we will first look at data that are needed during model development, 
starting with the calibration process, and then move on to the initialisation of 
models. In this section, we will concentrate on data provisioning for large-area 
applications. Finally, we will address assimilation of data as a method to inform 
models while running the simulations, a technique that allows integrating more 
and better data as soon as they become available and improve the simulation 
underway.

2.1  Multi-criteria calibration of mechanistic agro-ecosystem 
models

Mechanistic simulation models for agro-ecosystems (AEMs) are commonly 
composed of a multitude of algorithms that make up subcomponents (modules), 
which then are merged to build the system that the model shall represent. Each 
of these algorithms has been derived from individual experiments that were set 
up to find relationships between two or sometimes more variables that interact. 
These experiments are mostly designed in a way that other influencing factors 
are excluded, creating more or less artificial conditions, which as such do not 
appear in the real system. At each level of aggregation, from algorithms to 
modules and from modules to model, distinct target variables are computed. 
To ensure that algorithm, module and model do what they are supposed to do, 
the performance of the component needs to be tested, against experimentally 
observed target variables, or target variables monitored under real-world 
conditions. Looking back into the historical literature on model calibration, 
often studies report on such performance checks against one variable only, 
while others consider multiple variables, but no systematic procedure to arrive 
at the best calibration. Furthermore, there are studies that calibrate for optimal 
performance and then test against previously unused (independent) data 
obtained from the same system under similar conditions. Very often, the model 
testing yields very satisfying results. However, agro-ecosystem models compute 
several potentially interesting target variables, and all of them are output of the 
same simulated system and therefore dependent on each other. Calibrating 
only to the optimal simulation of one of them often comes at the expense of 
low performances in simulating others, often without recognising that there is 
a problem (‘right for the wrong reason’). It is therefore necessary to test the 
performance of the model in simulating several target variables simultaneously 
to make sure that the whole system’s behaviour is well captured by the model 
(Archontoulis et al., 2014).
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2.1.1  Methods

Simultaneous calibration for multiple target variables requires appropriate 
methods, which differ from the concepts used for calibration towards one single 
target variable. Multi-objective approaches account for compensating effects in 
the calibration procedure. Considering multiple variables in global optimisation 
decreases the risk of the search algorithm getting trapped in a local minimum, 
which may result in a good fit for one variable but in an otherwise inappropriate 
parameter set for others. In many studies with integrative aspects, different 
observed variables are optimised in a single-objective calibration process. The 
multi-objective approach (Groh et al., 2018; Wöhling et al., 2015) has so far 
received less attention in the application of agro-ecosystem models, although 
widely accepted in the hydrology community (Hernandez-Suarez et al., 2021; 
Houska et al., 2017; Mostafaie et al., 2018).

Multi-objective optimisation approaches use trade-offs to determine a 
set of non-dominated parameters that cannot be improved for one objective 
without compromising the other objective. For this purpose, they spread the 
search within the parameter space to identify feasible parameter sets (solutions) 
with acceptable trade-offs along the Pareto front (Kamali et al., 2022). Since 
different parameters belong to different processes in the model, the solutions 
along the Pareto front are all realistic and robust parameter estimates yielding 
similar model performances.

The most common algorithms for multi-objective calibration include 
particle swarm optimisation (Kennedy and Eberhart, 1995), genetic algorithms 
(Fonseca and Fleming, 1993) and complex evolution (Yapo et al., 1998). While 
most multi-objective methods offer superior performance compared to single-
objective calibration (Kamali et al., 2013), they also suffer from their inability 
to provide information on the uncertainty of model predictions. Bayesian 
approaches can account for parameter uncertainty in optimisation, and their 
superior performance has recently been demonstrated for eco-hydrological 
models (Tang et al., 2018; Wöhling et al., 2013) where mostly two variables 
(leaf area index and soil moisture) have been targeted.

2.1.2  Harmonised data sets

Preparation of data for use in process-based crop models requires that the 
data are aggregated to the correct spatial and temporal scales; transformed 
into the correct dimensional units; and checked for completeness, semantic 
and syntactic alignment, and to ensure quality (Janssen et al., 2017). With the 
increased availability of data from remote and proximal sensing, the need for 
interoperability of these data sources increases. The primary data requirements 
for process-based crop models are weather, typically daily records of rainfall, 
temperature and solar radiation; soil physical and chemical properties for 
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surface and subsoil; management event details such as land preparation, 
sowing, application of inputs, and organic matter management; and genetic 
parameters (Hoogenboom et al., 2012).

Data preparation for large-scale, coordinated modelling activities, 
including ensemble and gridded modelling, requires some level of automation 
of these data preparation processes, but there are currently no interoperability 
standards for setting temporal and spatial scales, variable notation and units, 
file formats or data quality in large-scale crop modelling activities (van Evert, 
2019). The choice of spatial scale is generally determined by the resolution 
of available data and the intent of the modelling activity. Temporal scale is 
limited by the time step of the model, generally daily, but in most large-scale 
applications, seasonal or annual values are reported due to data volume and 
analysis computational constraints.

Harmonisation of the semantics and syntax of agricultural datasets was 
addressed by the AgMIP (agmip .o rg) (Porter et al., 2014) to streamline ensemble 
modelling activities for Regional Integrated Assessments (Antle et al., 2015). 
The AgMIP approach describes a standardised data exchange mechanism 
using the ICASA vocabulary (White et al., 2013) implemented in a flexible data 
schema and allowing gap-filling of missing data. However, the AgMIP data 
interoperability protocols were developed for use with site-based field crop 
experimental data or farm survey data and were thus associated with individual 
plots or farms rather than spatially distributed data and these standards have 
not been adapted for gridded modelling activities.

Numerous vocabularies and ontologies have been developed for 
agricultural research, but no standard has emerged for use in spatial modelling 
activities. The robust agronomic vocabulary developed with the ICASA 
standards has limited provision for spatial applications. Several ontologies 
(Jonquet et al., 2015) have been developed for agricultural use, but none 
contain the full range of terms required for crop modelling activities yet.

The Global Gridded Crop modelling Intercomparisons (GGCMI phase 
1) (Müller et al., 2017); GGCMI phase 2 (Franke et al., 2020); GGCMI phase 3 
(Jagermeyr et al., 2021) may be the best examples of large-scale, ensemble 
modelling activities using harmonised data. These model intercomparisons 
were performed at a spatial resolution of 0.5 arc-degrees. Much of the data 
preparation was not automated and required extensive effort on the part of 
the study organisers. However, the resulting datasets have been shared under 
open-source licences.

For these types of gridded modelling efforts, the model input data are 
stored in geo-referenced files, typically one variable per file. NetCDF (Network 
Common Data Form) has emerged as the de facto standard for efficiently 
storing multidimensional arrays for crop modelling inputs which vary spatially 
but often also with time (weather data) or depth (soil data). In the case of GGCMI 

http://www.agmip.org
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simulations, model input data were provided to teams in NetCDF format but 
each team was responsible for converting data to their specific model formats 
for simulations. Model outputs from each team were converted to NetCDF 
format for analysis and intercomparison.

3  Informing spatiotemporal simulations

Once a model has been successfully calibrated and declared fit for purpose, 
it can be applied in very different manners and at different scales. This implies 
that the model will be applied at sites to which it has not been explicitly 
calibrated. The quality of the simulations then often depends entirely on the 
quality of the input information, if no further calibration as applied at larger 
scales with aggregated observed data. The most fundamental drivers for 
mechanistic agro-ecosystem models are weather and soil data. For any spatial 
application of models, soil data needs to be available in sufficient detail, so 
that for each grid cell or point that shall be simulated, a realistic representation 
of soil information can be provided. This includes not only a soil type but also 
soil texture information and soil organic matter contents (and sometimes more, 
depending on the need of the model) for each soil horizon down the profile. 
The challenge here is that despite an often very sophisticated soil survey and 
sampling has been applied, the information product that is then produced 
from this data is often less detailed. In Germany, as one example, the most 
detailed soil survey was conducted during the 1930s for land use planning and 
taxation. Only in individual federal states, contemporary soil surveys produce 
soil maps at a similar degree of detail. For many other areas, detailed soil 
surveys have not been conducted at all, and available soil maps build on much 
coarser information, e.g. the Brazilian soil survey (RADAMBRASIL) of the 1970s 
(De Negreiros et al., 2009). And then, these maps are often not available in a 
digital format, ready to be used with models. Recently, first attempts have been 
presented to build finer resolved digital soil maps using methods of artificial 
intelligence to fill gaps (e.g. https://soilgrids .org; Hengl et al., 2017).

For weather data, a similar problem exists. Fine-resolved weather data 
products are available for areas in which meteorological observation networks 
are dense. For areas that are less densely covered, the quality of the weather data 
is lower per se and relies a lot on the skills of the meteorologists to interpolate 
reasonably the available data. This applies not only to spatial gap filling but also 
to temporal, as met stations sometimes fail to record. In addition to this, many 
met stations are not fully equipped and record temperatures and precipitation 
amounts, but not air humidity and solar radiation, two variables often required 
by crop and agro-ecosystem models. This aggravates the gap-filling problem. 
Especially for model applications to inform farmers on what happens on their 
fields or in their region (early-warning systems, irrigation and fertilisation 
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recommendation, etc.), fine-scaled weather information is in high demand, such 
as the AgERA5 10 × 10 km² for global applications (Boogaard et al., 2020) or 
the 1 × 1 km² weather data grid of the German Weather Service for Germany.  
While observed weather and short-term forecasts may be available in high 
resolution, long-term forecasts and climate projections are often not. Here, 
science and engineering are still underway towards better and more detailed 
information products. Until then, modellers have to live with lower-resolution 
weather products, which comes at the expense of a higher uncertainty. How this 
influences the quality of the model predictions is discussed elsewhere in this book.

Beyond soil and weather data, agro-ecosystem models require more 
information, e.g. on crop types, crop and soil management and other items. 
For these highly dynamic variables, no static maps can help, but frequent 
observations. For this purpose, different data sources are available, of which we 
illustrate some in the following subsections.

3.1  Remote sensing

Remote sensing (RS) is one of the main sources of information across different 
spatial and temporal scales that can be used to monitor agricultural systems 
and the impacts of climate change. Several parameters describing vegetation 
growth and surface characteristics can be derived and used to inform the 
mechanistic models (Novelli et al., 2019). The increasing availability of RS data 
with improved spatial, spectral and temporal properties allows mapping and 
extraction of RS-based metrics over large areas. Such metrics can be used to 
derive proxies of vegetation status and condition, which can be the basis for 
deriving parameters describing crop growth stage, condition and phenology 
(Meroni et al., 2021). Examples of such parameters are the start (greening), 
peak, amplitude and the end of the growing season (senescence; Younes 
et al., 2021). The parameters in turn can be further used to derive information 
on growing conditions (Guo and Gu, 2022) and management practices (e.g. 
sowing and harvest date; Rezaei et al., 2021) and crop type (Blickensdörfer 
et al., 2022; Griffiths et al., 2019).

Crop type information is one of the essential datasets that can be 
generated from RS. Different data, such as Landsat, Sentinel and MODIS, has 
been used to derive spatially explicit crop maps. Nevertheless, availability of 
the crop maps is not at the same level globally and datasets covering large 
areas often specify only agricultural practices such as arable land or rangeland 
(Hoefsloot et al., 2012). Based on the freely available RS time series and use of 
different machine learning models, large-scale crop maps are available for USA 
(Boryan et al., 2011), Germany (Blickensdörfer et al., 2022), as well as large-
area mapping initiatives such as Sentinel-based crop mapping (http://www .esa 
-sen2agri .org/).

http://www.esa-sen2agri.org/
http://www.esa-sen2agri.org/
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Besides agricultural land cover characterisation, further information on 
crop and land management can be derived from RS, such as irrigation events 
and nutrient application, e.g. nitrogen (N) concentration in the plant tissue. 
Irrigation is one of the main tools for increasing crop productivity and the 
information can improve models performance and assist the estimation of 
water resource demands. Several studies have shown the applicability of RS 
data for mapping irrigation extent and amount (Ren et al., 2021; Zappa et al., 
2021). Although some advances have been made, the majority of these studies 
focus on the local scale, with the use of a large amount of ground data, and 
are concentrated on arid and semiarid regions. Many studies have applied RS 
data for N estimation, based on the correlation between N and some leaf traits. 
Fewer studies assessed P and K, mostly focusing on vegetation index-based 
assessment based on hyperspectral and multispectral data.

RS has also been used for soil tillage assessment, mainly by estimation 
of parameters related to residue cover and surface roughness using optical 
multi- or hyperspectral and Synthetic Aperture Radar (SAR) sensors (Begue 
et al., 2018). There is also great interest in the detection and early warning 
of crop pests and diseases (Schirrmann et al., 2022). However, such a task 
requires high-resolution images and high-frequency fly-overs (Ibrahim et al., 
2023; Oerke et al., 2014), and only a few models are yet ready to include this 
information (Bregaglio et al., 2021). Lastly, RS has been used to monitor highly 
dynamic grassland systems and to identify mowing and grazing events based 
on intra-seasonal dynamics of optical and SAR-based data, such as backscatter 
and interferometric coherence (Andreatta et al., 2022; Schwieder et al., 2022).

3.2  Proximal sensing

Proximal sensing is another source of information about site-specific conditions 
of soil and crop, which can deliver model input parameters. Compared to RS, 
where sensors are deployed on aerial or satellite platforms, proximal sensors 
are often placed within 2 m from the target (Adamchuk et al., 2018; Deery et al., 
2017). Visible, near and mid-infrared spectrometry is one of the most commonly 
used methods to measure soil and crop properties. For soil, important variables 
include organic matter, soil nitrogen, particle size distribution, pH and moisture 
(Adamchuk et al., 2018; Dhawale et al., 2015). Ion-selective potentiometric 
sensors have also been used to measure the chemical properties of the soil, 
such as pH and nutrient content (Lobsey et al., 2010). Among the soil variables, 
moisture is probably the most important variable, as it critically influences 
crop production (Kashyap and Kumar, 2021). Proximal sensing methods such 
as ground penetrating radar (Minet et al., 2013), electromagnetic induction 
(Hedley et al., 2010; Tabbagh et al., 2022), ground-based radiometer and radar 
systems as well as gamma-ray spectroscopy (Baldoncini et al., 2019) have been 
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developed for field-scale soil moisture determination (Babaeian et al., 2019; 
Kashyap and Kumar, 2021).

Optical sensors that record radiation reflected or absorbed by vegetation 
have been used to collect data non-destructively to assess plant properties 
such as nutrient content or leaf area index (LAI). While there is a large number 
of studies that estimate variables related to nitrogen content, such as crop N 
uptake and concentration (Corti et al., 2018; Morari et al., 2021; Padilla et al., 
2018), other macro- and micronutrients remain comparably less investigated. 
The reflectance measurements can often be complemented with fluorescence 
data that can give additional information regarding plant characteristics, 
such as plant stress (Maxwell and Johnson, 2000). The advantage of proximal 
fluorescence sensing is that it is not sensitive to soil backgrounds, environmental 
light or biomass conditions. Aside from nitrogen, different fluorescence indices 
can be useful for estimating nutrient statuses such as potassium, magnesium 
and calcium (Holland et al., 2019).

Besides optical sensors, light detection and ranging (LiDAR) data have 
been used to assess the plant growth and canopy properties (El-Naggar et al., 
2021). LiDAR has been shown to be useful for deriving information such as LAI 
(Hosoi et al., 2011), crop density and volume (Saeys et al., 2009) and water use 
(El-Naggar et al., 2021). In addition, infrared thermography, fluorescence and 
spectral sensors have been used for the assessment of the plant stress and 
disease and their spatiotemporal variation (Baker and Rosenqvist, 2004; Oerke 
et al., 2014). Lastly, there are several research activities towards an integrated 
use of proximal data with satellite based-observations for upscaling (Munnaf 
et al., 2021; Wolters et al., 2021).

3.3  Distributed data

Some information that is considered useful to drive AEM is difficult to sense 
and is not available in maps and other static information products. It often 
comprises information on crop impacts with limited spatial extent, e.g. 
scattered flooding, infections of pests and diseases, the appearance of rodents 
or larger animals that destroy fields while browsing, or farmer's preferences 
for certain management that is not immediately visible, as e.g. the choice of 
crop varieties, or the agents being used to battle pests and diseases. However, 
such information may be available through campaigns, surveys or observations 
that are distributed unevenly in space and time. Citizen science projects, for 
example, provide such information, but the nature of this data collection mode 
entails a sampling design that is far from ideal for data analysis. Experience with 
distributed data collection through laypersons revealed that people observe 
where they sojourn and not where their targets occur (Hampf et al., 2021; Kamp 
et al., 2016), or prefer easy-to-observe targets to others (Callaghan et al., 2021) 
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and thus produce biased data. Analysing such biased data requires knowledge 
on the quality issues and appropriate methods that deal with them (Hochachka 
et al., 2012).

4  Assimilation of data in spatiotemporal simulations

The great variety of input data that AEM consume for their simulations leads to a 
very large state-space of possible results. Uncertainties afflicted with individual 
data sources add up and propagate through the course of the simulation, and 
any method that contributes to reducing these errors is highly welcomed. An 
idea that emerged in early model applications was the frequent testing against 
observed data, and instantaneous correction of the simulations in case it went 
off the observed course of the respective variable (Dorigo et al., 2007; Wallach 
et al., 2018; de Wit and van Diepen, 2007). The process of regularly updating 
a running simulation is referred to as data assimilation. The key motivation for 
data assimilation is the optimal estimation of the modelled state-space at any 
point in time an observation is available.

Data assimilation into spatiotemporal simulations enables the prediction 
to consider a wider range of uncertainties than traditional forward, optimisation 
and calibration simulations. The employed AEM has been constructed on 
a large empirical basis and they contain complex multivariate relationships 
and numerical solutions for high-dimensional problems. Data assimilation 
considers the often neglected uncertainties in atmospheric forcing conditions 
to the agro-ecosystem models, uncertainties in initial and boundary 
conditions, model structure (process representation, process dynamics) and 
model parameterisation (vegetation, soil) and most importantly observation 
uncertainty. Data assimilation as understood in this chapter is the optimal 
merging of model predictions and observations under consideration of the 
uncertainties in both simulation and observation. The consideration of these 
uncertainties in the model prediction is the key difference of data assimilation 
to traditional optimisation, inverse modelling, calibration and machine learning 
approaches. The following section outlines the two main data assimilation 
methods used in agro-ecosystem modelling: Ensemble Kalman Filters (EnKFs) 
and Particle Filters.

The original Kalman Filter estimates the optimal position of a system state 
variable based on observations and observation uncertainty (Kalman, 1960). 
Usually a numerical model provides further constraints on the estimated 
system state. The EnKF is the most commonly used and most generalised 
variant of Kalman Filters in spatiotemporal simulations (Evensen, 1994). The 
EnKF estimates the system state from the spatiotemporal model forecast, 
the observation at forecast time, and the uncertainty of both. The update 
process is schematically represented in Fig. 1. Model uncertainty is calculated 
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from an ensemble of model realisations, which were created from uncertain 
and often randomly perturbed initial conditions, parameters and forcing. 
The observational uncertainty and model forecast uncertainty are optimally 
combined in the cost function to calculate the Kalman gain and hence the 
updated model state, from which the model is re-initialised until the next 
observation becomes available. Parameter updates can also be achieved by 
extending the state vector with the parameter vector (e.g. Baatz et al., 2017). 
Parameter updates usually require further assumptions and numerically robust 
control of parameter updates through e.g. damping factors. Further variants 
of the Kalman Filter introduce spatial constraints through localisation (e.g. 
Local Ensemble Transform). The Kalman Filter by Hunt et  al. (2007) requires 
inflation i.e. deterioration of the forecast accuracy or simplifying the calculation 
of the Kalman gain via the Extended Kalman Filter (e.g. Anderson et al., 2009). 
This can be useful, as often the main assumption of Gaussian distribution in 
model and observation uncertainty is not accurate, and localisation of updates 
avoids non-causal geospatial correlations and inflation prevents overfitting. 
The EnKF is particularly well suited for large numerically complex models with 
small ensemble sizes due to the high cost of running numerically expensive 
models and calculating the Kalman gain. It comes at the expense of potentially 
altering model assumptions (e.g. energy and mass balance) through model 
state updates to continuous numerically calculated solutions.

Particle Filters optimise the model forecast with the observation under 
consideration of both uncertainties as is done by many Kalman Filter variants. 
Particle Filters consider an ensemble of model realisations as a swarm of particles 
where each particle is represented by one model realisation (Doucet et al., 2000). 
Particle Filters propagate the model forward until an observation is available. 
At the time of observation, the particles i.e. the ensemble of model states are 
resampled based on the probability density function of the model forecasts 
and the observation uncertainty. The resampled particle swarm is re-initialised 
with updated states until the next time step with an available observation. 
Resampling maintains, removes and reproduces model realisations based 
on the cost function and the weights assigned to individual realisations. The 
resampling process is schematically represented in Fig. 1b. Although the main 
principle remains the one described, a large number of Particle Filter variations 
were developed mainly by addressing the resampling scheme to account for 
various problem formulations (e.g. Penny and Miyoshi, 2016; van Leeuwen et al., 
2019). Resampling was made subject to localisation, inflation was introduced 
to avoid overfitting, and the resampling algorithm was extended to include 
further time steps beyond the one at the time of observation. Particle Filters are 
independent of the assumption that uncertainties follow Gaussian distribution. 
Particle Filters typically require a larger ensemble size than EnKF approaches to 
quantify model uncertainty. This makes Particle Filters suitable for numerically 
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less complex models. Particle Filters do not alter the conservation laws in the 
model ensemble due to the resampling of realisations.

Many examples exist where data assimilation was applied to merge 
forecasts of agro-ecosystem model states and remotely sensed observations 
in an optimal way (Ling et al., 2019). de Wit and van Diepen (2007) used the 
EnKF to assimilate the soil water index obtained from the ERS scatterometer 
at 0.25° spatial resolution into the WOFOST agro-ecosystem model, with the 
aim to improve maize and winter wheat yield predictions across the European 
continent. They found limited benefits of the data assimilation, as there were too 
large errors originating from sources not considered in this study that lowered 
the predictive performance of the model. Ines et  al. (2013) investigated the 
combined assimilation of LAI and soil water content into DSSAT crop model 
forecasts with the EnKF. Interestingly, they found the LAI-only assimilation yielded 
favourable results under high-biomass and wet conditions, and favourable 
results of the combined assimilation under low-biomass and dry conditions. De 
Bernardis et al. (2016) applied the Particle Filter with MODIS NDVI observations 
to update plant phenology of a simple crop growth model, while Zare et al. 
(2022) applied it with Landsat 7 and 8 and Sentinel-2A and B to update LAI. 
While studies on vegetation indices other than LAI remain rare, consideration 
of the range of spectral indices is a promising avenue (e.g. Silvestro et al., 2021). 
Further advances can also be anticipated when considering problem-focused 
alternative Particle Filter developments and even merged EnKF variants with 
the Particle Filter (van Leeuwen et al., 2019). Given the increasing availability 
of high-performance computing infrastructures, preconditions for numerically 
complex model-data-fusion frameworks are rapidly improving.

5  Workflows for massive parallel computing

The need for executing large-scale simulations or simulations that also include 
data assimilation efforts in a reasonable amount of time necessitates the 
application of large computing resources. These are often situated in HPC 
facilities or can be accessed via cloud services. To utilise these resources efficiently, 
the user needs to understand the general structure in which these computing 
powers are available. In most cases the user has to deal with a potentially very 
large amount of single machines (tens to thousands) with each machine offering 
usually a certain amount of computing cores (tens – right now – to hundreds – in 
the near future) within one machine. In order to use all available cores within a 
single machine, either many programs can be executed in parallel or one single 
program can run many execution threads on top of the operating system’s 
threading mechanism. As long as the need for computational resources can be 
satisfied with a single machine, the only restriction comes from limited access 
to storage or limited parallelisation potential of the program. Communication 
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of parallel processes can be fast via the multi-threading approach where code 
runs in the same address space or somewhat slower if multiple programs 
communicate via inter-process communication. In both cases, latency due to 
communication overhead is low and the potential for broken communication 
channels is reduced. This all changes if the need for computational resources 
rises and multiple machines have to be involved in the simulations. The first 
question to be answered is whether a simulation consists of many independent 
pieces. If not, users have to try to move parts of the simulation set-up closer 
together to speed up communication, if possible onto the same machine or 
even process. Independent computations can be distributed more freely. 
Currently, this is true for most simulations in the agricultural domain. They often 
use heavyweight point-based (one-dimensional) models running on a grid, 
with each grid cell being represented by an independent simulation (Elliott 
et al., 2015; Zhao et al., 2016). In this case, after some initial set-up, the model 
spends most of its time computing, and less for communication. The smaller 
the computational part becomes, the larger the ratio of communication (set-up, 
loading and storing of data) to computation (simulation) gets. These concepts 
have to be kept in mind in order to understand and evaluate the trade-offs of 
the general parallelisation methods described below.

Parallelisation concepts can be ordered along multiple dimensions. The 
first dimension distinguishes data from task parallelism. Data parallelism refers 
to large amounts of data being processed using a single program. Here, the 
user wants to apply parallel algorithms within the program to process the data 
efficiently. From the user's point of view, this may be seen as a single processing 
pipeline, but the functions being applied to the data work internally in parallel. 
In contrast, task parallelism is a concept applied to larger tasks (e.g. the 
abovementioned point model application), which run as separate programs. 
For a large simulation, the focus is more on how to create the necessary set-up 
for each task and how to run it. In the agricultural domain, this often means 
running complex models on millions of set-ups to reflect the changes at 
different locations (e.g. soil and climate data).

There is a constant gradient between data and task parallelism. Somewhere 
in the middle, one can find frameworks and environments for (massively) 
parallel data flows, e.g. Apache Spark (https://en .wikipedia .org /wiki /Apache 
_Spark) or Storm (https://en .wikipedia .org /wiki /Apache _Storm). Recalling the 
image of data parallelism as a single pipeline, each execution step may exhibit 
the potential for parallelisation. If datasets get larger and at some point do 
not fit into memory anymore, data flow pipelines can be constructed in which 
each component within the pipeline is specialised for particular processing 
steps. These components do not all live necessarily within a single machine, 
as they can also be distributed over many different machines. In that way, a 
particular data flow can be computationally scaled to the demands of the data 

https://en.wikipedia.org/wiki/Apache_Spark
https://en.wikipedia.org/wiki/Apache_Spark
https://en.wikipedia.org/wiki/Apache_Storm
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being processed. An example of a particular short data flow is the Map-Reduce 
pattern (https://en .wikipedia .org /wiki /MapReduce), in which a large amount 
of independent data is being ‘mapped’ and then reduced in one or more 
further steps. Mapping in this case refers to the application of a function (or 
an equivalent to it) to every single data piece. As the data are independent, 
this map function can be executed on arbitrary amounts of computational units 
(cores, processors, machines). The results of the applied function will usually 
need some aggregation steps, which sequentially follow the mapping step.

The distribution of tasks to the available computational resources can be 
described using established mechanisms. The most popular is the manual 
distribution of the tasks and data to the computational units (mostly machines 
or nodes in a HPC or cloud). On these machines, a program or script will be 
executed to run the actual program on the set of data assigned to the machine. 
At the machine level, this resembles batch processing. To distribute the work 
automatically, cluster management and job scheduling tools like SLURM 
(https://slurm .schedmd .com /documentation .html) have been designed, which 
will acquire the necessary resources and run shell scripts on the involved 
compute nodes. The same tools can also be used to distribute programs, which 
use a message-passing interface (MPI, https://en .wikipedia .org /wiki /Message 
_Passing _Interface). Instead of manually taking care of distributing data and 
code and organising workflows at the operating system level, the user writes a 
program, which uses standardised interfaces to do this task. Using MPI, the same 
program will be started on all computational nodes, but one of these nodes is 
assigned to coordinate the initial distribution of work and the final aggregation 
of results. The author of the program does not have to be concerned with the 
peculiarities of the infrastructure anymore and rather writes a single program 
that uses the underlying MPI implementation of the infrastructure to distribute 
data and do the necessary communication. Depending on the kind of task, 
programs using MPI can scale very easily to large amounts of computing units, 
but with the drawback of being more difficult to debug due to its indirect 
execution.

Somewhere between manual batch execution and MPI-style program 
distribution, one can think in terms of clouds of programs. If the time to transfer 
the input and output data is sufficiently low compared to running the code 
itself, it can be advantageous to start many instances of a program as a service 
on remote machines, provided by either a cloud provider or an HPC cluster. 
Subsequently, a short pipeline is created, consisting of at least one program 
producing jobs (Producer) for one of the models and another program 
receiving the results of the model run for further processing (Consumer). This 
is similar to the Map-Reduce pattern but offers more flexibility in what the 
Producer can do, as the act of creating a job can be arbitrarily complex. This 
approach introduces bottlenecks in the sense that in the naive case, one task 

https://en.wikipedia.org/wiki/MapReduce
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is producing jobs for many processes and their results have to be funnelled 
back into a single process for aggregation. However, the advantages emerge 
from the fact that the Producer and Consumer processes can be developed 
incrementally and can be run and even debugged locally as long as remote 
access to the cloud of models is available. Optimising the job creation side will 
lead towards the MPI-approach or more complex parallel data flows. However, 
optimising this concept has a few trade-offs to consider, where computation 
speed stands against process responsibilities within the pipeline.

6  Model–model integration

Agricultural systems include a range of very different subsystems, including 
biophysical, socioeconomic and even mixed systems. Simulation models have 
been developed for almost all of these subsystems, but each based on different 
methods and modelling philosophies. To analyse high-level feedback loops and 
system behaviour, it is sometimes desired to couple some of these subsystems, 
represented by individual models. A simple example is the handshake between 
a mechanistic agro-ecosystem model providing crop yields and an agent-
based economic model that uses these yields to simulate market dynamics or 
farm-level decision-making. Here, a so-called ‘hard coupling’ of the two models 
physically combined in computer code is often not required, as the passing-on 
of the yield values already suffices for the purpose (‘soft coupling’). However, 
there are more applications imaginable, and some of them become complex. 
In the following subchapters, we will address some of these challenges and 
provide some solutions.

6.1  Obstacles for model–model integration

6.1.1  Resolution in time and space

One common issue with coupling models is the individual resolution of the 
processes represented in the model. As for the temporal resolution, the 
processes describing the dynamics in agro-ecosystems are typically resolved 
in days, as a compromise between the need to reflect short-term, event-
based management and weather shocks (e.g. heat or frost events) and the 
availability of weather data to drive the models and computation time. Some 
of the process descriptions may benefit from a finer-temporal resolution, 
which is why some models have internal modules that run in an hourly or 
even minutely resolution. Such models are able to describe day and night 
processes, or the response of crop and soil to heavy rain and wind gusts. 
Coupling a daily resolved agro-ecosystem model with an erosion model, in 
order to assess the impact of a rainfall event on erosion and crop growth 
simultaneously, requires that both models match in their temporal resolution. 
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If not, the two remaining options are (i) simplifying the finer resolved model 
so that it matches the coarser or (ii) running the two models at different paces. 
As an example, EROSION 3D (Schmidt, 1991) is a mechanistic model that 
simulates erosion events on agricultural fields in very high temporal resolution, 
also on marginal slopes. For this purpose, it resolves rainfall data in minutes 
and requires this data as input. While coupling to an agro-ecosystem model 
with daily resolution would be feasible at two different paces at the field 
scale, this concept would hit computational limitations when scaling to larger 
areas, as for each AEM simulation time step, 1440 simulations of EROSION 
3D need to be executed. On the other hand, if reducing the resolution of 
EROSION 3D to daily time steps, the model would miss important information 
on rainfall intensity to drive the simulation of erosion events. What remains is 
a more general erosion approach, such as the Universal Soil Loss Equation 
(Wischmeier and Smith, 1965), which, however, often underestimates event-
based erosion.

At the other end, feedback between soil and plant processes to explain 
the genesis of soils in agricultural landscapes, elaborate sinks and sources 
for carbon and subsequently assess carbon sequestration potentials requires 
the consideration of hundreds if not thousands of years. Models designed for 
this purpose often use only yearly time steps and thus look at soil and plant 
management only through frosted glass rather than a binocular. Using an AEM 
with a soil formation model therefore requires AEM runs for a long time, with 
the need to make assumptions on crop and soil management (Lugato et al., 
2014).

Spatial resolution has played a more prominent role in considerations 
(Ewert et al., 2011) and a considerable body of literature has grown on the effect 
of using weather (Hoffmann et al., 2015; Nendel et al., 2013; Zhao et al., 2015), 
soil (Grosz et al., 2017; Hoffmann et al., 2016; Zhao et al., 2016) or management 
data (Constantin et al., 2019) at different scales to drive AEM. Even though the 
general impression from these studies is that scaling between 1 km² to 100 
km² does not result in drastic effects on the simulation of crop yields or other 
variables, the scales below 1 km² have not yet been intensively studied. Suitable 
data products, especially for soils, are still rare and may not even contain the 
information that would be relevant, e.g. for investigating macro pore fluxes 
of infiltrating water after rainfall events, and the respective fast transport of 
water deep into the soil along cracks, earthworm passages or root channels 
(Christiansen et al., 2004; Jarvis et al., 1991), which has consequences for the 
water budget in the topsoil. In general, AEMs are sensitive to soil heterogeneity 
also at the subfield scale (Wallor et al., 2018). However, their application on 
grid cells larger than 100 km² comes always with massive simplifications in the 
assumptions that have to be made for soil distribution and crop management 
and that − despite a low scaling effect − contribute to the limitations in the 
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conclusions that can be drawn from such model applications (e.g. Heinicke 
et al., 2022).

6.1.2  Model philosophies

Different models often clash because of different philosophies being used 
as the foundation of their development. Using the erosion and crop model 
coupling as an example again, the one-dimensional nature of many crop or 
agro-ecosystem models makes it difficult to employ them for science cases in 
which proximity relationships play a role in the processes considered. While 
on crop yields, the condition of the neighbouring plants and soils have often 
little influence, an erosion event means explicit matter exchange with the 
neighbouring spatial unit. Coupling an AEM with an erosion model therefore 
requires a mass balance across space, and the ability to add or subtract soil 
mass to or from the soil profile, with consequences for some soil properties. 
Burying organic matter under accumulating substrate, or gradually exposing 
horizons low in organic matter to frequent organic matter inputs through 
erosion can then be simulated with such a coupled model.

Another example of clashing philosophies is the coupling of an AEM with 
a farm economy model that requires annual production from the farmer’s fields 
as input. As such, yields can be simulated using an AEM, this coupling seems an 
easy undertaking to begin with, but the devil lies in the detail. Farm economy 
models, e.g. MPMAS (Berger, 2001), often do not care about the actual locality 
of the fields but only about the statistical coherence. Any decision the virtual 
farmer takes in such a model yields a new statistical distribution of crops being 
produced on that farm in the new season. However, whether crop rotation rules 
on individual fields are followed is often beyond focus. In contrast, AEMs do 
need to make sure that one crop follows another explicitly and plausibly on one 
field to track carry-over effects of water and nutrients. This spatial coherence is 
key to any simulation of irrigation water requirements, N fertiliser applications 
and other cost-afflicted management, which would be of interest to the farm 
economy model besides yields.

7  Granularity and modular design for model 
improvement, reuse, exchange and interoperability

The first computational models of crop and soil processes were developed in 
the 1960s (Jones et al., 2017). Their long history has produced a large number 
of crop models, which have evolved from a few landmark models such as 
CERES and EPIC in the USA or SUCROS and ARCWHEAT in Europe (Muller 
and Martre, 2019). Crop models differ according to their choice of relationships 
and hypotheses regarding process functioning and feedback loops and their 
combinations of mechanistic components. In the last decade, the AgMIP 
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(Rosenzweig et al., 2013) and MACSUR (Rötter et al., 2013) networks of crop 
modellers have carried out several benchmarking crop simulation model 
intercomparison studies. These studies highlighted both the capacities and 
the limits of current models (e.g. Asseng et al., 2013; Bassu et al., 2014; Kollas 
et al., 2015; Li et al., 2015; Martre et al., 2015) and have led to important model 
improvements (e.g. Maiorano et al., 2017; Wang et al., 2017). This process 
highlighted also the importance of equally considering soil processes, which is 
done in AEM, but often not sufficiently in crop models. However, it became also 
obvious that model improvement and extension (e.g. to consider crop disease 
and extreme weather event impacts) is complicated by the different software 
architectures and programming languages in which they are implemented.

When developing a model or choosing a model for a specific analysis, a 
key decision to be made is on the level of granularity that is required. Individual 
choices have to be made regarding how to represent real-world entities in 
the model, and the boundaries and scope of the system must be defined. All 
these choices may have to be balanced, including a number of non-functional 
requirements such as availability and performance. All these contribute to 
define the granularity of a model and will have important implications on its 
reusability, transparency, and reproducibility, and on the interpretability of the 
simulation results (Neveu et al., 2020).

The internal granularity of a component must be distinguished from the 
granularity of the whole model. The internal granularity of a component is 
easier to define in most cases and should be at the scale of unitary processes 
(often defined by a single controlling equation). The choice of the granularity 
of a modelling solution, which defines the number of components, should be 
primarily guided by reusability aspects. A model component that simulates the 
hourly or daily energy balance of canopies is more likely to be reused than a 
component that simulates the canopies’ latent heat flux.

Most crop modelling platforms have a modular architecture (e.g. Brown 
et al., 2014; Donatelli et al., 2014; Enders et al., 2010; Jones et al., 2001; Wang 
et al., 2002), which facilitates the development, reuse and extension of models 
within each of these frameworks. However, their specificities and the different 
programming languages they use make the reuse of components outside 
the platform in which they were developed, or the extension of an existing 
model with components from a different platform, a difficult task. Recently, the 
Agricultural Model Exchange Initiative has coordinated the development of a 
centralised framework (Crop2ML, Crop Modelling Meta Language) to support 
the development of modular model and facilitate the exchange and reuse of soil, 
plant, and crop process components between modelling platforms (Midingoyi 
et al., 2020; Midingoyi et al., 2021). Crop2ML reduces the emphasis on the 
software part of the model, bridging the gap between computer programmers 
and model developers, who can better capture the biophysical processes 
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represented in the model. Models in the open-source format Crop2ML can 
be stored, retrieved, and shared on an easily accessible online open model 
repository (CropMRespository; http://crop2ml .org). Crop2ML does not aim 
at replacing existing modelling platforms or at simulating components within 
large modelling solutions; rather Crop2ML provides a solution to create 
transparent and well-documented components, which can be easily extended, 
reused, and shared between crop modelling platforms.

Several other initiatives in other modelling communities are also developing 
solutions to facilitate the exchange and the coupling of models. For example, 
in the earth’s surface modelling, the Community Surface Dynamics Modelling 
System (CSDMS; Tucker et al., 2022) provides cyber-infrastructure to promote 
the quantitative modelling of earth surface processes and distributes software 
tools and models. The CSDMS developed the Basic Model Interface (BMI), a 
set of standard query and control functions that make models both easier to 
learn and easier to couple with other software (Hutton et al., 2020; Peckham 
et al., 2013). As each community of modellers is developing its own system 
for coupling and exchanging modelling solutions or model components 
within its own community, a challenge for more integrated modelling is to 
ease the coupling of models developed by different communities. The Open 
Modelling Foundation (https://ope nmod elin gfou ndation .github .io) is working 
in this direction by coordinating and administrating a common, community-
developed body of standards and best practices among diverse communities 
of modelling scientists to support the exchange, reuse, and interoperability of 
human and natural system models across communities.

8  Concepts for distributed modelling

In the last decades, the world of computing has moved from single machines, 
which execute program code sequentially, to a world of interconnected devices 
of all kinds and sizes, in which the mode of operation is increasingly concurrent, 
even within the devices themselves. There are already thousands of operational 
systems available, in which continuous data streams (e.g. from sensors) are fed 
into cloud-computing infrastructures which run large-scale computations in a 
highly parallel manner. Those systems can be accessed using mobile devices, 
which as well are able to do multiple things in parallel, for instance accessing 
different data sources or interacting with remote environments and services.

In today’s networked world all components of such a workflow can 
potentially be distributed, i.e. made living on separate processes, machines or 
networks. In the extreme case, this distribution is even applied at the level of 
model components, even though there is a limit to a meaningful granularity of 
the distributed components. A distributed system needs a way to address and 
access its remote components. To do this uniformly, a defined protocol has to 

http://crop2ml.org
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be used. In the internet of today, such a widely used protocol is the HyperText 
Transfer Protocol (HTTP), which allows remote resources to be addressed 
via Uniform Resource Locators (URL) or more generally as Uniform Resource 
Identifiers (URI). Taking the HTTP protocol to its logical conclusion leads to the 
well-established REST-based (REpresentational State Transfer) web-services. 
This allows the creation of very flexible services built upon the widely supported 
HTTP mechanism. A disadvantage though lies in its text-based nature, which 
is less space-efficient and requires many latency-increasing network round 
trips for even simple service interactions. Diverging from the clean and pure 
REST mechanism, optimising for some aspects, e.g. transfer efficiency, leads 
to the RPC (Remote Procedure Call) paradigm. Here, a remote component 
offers some kind of interface that defines a set of procedures, equivalent to 
a function in a programming language, to be called. RPC implementations 
do not have to comply with HTTP rules or text-based data transfer, which is 
why they often use binary data encoding. Depending on the design goals, 
these data representations can be more compact for reducing the required 
transfer bandwidth or optimised for efficient handling, e.g. for minimising copy 
operations. In many cases, schema languages are used to describe the remote 
interfaces (set of procedures) as well as the data structures.

The divergence from REST allows for more specialised and optimised 
interfaces, reducing latency. Nevertheless, complex remote Application 
Programming Interfaces (API) still suffer from many necessary network round 
trips. However, the CapTP protocol (http://www .erights .org /elib /distrib /captp 
/index .html) and its implementations offer a way out, regaining some of the 
efficiency local procedure calls offer and even getting back some of the 
flexibility and cleanliness the REST-based approach exhibited, but without the 
drawbacks. One such implementation is Cap’n Proto, a fast data interchange 
format and capability-based RPC system (https://capnproto .org). A Cap’n Proto 
schema file will describe the messages that a remote object will understand 
and the structure data in these messages will have. To make a model or 
component remotely accessible it has to implement the according interface. 
The possibility to have interfaces implemented by different models and 
components allows them to interoperate. Contrary to most RPC systems, Cap’n 
Proto allows interfaces themselves to be sent or received in messages. In this 
context, the interfaces are called capabilities and are the powerful foundation 
for the Capability Security paradigm (Miller et al., 2003).

One challenge neglected so far is how to manage access and authority to 
remote objects (models, components and services). In a traditional RPC or REST-
based setting access to an URL/URI has to be authenticated. This can happen 
via usernames and passwords, systems like OAuth (https://en .wikipedia .org /
wiki /OAuth) or access tokens (a kind of capability). Except for the last one, these 
methods make use of ambient authority, i.e. the authority and the means to 
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exercise this authority are separated. A consequence of this is that a system 
hosting remote objects and employing ambient authority has to rely on a central 
authority (an administrative user) to manage access rights. This makes it difficult 
and sometimes impossible to apply the Principle of Least Authority (https://en 
.wikipedia .org /wiki /Principle _of _least _privilege), which states that to execute a 
certain task a user should be given the required authority, but nothing more 
than that. In our context, that task could refer to running a remote computation 
on some input data. The actual authority needed is just the ability to send a 
message to the remote object, which represents this computation. This logic 
is well supported by Object Capability systems (e.g. Cap’n Proto), in which a 
capability is the reference to a remote object. Possessing this reference means 
being authorised to communicate with the remote object. Figure 2 abstractly 
illustrates this concept: the object Alice holds the right to communicate with 
remote object Carol. To allow also remote object Bob to talk to remote object 
Carol, Alice just has to send Bob a message referencing Carol (Berg-Mohnicke 
and Nendel, 2022).

With these foundations in place, ubiquitous connected systems, fast data 
interchange and capability-secured remote procedure calls it is conceivable 
to allow for distributed modelling, model application, and more generally 
distributed workflows. Models or data flows can be composed of remote 
components without the need to know where they are executed as long as they 
conform to a common interface and can understand each other. All that is needed 
is a capability to a remote component in order to use it. Of course, this comes 
at the cost of efficiency and can be prohibitive in some contexts, for example in 
applications due to the demand for large amounts of data (potentially without 

Figure 2 Three owners of an object capability (Alice, Bob and Carol) communicating via 
the message foo. Source: Miller et al. (2003).
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data locality), tight coupling with a lot of interactions per time unit (latency being 
the limiting factor) or reliance on remote availability and less control over the 
execution environment (e.g. slow hardware, no parallelisation or optimisation 
possible). Some issues can be mitigated for instance by moving code and 
data close together. However, while speed is often an issue with distributed 
modelling, distributing models and components offer new possibilities, such 
as enabling new ways of collaboration, local testing and debugging, access to 
large remote datasets or the participation in remote workflows.

9  Future trends and conclusion

Simulation models for different components of the agricultural system have 
been available already for a while, and often model developers hesitate about 
touching again a model that has once been satisfactorily coded, parameterised 
and calibrated. However, increasingly available high-performing computing 
resources and big data gradually offer more and more application opportunities 
for models, and this increases the need to adapt structure, code and framework 
of the models to benefit from this development. Here, standards for data 
interoperability and cross-platform communication at the model-data and 
model–model interface are needed and currently under development. Big 
data especially opens opportunities for large-area applications of models 
in sufficiently high resolution to allow not only simulations that are closer to 
the real world that the models represent but also better investigations of the 
model’s representativeness in time and space and the error that the models 
and their drivers still carry along. Continuous data streams in principle allow 
data assimilation to improve simulations under limited system knowledge, but 
the multivariate and highly intertwined nature of the models that we deal with 
in the agricultural domain often poses challenges with regard to multi-objective 
optimisation problems. Some driving variables may remain limited in the future, 
but in the bid to reproduce spatiotemporal patterns of target variables, the use 
of artificial intelligence may soon help to replace some of the unknown input 
data. Machine learning has already now demonstrated its power in this realm 
(Guilpart et al., 2022; Shahhosseini et al., 2021; van Klompenburg et al., 2020; 
Webber et al., 2020) but remains difficult to interpret (Lischeid et al., 2022).

10  Where to look for further information

Current developments in NetCDF:

 • https://www .unidata .ucar .edu /software /netcdf/.

Cap’n Proto overview

 • https://capnproto .org.

https://www.unidata.ucar.edu/software/netcdf/
https://capnproto.org
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